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Abstract. This paper is a continuation of the theory of cyclic elements in semisimple Lie
algebras, developed by Elashvili, Kac and Vinberg. Its main result is the classification of
semisimple cyclic elements in semisimple Lie algebras. The importance of this classifica-
tion stems from the fact that each such element gives rise to an integrable hierarchy of
Hamiltonian PDE of Drinfeld–Sokolov type.

1. Introduction

Let g be a semisimple finite-dimensional Lie algebra over an algebraically closed
field F of characteristic 0 and let e be a non-zero nilpotent element of g. By the
Morozov-Jacobson theorem, the element e can be included in an sl(2)-triple s =
{e, h, f} (unique, up to conjugacy [Ko]), so that [e, f ] = h, [h, e] = 2e, [h, f ] = −2f .
Then the eigenspace decomposition of g with respect to ad h is a Z-grading of g:

g =

d⊕
j=−d

gj , where g±d 6= 0. (1)

The positive integer d is called the depth of the nilpotent element e.
An element of g of the form e+F , where F is a non-zero element of g−d, is called

a cyclic element, associated to e. In [Ko] Kostant proved that any cyclic element,
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associated to a principal (= regular) nilpotent element e, is regular semisimple,
and in [Sp] Springer proved that any cyclic element, associated to a subregular
nilpotent element of a simple exceptional Lie algebra, is regular semisimple as
well, and, moreover, found two more distinguished nilpotent elements in E8 with
the same property.

A non-zero nilpotent element e of g is called of nilpotent (resp. semisimple) type
if all cyclic elements, associated to e, are nilpotent (resp. there exists a semisimple
cyclic element, associated to e). If neither of the above cases occurs, the element
e is called of mixed type [EKV].

It is explained in the introduction to [EKV] how to reduce the study of cyclic
elements to the case when g is simple. Therefore, we shall assume from now on
that g is simple, unless otherwise stated.

An important rôle in the study of cyclic elements, associated to a non-zero
nilpotent element e, is played by the centralizer z(s) in g of the sl(2)-triple s and
by its centralizer Z(s) in the connected adjoint group G. Since h ∈ s, the group
Z(s) preserves the grading (1).

Let us state now some of the main results from [EKV].

Theorem 1. A nilpotent element e is of nilpotent type iff the depth d of e is odd.
In this case the group Z(s) has finitely many orbits in g−d, hence zero is the only
closed orbit.

Theorem 2. If a non-zero nilpotent element e has even depth, then the represen-
tation of Z(s) in g−d is orthogonal, i.e., preserves a non-degenerate invariant
symmetric bilinear form (· , ·). Consequently, by [L] the union of closed orbits of
Z(s) in g−d contains a non-empty Zariski open subset.

Let

Sg(e) = {F ∈ g−d | e+ F is semisimple in g} . (2)

Theorem 3. Let e ∈ g be a nilpotent element of semisimple type. Then

(a) Sg(e) contains a non-empty Zariski open subset in g−d.
(b) If F ∈ Sg(e), then the Z(s)-orbit of F in g−d is closed.

Thus, Sg(e) consists of closed Z(s)-orbits in g−d, and in order to classify semi-
simple cyclic elements, we need to describe, for each nilpotent element e of semi-
simple type, the complement to Sg(e) in g−d, which we call the singular subset of
g−d.

Recall that the dimension of g−d//Z(s) is called the rank of the nilpotent element
e, and is denoted by rk e.

The representation of the group Z◦(s), the unity component of Z(s), in g−d
is given in [EKV] for each nilpotent element e, whose type is not nilpotent. It
follows from this description that all these representations are strongly polar in
the following sense (see Section 2 for details). We call a representation of a reductive
group S in a vector space V strongly polar if it is polar in the sense of [DK], and
every maximal subspace of V , consisting of vectors with closed S-orbits, called a
Cartan subspace, has dimension equal to that of V//S and all Cartan subspaces
in V are conjugate by S. (Recall that V//S := SpecmF[V ]S .) This is a stronger
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version of the definition of a polar representation, introduced in [DK], but it is
conjectured there that these definitions are equivalent.

Note that, by definition, rk e is equal to the dimension of a Cartan subspace for
Z(s) in g−d.

The basic notion of the theory of cyclic elements is that of a reducing subalgebra,
which we give here for nilpotent elements of semisimple type.

Definition 1. Let e be a nilpotent element of semisimple type in g. A subalgebra
q of g is called a reducing subalgebra for e if q is semisimple, contains s, hence
adh induces Z-grading q =

⊕
j qj , and Z(s)(q−d) contains a Zariski open subset

in g−d.

The first result of the paper, presented in Section 4, is the following theorem,
which is a stronger version for elements of semisimple type of Theorem 3.14 from
[EKV].

Theorem 4. If e is a nilpotent element of semisimple type in g, then there exists a
reducing subalgebra q for e, such that q−d is a Cartan subspace of the representation
of Z(s) in g−d.

Unfortunately, we do not know a proof of this theorem without a case-wise
verification using Tables 2ABCD, 2FG, 2E6, 2E7, 2E8 and 1. It turns out that the
minimal Levi subalgebra, containing e, does the job for most of the cases. This
fails only for one kind of nilpotent elements in g for each of the types Bn, Cn and
F4.

Using (9) below, Theorem 4 reduces the classification of semisimple cyclic
elements, associated to a non-zero nilpotent element e, to the case when e is
a distinguished nilpotent element in g, namely when the group Z(s) is finite.
Obviously we may assume in addition that g does not contain a smaller reducing
subalgebra for e. In this case the nilpotent element e of semisimple type is called
irreducible.

Note that, obviously, Sg(e) is Z(s)-invariant, hence conical (see Proposition 9
below). In particular, if e is a semisimple type nilpotent element of rank 1, taking
F0 ∈ g−d, such that (F0, F0) 6= 0, we obtain (using Theorem 2)

Sg(e) = F∗Z(s)F0 = {F ∈ g−d | (F, F ) 6= 0} .

It turns out that there are very few irreducible nilpotent elements of rank > 1 in
simple Lie algebras: one of rank 2 in so(4k) and F4, one of rank 3 in E7, two of
rank 2 in E8 and one of rank 4 in E8. These cases are treated in Section 3, giving
thereby a complete description of the set Sg(e) for all simple Lie algebras g and
nilpotent elements e of semisimple type.

Namely, an arbitrary nilpotent element e of semisimple type in a simple Lie
algebra g is irreducible in a direct sum of simple Lie algebras q1⊕· · ·⊕qs, containing
e with non-zero projections ei to qi of the same depth as e in g, such that ei is
irreducible in qi and e+F with F = F1 + · · ·+Fs ∈ q1 ⊕ · · · ⊕ qs is semisimple iff
each ei + Fi is semisimple.

In the last Section 5 we relate the problem of finding all semisimple cyclic
elements, associated to a nilpotent element e of depth d, to an algebra structure
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on the subspace g−d, defined by the formula (recall that d is even if e is not of
nilpotent type [EKV])

x ∗ y = [(ad e)
d
2 x, y], x, y ∈ g−d. (3)

One easily shows that this product is commutative (resp. anticommutative) if 1
2d

is odd (resp. even).
It is well known that an even nilpotent element e of depth d = 2 is always of

semisimple type, and the product (3) defines on g−2 a structure of a simple Jordan
algebra (in fact, all simple Jordan algebras are thus obtained [J]).

It turns out that for an irreducible nilpotent element e of rank (= dim g−d := n)
> 2 the algebra (3) is always a commutative algebra, denoted by Cλ(n), for some
particular λ ∈ F, which in a basis p1, . . . , pn has multiplication table

p2
i = pi, pipj = λ(pi + pj) if i 6= j. (4)

For λ 6= 1/2 the algebra Cλ(n) has 6 2n−1 nonzero idempotents, in fact, except for
an easily describable finite set of exceptions, exactly 2n − 1 of them. In particular
this is so in all cases that occur in our situations. For example, if n = 2, then the
values of λ are as follows:

g = so(4k): λ = 1− k; g =F4: λ = −1/3; g =E8: λ = −1 and −2/7.
We compute the algebra (3) for all nilpotent elements of semisimple type.

Obviously this algebra is the same as for the corresponding irreducible nilpotent
element in the cases when e is such that rk e = dim g−d. Remarkably, it turns out
that in all other cases this algebra is either a direct sum of at most two simple
Malcev algebras (including the 1-dimensional Lie algebra), which happens iff d/2
is even, or a simple Jordan algebra, which happens iff d/2 is odd.

What does it have to do with the main problem in question? It turns out that
one can describe the singular subset g−d \Sg(e) in terms of this algebra. We show
that for an irreducible nilpotent element e of depth d with odd d

2 the singular
subset consists of those F ∈ g−d, which are contained in a proper subalgebra of
the algebra (3). For example, in the case n = 2 the singular subset consists of
scalar multiples of the three non-zero idempotents (see (4)):

p1, p2, and
p1 + p2

2λ+ 1
.

In general, for n = 3 and n = 4, the singular subset consists of the union of spans
of n − 1 linearly independent idempotents, namely, it is a union of n(n+ 1)/2
hyperplanes in the n-dimensional space.

For an arbitrary nilpotent element e of semisimple type either there is a reducing
subalgebra which is a direct sum of isomorphic simple Lie algebras with each
projection of e to them being a nilpotent element of rank 1 (in fact, principal), or
the depth d is such that d/2 is odd. In the latter case the algebra g−d with product
(3) is commutative and its Cartan subspace is a subalgebra c, isomorphic to one
of the algebras corresponding to irreducible nilpotent elements. Then the singular
subset for e is equal to Z(s)(csing), where csing is the singular subset of c (described
above).
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We list in Table 1 (see Section 3) all irreducible nilpotent elements of semisimple
type in all simple Lie algebras, and in Tables 2ABCD, 2E6, 2E7, 2E8, 2FG (see
Section 4) all non-irreducible nilpotent elements of semisimple type in simple Lie
algebras of types A, B, C, D, E6; E7; E8; F4 and G2 respectively (using the tables in
[EKV]), along with their depth, rank, the minimal reducing subalgebra qmin (by
its number in Table 1), and the structure of the algebra (g−d, ∗).

Many of our results are proved in the tradition of the ancient Greeks: look at
the tables! It would be interesting to find unified proofs of such claims. Here are
some of them:

(a) If d is odd, then the linear group Z(s)|g−d is Sp(n) (we know a priori that
this is a subgroup of Sp(n) with finitely many orbits).

(b) If d is even, then the linear group Z(s)|g−d is strongly polar and g−d is a
sum of at most two irreducible modules.

(c) If d is divisible by 4, then (g−d, ∗) is a Malcev algebra.

(d) If s := dim g−d > 1 and the group Z(s)|g−d is finite, then the algebra
(g−d, ∗) has exactly 2s idempotents and the singular set is a union of
hyperplanes, spanned by idempotents, their number being s(s+ 1)/2.

(e) If e is of semisimple type, the group Z(s)|g−d is infinite, and d/2 is odd,
then (g−d, ∗) is a simple Jordan algebra.

In the conclusion of the introduction recall that one of the applications of the
study of semisimple cyclic elements is that regarding regular elements in Weyl
groups [Ko], [Sp], [EKV]. Another application goes back to the work of Drinfeld and
Sokolov [DS], where they used the principal cyclic elements of simple Lie algebras
to construct integrable Hamiltonian hierarchies of PDE of KdV type (the KdV
arising from sl(2)). This work was followed by series of papers by various authors,
where the method of [DS] was extended to other semisimple cyclic elements. In
complete generality this has been done in [DSKV], where to each semisimple cyclic
element, considered up to a non-zero constant factor and up to conjugacy by Z(s),
an integrable Hamiltonian hierarchy of PDE was constructed.

The contents of this paper is as follows. After explaining the basic notions, the
goal, and the motivations of the paper in the Introduction, we discuss the notions of
polar and strongly polar linear reductive algebraic groups in Section 2 (Theorems
5 and 6). The reason for it is Proposition 7, which claims that the linear group
Z(s)|g−d is strongly polar. This, along with Theorem 3, restricts considerably the
possibilities for F ∈ g−d, such that the cyclic element e+ F is semisimple.

In Section 3 we list irreducible nilpotent elements e of semisimple type in
Table 1. By definition, they do not admit a nontrivial reducing subalgebra, and
consequently the group Z(s)|g−d is finite (these finite linear groups are listed in
Table 1). Theorem 10 describes an explicit parametrization of the set Sg(e) for all
nilpotent elements e from Table 1 in simple Lie algebras g.

In Section 4 for each nilpotent element e of semisimple type in a simple Lie
algebra g we exhibit a (semisimple) reducing subalgebra where e is irreducible.
This reduces the description of the set Sg(e) to the irreducible nilpotent elements
of semisimple type from Table 1. The obtained information on nilpotents e of
semisimple type in simple classical Lie algebras, in g of type F and G, and in g of
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type E6, of type E7, and of type E8, is given in Tables 2ABCD, 2FG, 2E6, 2E7, and
2E8, respectively.

Finally, in Section 5 we study the algebra (g−d, ∗), associated to a nilpotent
e of semisimple type by formula (3). It is a generalization of the well-known
construction of simple Jordan algebras when d = 2. These algebras are explicitly
described by Theorem 20. In Theorem 21 we provide the description of the set
Sg(e) in terms of these algebras.

We added to the paper three appendices. In Appendix A we describe for each
odd nilpotent element e the even subalgebra gev =

⊕
j∈Z g2j . In Appendix B

we describe the algebras (g−d, ∗) for all nilpotent elements of mixed type in g.
In Appendix C we describe chains for all nilpotent elements in g, which is a
generalization of the decomposition into unions of Jordan blocks of the same size
in g = sl(n).

Throughout the paper the base field F is an algebraically closed field of charac-
teristic zero.

We are grateful to E. B. Vinberg for numerous discussions and suggestions, and
to a referee for a large number of questions and corrections. All the calculations
were made possible thanks to the GAP system for computational algebra, and
especially the GAP package SLA by Willem de Graaf [deG], who also provided
several helpful emails explaining its usage. The paper was completed while all
three authors visited, in the summer of 2019, the IHES, France, whose hospitality
is gratefully acknowledeged.

2. Polar representations and reducing subalgebras

Let G be a reductive subgroup of GL(V ), where V is a finite-dimensional vector
space over F, and let g ⊆ gl(V ) be its Lie algebra. Let v ∈ V be such that its orbit
G(v) is closed. Let

cv = {x ∈ V | g(x) ⊆ g(v)} . (5)

Then [DK] dim cv 6 dimV//G. The linear reductive group G is called polar if

dim cv = dimV//G, (6)

and in this case cv is called a Cartan subspace of V . Note that, by definition, G is
polar iff its identity component is.

The following results are either proved in [DK] or easily follow from it.
Let c ⊂ V be a Cartan subspace, and let N(c) = {g ∈ G | g(c) = c}, Z(c) =

{g ∈ G | g(v) = v for all v ∈ c}. Then N(c)/Z(c) is called the Weyl group of the
polar linear group G.

Theorem 5. Let G ⊂ GL(V ) be a polar linear group, let c ⊂ V be a Cartan
subspace, and let W ⊂ GL(c) be the Weyl group of c. Then

(a) Any Cartan subspace c1 ⊂ V is conjugate by G to c.
(b) The Weyl group W is finite and any closed orbit of G intersects c by an

orbit of W . Furthermore, C[V ]G
∼−→ C[c]W via restriction.

(c) If G is connected, then the Weyl group W is generated by unitary reflections.
If G is orthogonal, then G · c is Zariski dense in V and W is generated by
orthogonal reflections.
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Proof. Claim (a) is a part of Theorem 2.3 from [DK].
Claim (b) is Lemma 2.7 and Theorems 2.8, 2.9 from [DK].
Claim (c), except for the second part, is Theorem 2.10 from [DK].
If V is orthogonal, i.e., has a non-degenerate symmetric G-invariant bilinear

form (· , ·), then the generic G-orbit is closed by [L], hence the restriction of (· , ·)
to c is non-degenerate W -invariant, hence the reflections in W are orthogonal. �

Theorem 6.

(a) A direct product of linear reductive groups Gi ⊂ GL(Vi) is polar iff all
Gi ⊂ GL(Vi) are polar.

(b) If G ⊆ GL(V ) is a reductive subgroup and dimV//G 6 1 or = dimV0, where
V0 is the zero weight space for g in V , then G is polar, V0 being a Cartan
subspace in the second case.

(c) All theta-groups are polar.
(d) For a theta-group, any subspace c ⊂ V consisting of semisimple elements,

and such that dim c = dimV//G, is a Cartan subspace. Consequently all
theta-groups are strongly polar.

Proof. Claims (a) and (b) are obvious.
Claim (c) was stated without proof in [DK]. It follows easily from [V]. Indeed,

recall [Ka1], [V] that a theta-group is obtained by considering the grading defined
by an order m automorphism θ of a reductive Lie algebra p:

p =
⊕

j∈Z/mZ

pj . (7)

Then the connected linear algebraic group P0 with Lie algebra p0, acting on p1,
is called a theta group. It was proved in [V] that if c ⊂ p1 is a maximal abelian
subalgebra, consisting of semisimple elements, then

dim c = dim p1//G0. (8)

Consider the weight space decomposition of p with respect to c: p =
⊕

λ∈c∗ pλ,
so that pλ=0 is the centralizer of c in p. Take v ∈ c, such that λ(v) 6= 0 for all
λ 6= 0 such that pλ 6= 0. Then, obviously, [p, x] ⊆ [p, v] for x ∈ c. Considering the
projection of p to p1 with respect to (7), we deduce that [p0, x] ⊆ [p0, v], which
together with (8) shows that c is a Cartan subspace, proving (c).

Finally claim (d) follows from [MT], as claimed in [DK]. Indeed if p1 ⊂ p is as
in (7) and if c ⊂ p1 ⊂ p ⊂ End p is a subspace, consisting of semisimple elements,
then, by [MT] it is abelian. Hence, if, in addition, (8) holds, c is a maximal abelian
subalgebra in p1, consisting of semisimple elements. Therefore, by the discussion
proving (c), it is a Cartan subspace. �

Remark 1. As D. Panyushev pointed out to the third author, the group SL(2),
acting on the direct sum V of the 2- and 3-dimensional irreducible representations,
is not polar, though it has a 2-dimensional subspace consisting of elements with a
closed orbit and dim V//SL(2) = 2.



A. G. ELASHVILI, M. JIBLADZE, V. G. KAC

Examples of orthogonal theta-groups:

1) adjoint representations,
2) nontrivial representations of F4 and G2 of minimal dimension,
3) standard representation of SO(n),
4) symmetric square of the standard representation of SO(n),
5) skew-symmetric square of the standard representation of Sp(n).

Proposition 7. If e is a nilpotent element of semisimple or mixed type in a simple
Lie algebra g, then the image of the representation of Z(s) in g−d is orthogonal
polar. Moreover any of its subspaces c of dimension equal to dim g−d//Z(s) consist-
ing of elements with closed orbits is a Cartan subspace. Consequently the linear
reductive group Z(s)|g−d is strongly polar.

Proof. The first claim is Theorem 2 (by Theorem 1). Just a look at Tables 5.1–5.4
from [EKV] (cf. Tables 2ABCD, 2FG, 2E6, 2E7, 2E8 below for semisimple type
nilpotent elements) shows that the linear reductive group in question is a direct
sum of theta-groups (and 1-dimensional trivial linear groups), see Examples. Hence
the proposition follows from Theorem 6 (d). �

Remark 2. It follows from [EKV], Lemma 1.2, that if e is of nilpotent type, then
dim g−d//Z(s) = 0, consequently the image of the representation of Z(s) in g−d is
polar as well. In fact nilpotent elements of nilpotent type exist in case of classical
simple Lie algebras only in g = so(N), N > 7, and those correspond to the
partition [2m+ 1 > 2m = · · · = 2m︸ ︷︷ ︸

2k times

> · · · ] [EKV], in which case the image of the

representation of Z(s) in g−d is the standard representation of Sp(2k). Nilpotent
elements of nilpotent type in exceptional Lie algebras are listed in [EKV, Table
1.1]. One can show that for all of them the image of the representation of Z(s) in
g−d is again the standard representation of Sp(2k) for some k. Furthermore, this
k equals 1 in all cases, with the following four exceptions:

g =E7, e = 4A1, k = 3;
g =E8, e = 4A1, k = 4; e = 2(A2+A1), k = 2; e = 2A3, k = 2.

Definition 2. A semisimple subalgebra q of g is called reducing for a nilpotent
element e of semisimple type, if q contains s (hence is a Z-graded subalgebra) and
a Cartan subspace of Zq(s) in q−d is a Cartan subspace of Zg(s) in g−d.

It follows from Proposition 7 that in the case of e of semisimple type this
definition is equivalent to that in [EKV]. Moreover, the following is an easy conse-
quence of results in [EKV, Sect. 3]:

Proposition 8. If a nilpotent element e ∈ g is of semisimple type, then a semi-
simple subalgebra q of g is reducing for e if and only if it contains e and e has the
same depth and rank in q as in g.

Example 1. Let e be a nilpotent element of semisimple type in g. Let qmax denote
the subalgebra of g, generated by e and g−d. It follows from [EKV, Thm. 3.3 and
Props. 3.9, 3.10] that qmax is a reducing subalgebra for e in g. Note that the derived
subalgebra of gev =

⊕
j∈Z g2j is a reducing subalgebra for e, which might be larger

than qmax, so this notation is misleading. One may think of qmax as the maximal
useful reducing subalgebra.
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Example 2. Let σ be a diagram automorphism of g and e ∈ g a σ-invariant
nilpotent element of semisimple type, such that gσ−d = g−d. Then gσ is a reducing
subalgebra for e. This happens if e is a principal nilpotent element in g = sl(2k),
so(2k) or E6 and order(σ) = 2, or in g = so(8) and order(σ) = 3.

Recall that the rank rkg(e) of e in g is the dimension of g−d//Z(s). Note that
for any reducing subalgebra q of a nilpotent element e of semisimple type in g we
have, in view of Theorem 4,

Sg(e) = Z(s)Sq(e). (9)

Indeed, according to Theorem 3 (b) if e+F is a semisimple element of g (resp. q),
then the Z(s)-orbit of F in g−d (resp. q−d) is closed. So, since both representations
are polar, we may assume that F lies in a Cartan subspace of q−d, which is a Cartan
subspace of g−d, since q is a reducing subalgebra. Thus we can reduce description
of Sg(e) to that for Sq(e).

Proposition 9. The set Sg(e) ⊂ g−d is conical, i.e., if F ∈ Sg(e), then cF ∈
Sg(e) for any c ∈ F \ {0}.

Proof. Let λ(t) ⊂ G be the 1-parameter subgroup, corresponding to h ∈ g from s.
Then

λ(t)(e+ F ) = t2e+ t−dF, t ∈ F \ {0},

hence e+ t−d−2F lies in Sg(e) if F does. �

3. Irreducible nilpotent elements of semisimple type

Recall that a nilpotent element e of semisimple type in a simple Lie algebra g
is called irreducible if it does not admit a nontrivial reducing subalgebra different
from g [EKV]. Irreducible nilpotent elements are listed in Table 1 below (where k >
1). Recall that in all these cases the linear group Z(s)|g−d is finite and dim g−d =
rk e. It turns out, using [Ale], [CM, Cor. 6.1.6], that in all cases this finite group
is Sn for n = 1, 2, 3, 5.

Actions of this group, as well as the actions of the component groups of Z(s) on
g−d in general, are computed in the following way. First, using the SLA command
FiniteOrderInnerAutomorphisms [deG], one finds those inner automorphisms of
g of required orders which fix a minimal regular semisimple subalgebra containing
e. That command provides Kac diagrams of these automorphisms [OV, p. 213];
from the Kac diagrams one determines actions of these automorphisms on g−d.
In this way we find that if Z(s)|g−d = Sn and dim g−d = n (resp. = n − 1), the
group Sn acts on g−d as the permutation representation (resp. the nontrivial n−1-
dimensional irreducible representation). We denote the latter by σn, so that the
former is σn ⊕ 1. In the last column we list the structure of the algebra (g−d, ∗);
the symbol 1 there stands for a 1-dimensional algebra with non-zero (resp. zero)
multiplication if d/2 is odd (resp. even). The algebras Cλ(n) are defined by (4).

The irreducible nilpotents of semisimple type are listed in the following table
(where k > 1):
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Table 1. Irreducible nilpotent elements of semisimple type

# g nilpotent e depth rank Z(s)|g−d (g−d, ∗)
1k sl(2k + 1) [2k + 1] 4k 1 1 1

2k sp(2k) [2k] 4k − 2 1 1 1

3k so(2k + 1), k 6= 3 [2k + 1] 4k − 2 1 1 1
4k so(4k + 4) [2k + 3, 2k + 1] 4k + 2 2 1 ⊕ 1 C−k(2)

5 G2 G2 22 10 1 1 1

6 F4 F4 22 22 22 1 1 1
7 F4 F4(a2) 20 02 10 2 σ2 ⊕ 1 C−1/3(2)

8 E6 E6(a1)
2

2222002222 16 1 1 1

9 E7 E7

2

222222222222 34 1 1 1

10 E7 E7(a1)
2

222200222222 26 1 1 1

11 E7 E7(a5)
0

000022000022 10 3 σ3 ⊕ 1 C−1/3(3)

12 E8 E8

2

22222222222222 58 1 1 1

13 E8 E8(a1)
2

22220022222222 46 1 1 1

14 E8 E8(a2)
2

22220022002222 38 1 1 1

15 E8 E8(a4)
0

22002200220022 28 1 1 1

16 E8 E8(a5)
0

22002200002200 22 2 σ2 ⊕ 1 C−2/7(2)

17 E8 E8(a6)
0

00002200002200 18 2 σ3 C−1(2)

18 E8 E8(a7)
0

00000022000000 10 4 σ5 C−1/3(4)

Irreducibility follows from the fact that in any reducing subalgebra the nilpotent
e must have the same depth and rank. For the rank 1 case, dimension of g−d is
1, and e together with any nonzero F ∈ g−d generates g as an algebra. Now any
reducing subalgebra must contain e and a scalar multiple of F , so must coincide
with g. For rank 2, examining all pairs of cases with equal depth it turns out that
none of them can be embedded into each other. There is only one case of rank 3
and only one of rank 4, which implies irreducibility for these ranks.

In this, as well as in all subsequent tables, a nilpotent element is represented by
the corresponding partition for classical types, and by its label and the weighted
Dynkin diagram for exceptional types. For the latter we use labels from [CM].

We will describe explicitly in the next Section the minimal reducing subalgebra
qmin for each nilpotent element e of semisimple type, where it is irreducible. We
list there in Tables 2ABCD, 2E6, 2E7, 2E8, 2FG all reducible nilpotent elements of
semisimple type and their minimal reducing subalgebras qmin by their number 1k
– 4k, 5 – 18 from Table 1.

We now turn to the description of the sets Sg(e) ⊂ g−d for irreducible nilpotent
elements. The following theorem has been checked with the aid of computer.

Theorem 10. For every irreducible nilpotent element e of semisimple type in a
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simple Lie algebra g with dim g−d = m there exists an explicit linear isomorphism

I : g−d ∼=
{

(z0, . . . , zm) ∈ Fm+1 | z0 + · · ·+ zm = 0
}

such that
(z0, . . . , zm) ∈ I(Sg(e)) ⇐⇒ zi 6= zj for i 6= j.

Proof. Note that in all these cases, if e+F is semisimple then it is in fact regular.
This follows from the more general fact — if e is distinguished, and e + F is
semisimple, then e+ F is regular semisimple, see [Sp, 9.5]. It follows that

Sg(e) = {F ∈ g−d | pr(e+ F ) 6= 0} ,

where r is the rank of g and pr is the lowest nonzero coefficient (at degree r) of
the characteristic polynomial of ad(e+ F ).

Obviously for irreducible nilpotent elements e with dim g−d = 1, e + F is
semisimple if and only if F ∈ g−d is nonzero, see Proposition 9.

When dim g−d = 2, there are exactly three distinct one-dimensional subspaces
in g−d such that e + F is semisimple if and only if F does not lie in any of
those subspaces. We show this by a case-wise inspection of the four cases with
dim g−d = 2 from Table 1.

Case 4k: g=so(4k+4), nilpotent element e with partition (2k+3, 2k+1).
The standard representation has a basis x−k−1, x−k, . . . , x−1, x0, x1, . . . , xk, xk+1,
y−k, . . . , y−1, y0, y1, . . . , yk, with e acting by

x−k−1 7→ x−k 7→ · · · 7→ x−1 7→ x0 7→ x1 7→ · · · 7→ xk 7→ xk+1 7→ 0,
y−k 7→ · · · 7→ y−1 7→ y0 7→ y1 7→ · · · 7→ yk 7→ 0.

(10)

In this case g−d has a basis (F1, F2) such that

F1(yk) = −x−k−1, F1(xk+1) = y−k, F2(xk) = x−k−1, F2(xk+1) = x−k,

and all other actions of F1, F2 are zero. Pictorially,

x0 x1 · · · xk xk+1x−1· · ·x−kx−k−1

y0 y1 · · · yky−1· · ·y−k

e e e e e e e e

e e e e e e

F2 F2

F1−F1
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So F = λ1F1 + λ2F2 acts via

xk 7→ λ2x−k−1,

yk 7→ −λ1x−k−1,

xk+1 7→ λ1y−k + λ2x−k,

mapping all other xi, yj to 0. Thus c := e+ F acts as follows:

x−k−1 7→ x−k 7→ · · · 7→ xk 7→ xk+1 + λ2x−k−1,

y−k 7→ · · · 7→ yk 7→ −λ1x−k−1,

xk+1 7→ λ1y−k + λ2x−k 7→ · · · 7→ λ1yk + λ2xk 7→ λ2xk+1 + (λ2
2 − λ2

1)x−k−1.

c(y−k) = y−k+1,

c2(y−k) = c(y−k+1) = y−k+2,

. . .

c2k(y−k) = c(yk−1) = yk,

c2k+1(y−k) = c(yk) = −λ1x−k−1,

c2k+2(y−k) = c(−λ1x−k−1) = −λ1x−k,

c2k+3(y−k) = c(−λ1x−k) = −λ1x−k+1,

. . .

c4k+2(y−k) = c(−λ1xk−1) = −λ1xk,

c4k+3(y−k) = c(−λ1xk) = −λ1xk+1 − λ1λ2x−k−1,

and

c4k+4(y−k) = c(−λ1xk+1 − λ1λ2x−k−1) = −λ2
1y−k − 2λ1λ2x−k

= −λ2
1y−k − 2λ2c

2k+2(y−k).

In particular, since c2k+1(y−k) = −λ1x−k−1 it follows that c fails to be semisimple
if λ1 = 0. Whereas if λ1 6= 0, then y−k, c(y−k), c2(y−k), . . . , c4k+3(y−k) form a
basis of the standard representation, so that the action of c on it can be realized
as multiplication by t on C[t]/(t4k+4 + 2λ2t

2k+2 + λ2
1). Discriminant of t4k+4 +

2λ2t
2k+2 +λ2

1 being a scalar multiple of λ4k+2
1 (λ2

1−λ2
2)2k+2, we see that semisimp-

licity of c can additionally fail only when λ2 = ±λ1. In this case it indeed fails
since then c2k+2 ± λ1 identity becomes a nontrivial nilsquare operator.

So, semisimplicity of e + F is equivalent to the conjunction of λ1 6= 0 and
λ2 6= ±λ1. Thus in this case the statement of the Theorem is ensured with the
parametrization λ1 = z0 − z2, λ2 = z0 − 2z1 + z2.

Case g = F4: nilpotent element e with label F4(a2).Take the representative
of this orbit

e := e1100 + e0011 + e0110 + e0210



SEMISIMPLE CYCLIC ELEMENTS

(here eijkl stands for the root vector of the root that is the linear combination
of simple roots with coefficients i, j, k, l, where the numbering of simple roots is
1 2 3 4 ).

Then p4(e + x1f2431 + x2f2432) is a scalar multiple of x2
1x

4
2(x1 + x2)2, so the

element e + x1f2431 + x2f2432 is regular semisimple if and only if neither of the
equalities x1 = 0, x2 = 0 or x1 + x2 = 0 hold.

Obviously in this case the theorem holds true with x1 = z0 − z1, x2 = z1 − z2.

Case g = E8: nilpotent element e with label E8(a5). We take

e := e00001
0

00 + e01000
0

00 + e00000
0

11 + e00001
0

10 + e00001
1

10 + e00011
0

10 + e00111
1

00 + e11110
0

00.

The space g−d has a basis consisting of negative root vectors

F1 = f13456
3

42, F2 = f23456
3

42.

Then p8(e+x1F1+x2F2) is a scalar multiple of x8
1x

6
2(x1+x2)6, so that the theorem

holds with the same parametrization as for the F4 case above.

Case g = E8, nilpotent element e with label E8(a6). Here we take

e := e00011
0

00 + e01100
0

00 + e11000
0

00 + e00001
0

11 + e00011
1

00 + e00111
0

00 + e01110
0

00 + e00111
1

10.

The negative root vector basis (F1, F2) here is the same as for E8(a5), and p8(e+
x1F1 + x2F2) is a scalar multiple of x8

1(x1 − x2)8x8
2, so that the theorem in this

case is proved with the parametrization x1 = z0 − z1, x2 = z2 − z1.

There is only one case with dim g−d = 3: nilpotent element with label
E7(a5) in E7.

Take the representative

e := e1000
0

00 + e0001
0

11 + e0001
1

10 + e0011
1

00 + e0011
0

10 + e0111
0

00 + e0111
1

11.

Let
c(x1, x2, x3) := e+ x1f1234

2
21 + x2f1234

2
31 + x3f1234

2
32,

then p7(c(x1, x2, x3)) is a scalar multiple of

(x1 − x3)4(x2
1 + x1x3 + x2

3)4(x1 − x2 + x3)3(x2
1 + x1x2 − x1x3 + x2

2 + x2x3 + x2
3)3.

Denoting by ω the primitive third root of unity, we have

x2
1 + x1x3 + x2

3 = (x1 − ωx3)(x1 − ω̄x3)

and

x2
1 + x1x2 − x1x3 + x2

2 + x2x3 + x2
3 = (x2 − ωx1 − ω̄x3)(x2 − ω̄x1 − ωx3),

so that semisimplicity of c(x1, x2, x3) fails along the following subset of the projec-
tive plane:
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x1 = x3

x2 = ω̄x1 + ωx3

x2 = ωx1 + ω̄x3

x2 = x1 + x3

x1 = ω̄x3

x1 = ωx3

[1:−1:1]

[ω̄:−1:ω]

[ω:−1:ω̄]

[0:1:0][1:2:1]

[ω̄:2:ω]

[ω:2:ω̄]

For this case we can ensure the theorem with

x1 =
ωz1 + ω2z2 + z3

3
, x2 = z0 −

z1 + z2 + z3

3
, x3 =

ω2z1 + ωz2 + z3

3
.

Finally, for dim(g−d) = 4 there is also only one case: nilpotent orbit labeled
by E8(a7) in E8. The theorem in this case has been inspired by an answer that
Noam Elkies gave to a question on mathoverflow concerning the configuration of
hyperplanes that appears in this case — see [E].

We take

e := e00010
0

00 + e00111
0

10 + e00111
0

11 + e01111
1

00 + e11111
0

00 + e00111
1

11 + e01111
1

10 + e00012
1

21.

The root vector basis of g−d consists of negative root vectors

F1 := f12356
3

42, F2 := f12456
3

42, F3 := f13456
3

42, F4 := f23456
3

42.

Here p8(e+ x1F1 + x2F2 + x3F3 + x4F4) is a scalar multiple of the 24th power of

x1x3x4(x3 + x4)(x2
1 + x2

2)(x2
1 + (x2 + x3)2)(x2

1 + (x2 − x4)2).

Replacing x1 with
√
−1x1, we find that the singular set consists of ten 3-dimensi-

onal subspaces of g−d, given in the root vector basis by the equations

x1 − x2 − x3 = 0, x1 + x2 + x3 = 0, x1 − x2 + x4 = 0, x1 + x2 − x4 = 0,

x1 = 0, x3 = 0, x4 = 0, x1 + x2 = 0, x1 − x2 = 0, x3 + x4 = 0.
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All possible intersections of these subspaces produce twenty-five 2-dimensional
subspaces and fifteen 1-dimensional subspaces. Each 3-dimensional subspace con-
tains six of these 2-dimensional subspaces and seven of these 1-dimensional sub-
spaces. Each of these 2-dimensional subspaces contains three of the 1-dimensional
subspaces. Ten of the 1-dimensional subspaces lie in four of the 2-dimensional
and in four of the 3-dimensional subspaces each, while five of the 1-dimensional
subspaces lie in seven of the 2-dimensional and in six of the 3-dimensional subspaces
each. Finally fifteen of the 2-dimensional subspaces lie in two of the 3-dimensional
ones and ten of the 2-dimensional subspaces lie in three of the 3-dimensional ones.

The parametrization (found by Noam Elkies in [E]) in this case is

x1 = z0 − z1, x2 = z0 + z1 − 2z2, x3 = 2(z2 − z3), x4 = 2(z4 − z2).

This parametrization in particular shows that the whole configuration can be
described through its projectivization as the barycentric subdivision of a tetra-
hedron:

The above fifteen 1-dimensional subspaces correspond to its vertices (4), bary-
centers of edges (6), barycenters of faces (4) and the barycenter of the tetrahedron
(1), twenty-five 2-dimensional subspaces correspond to edges (6), lines joining a
vertex with the barycenter of some face (4 × 4) and lines joining barycenters of
opposite edges (3), and ten 3-dimensional subspaces of the configuration corres-
pond to faces (4) and planes through an edge and the barycenter of the tetrahedron
(6). �

4. Non-irreducible nilpotent elements of semisimple type

As shown in [EKV, Thm. 3.14], for each nilpotent element e of semisimple type
there is a reducing subalgebra for e where it is of regular semisimple type. We will,
in fact, for each such e exhibit a reducing subalgebra where it is irreducible (hence
regular).

In most cases, these reducing subalgebras are as follows.

Definition 3. For a nilpotent element e, let l(e) denote the semisimple part of
the centralizer of a Cartan subalgebra of the centralizer z(s) of the sl(2)-triple s
for e.
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The subalgebra l(e) is the derived subalgebra of a minimal Levi subalgebra of
g containing s, and e is distinguished in it, so that s has zero centralizer in l(e).
It turns out, by looking at Tables 2ABCD, 2E6, 2E7, 2E8, 2FG that for most of
nilpotent elements e in g of semisimple type, l(e) is a reducing subalgebra for e. The
exceptions in classical g, when l(e) is not a reducing subalgebra, are the following
(see [EKV], before Section 5):

(a) nilpotent elements with partition [3, 1(2k)] in so(2k + 3) for k > 1, rk = 2,
(b) nilpotent elements with partition [(2k)(n)] in sp(2kn) for n > 1, k > 1,

rk = n.

In case (a), the algebra l(e) has type A1, with l(e)−d of dimension 1, while g−d
has dimension 2k+1 and rk e = 2. The centralizer of s in g is so(2k) acting trivially
on l(e)−d, so l(e) cannot be reducing.

In case (b), g−d has dimension n(n+1)/2, with the centralizer so(n) of s acting
on g−d as on the symmetric square of the standard representation, so that e has
rank n, while l(e) is sl(2k)⊕j for n = 2j and sl(2k)⊕(j−1) ⊕ sp(2k) for n = 2j − 1,
with e principal, hence of rank j in l(e) in both cases.

There is only one nilpotent element e in exceptional g, when the algebra l(e)

is not reducing, namely for e with label Ã1 in F4, which has rank 2. Here the
centralizer of s is sl(4), and g−d is the sum of a 6-dimensional irreducible sl(4)-
module and a 1-dimensional trivial module. Since e has rank 1 in l(e), the latter
cannot be a reducing subalgebra.

In these three cases, minimal reducing subalgebras are the ones generated by
e and an element F ∈ g−d having closed orbit of smallest possible codimension

(equal to the rank of the nilpotent). In case (a) and for Ã1 in F4 it is of type
A1 + A1, and in case (b) it is sp(2k)⊕j .

In all remaining cases, l(e) is reducing, and e is principal in l(e).
There are also several cases when, although l(e) is a reducing subalgebra, there

is a still smaller reducing subalgebra inside it. Such subalgebra is generated by e
and an element F ∈ l(e)−d as above — that is, an element having closed orbit of
smallest possible codimension. In all these cases it turns out that e is irreducible
in this subalgebra, i.e., it gives one of the cases from Table 1. (We have only a
computer proof of this.) It then follows that this is a minimal reducing subalgebra.

Thus in Tables 2ABCD, 2E6, 2E7, 2E8, 2FG all algebras in the column “qmin”
are minimal reducing subalgebras, and have the property that they are generated
by e and F ∈ g−d, having closed orbit of minimal codimension.

In Tables 2ABCD, 2E6, 2E7, 2E8, 2FG we list all nilpotent orbits G(e) of semi-
simple type, except for the irreducible ones, in all simple Lie algebras (the irredu-
cible ones are listed in Table 1). In the first column the nilpotent elements are
given by the corresponding partitions in the classical Lie algebras (notation k(s)

means that the part k is repeated s times), and by the type of l(e) and by the
weighted Dynkin diagram in the exceptional Lie algebras. In the second and
third columns the depth and rank are given. In the fourth column the image
of Z(s) in End(g−d) is given. It is computed using the z(s) listed in [EKV] and
the results of [Ale], [CM]. Actions of z(s) on g−d are computed using the GAP
command LeftAlgebraModule [GAP] which finds the module structure. For the
torus part of z(s) one finds eigenvectors and eigenvalues of its action on g−d.
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Next, the command DirectSumDecomposition in [GAP] decomposes g−d as a
module over the semisimple part of z(s) into irreducible components. For all g of
exceptional type dimensions of these irreducible components suffice to determine
the structure of these irreducible components up to isomorphism. In the fifth
column the minimal reducing subalgebras are given by their number in Table
1 (recall that e is irreducible in its minimal reducing subalgebra).

Concerning notation — “st” denotes the standard representations, “ad” the ad-
joint representations, 1 the trivial 1-dimensional representations, 7 and 26 the non-
trivial irreducible representations of minimal dimension of G2 and F4 respectively,
σn is the nontrivial irreducible n− 1-dimensional representation of the symmetric
group Sn (n > 2), σn ⊕ 1 being its permutation representation, and −⊕n is the
direct sum with itself n times. In all cases k > 1, n > 1, q > 0.

We also list qmax, which is a subalgebra of g, generated by g−d and e (it
is a reducing subalgebra by the results of [EKV]). Types of qmin and qmax are
determined using the GAP command SemiSimpleType [GAP]. Finally, in the last
column we list the algebras (g−d, ∗) (their notation is explained in Section 5). They
are defined by (4) and in Section 5C. As in Table 1, 1 stands for the 1-dimensional
algebra with non-zero (resp. zero) multiplication if d/2 is odd (resp. even).

Table 2ABCD. Non-irreducible nilpotent elements of semisimple type in A,B,C,D

nilpotent e depth rank Z(s)|g−d qmin qmax 3 e (g−d, ∗)
sl

[(2k)(n), 1(q)] 4k − 2 n adsl(n) ⊕ 1 2⊕nk sl(2kn) 3 [(2k)(n)] Jn(A)

[(2k + 1)(n), 1(q)] 4k n adsl(n) ⊕ 1 1⊕nk sl(2kn+ n) 3 [(2k + 1)(n)] An−1 ⊕ 1

sp

[(2k)(n), 1(2q)] 4k − 2 n S2(stso(n)) 2⊕nk sp(2kn) 3 [(2k)(n)] Jn(C)

[(2k + 1)(2n), 1(2q)] 4k n adsp(2n) 1⊕nk sp(4nk + 2n) 3 [(2k + 1)(2n)] Cn

so

[3, 1(q)], q 6= 1 2 2 stso(q) ⊕ 1 2⊕2
1 g Jq(BD)

[7, 1(q)] 10 1 1 5 = qmin 1
[2k + 3, 1(q)], k 6= 2 4k + 2 1 1 3k+1 = qmin 1
[2k + 3, 2k + 1, 1(q)] 4k + 2 2 1⊕ 1 4k = qmin C−k(2)
[(2k)(2), 1(q)] 4k − 2 1 1 2k = qmin 1
[(2k)(2n), 1(q)], n > 1 4k − 2 n Λ2(stsp(2n)) 2⊕nk so(4kn) 3 [(2k)(2n)] J2n(D)
[(2k + 1)(2), 1(q)] 4k 1 1 1k = qmin 1
[(2k + 1)(2n), 1(q)], n > 1 4k n adso(2n) 1⊕nk so(4nk + 2n) 3 [(2k + 1)(2n)] Dn
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Table 2FG. Non-irreducible nilpotent elements of semisimple type in F4 and G2

nilpotent e depth rank Z(s)|g−d qmin qmax 3 e (g−d, ∗)
F4

A1 01 00 2 1 1 21 = qmin 1

Ã1
1)

10 00 2 2 stso(6)oS2
⊕ 1 2⊕2

1 so(9) 3 [3, 1(6)] J6(BD)
A2 02 00 4 1 σ2 11 = qmin 1

Ã2 20 00 4 1 7 11 g M
B2 12 00 6 1 1 32 = qmin 1
F4(a3) 00 02 6 2 σ3 41 = qmin C−1(2)
B3 02 02 10 1 1 5 = qmin 1
C3 21 10 10 1 1 23 = qmin 1
F4(a1) 22 02 14 1 1 34 = qmin 1

G2

A1 01 2 1 1 21 = qmin 1
G2(a1) 02 4 1 1 11 = qmin 1

Table 2E6. Non-irreducible nilpotent elements of semisimple type in E6

nilpotent e depth rank Z(s)|g−d qmin qmax 3 e (g−d, ∗)
A1

1

0000000000 2 1 1 21 = qmin 1

2A1

0

1100000011 2 2 stso(7) ⊕ 1 2⊕2
1 so(10) 3 [3, 1(7)] J7(BD)

A2

2

0000000000 4 1 σ2 11 = qmin 1

2A2

0

2200000022 4 2 7⊕ 1 1⊕2
1 g M ⊕ 1

A3

2

1100000011 6 1 1 32 = qmin 1

D4(a1)
0

0000220000 6 2 σ3 41 = qmin C−1(2)

A4

2

2200000022 8 1 1 12 = qmin 1

D4

2

0000220000 10 1 1 5 = qmin 1

A5

1

2211001122 10 1 1 23 = qmin 1

E6(a3)
0

2200220022 10 2 σ2 ⊕ 1 7 = qmin C− 1
3
(2)

D5

2

2200220022 14 1 1 34 = qmin 1

E6

2

2222222222 22 1 1 6 = qmin 1

1) Here the action of S2 on the standard representation of so(6) is the one which
induces the non-trivial diagram automorphism of so(6).



SEMISIMPLE CYCLIC ELEMENTS

Table 2E7. Non-irreducible nilpotent elements of semisimple type in E7

nilpotent e depth rank Z(s)|g−d qmin qmax 3 e (g−d, ∗)
A1

0

110000000000 2 1 1 21 = qmin 1

2A1

0

000000001100 2 2 stso(9) ⊕ 1 2⊕2
1 so(12) 3 [3, 1(9)] J9(BD)

[3A1]′′

0

000000000022 2 3 26⊕ 1 2⊕3
1 g J(E)

A2

0

220000000000 4 1 σ2 11 = qmin 1

2A2

0

000000002200 4 2 7⊕stso(3) 1⊕2
1 g M⊕A1

A3

0

220000001100 6 1 1 32 = qmin 1

D4(a1)
0

002200000000 6 2 σ3 41 = qmin C−1(2)

A4

0

220000002200 8 1 σ2 12 = qmin 1

D4

0

222200000000 10 1 1 5 = qmin 1

[A5]′′

0

220000002222 10 1 1 23 = qmin 1

[A5]′

0

110011002200 10 1 1 23 = qmin 1

D6(a2)
1

001100110022 10 2 1⊕ 1 42 = qmin C−2(2)

E6(a3)
0

002200002200 10 2 σ2 ⊕ 1 7 = qmin C− 1
3
(2)

A6

0

000022002200 12 1 stso(3) 13 g A1

D5

0

222200002200 14 1 1 34 = qmin 1

E6(a1)
0

220022002200 16 1 σ2 8 = qmin 1

D6

1

221100112222 18 1 1 35 = qmin 1

E6

0

222222002200 22 1 1 6 = qmin 1
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Table 2E8. Non-irreducible nilpotent elements of semisimple type in E8

nilpotent e depth rank Z(s)|g−d qmin qmax 3 e (g−d, ∗)
A1

0

00000000000011 2 1 1 21 = qmin 1

2A1

0

11000000000000 2 2 stso(13) ⊕ 1 2⊕2
1 so(16) 3 [3, 1(13)] J13(BD)

A2

0

00000000000022 4 1 σ2 11 = qmin 1

2A2

0

22000000000000 4 2 7⊗ (σ2 ⊕ 1) 1⊕2
1 g M ⊕M

A3

0

11000000000022 6 1 1 32 = qmin 1

D4(a1)
0

00000000002200 6 2 σ3 41 = qmin C−1(2)

A4

0

22000000000022 8 1 σ2 12 = qmin 1

D4

0

00000000002222 10 1 1 5 = qmin 1

A5

0

22000000110011 10 1 1 23 = qmin 1

E6(a3)
0

22000000002200 10 2 σ2 ⊕ 1 7 = qmin C−1(2)

D6(a2)
1

00110000001100 10 2 σ2 ⊕ 1 42 = qmin C−2(2)

E7(a5)
0

00001100110000 10 3 σ3 ⊕ 1 11 = qmin C− 1
3
(3)

A6

0

22000000220000 12 1 stso(3) 13 E7 3A6 A1

D5

0

22000000002222 14 1 1 34 = qmin 1

E6(a1)
0

22000000220022 16 1 σ2 8 = qmin 1

D6

1

22110000001122 18 1 1 35 = qmin 1

E6

0

22000000222222 22 1 1 6 = qmin 1

D7

1

22110011110011 22 1 1 36 = qmin 1

E7(a1)
1

22110011002222 26 1 1 10 = qmin 1

E7

1

22110011222222 34 1 1 9 = qmin 1

5. Reformulation in terms of algebra structure in g−d

5A. Let e be a nilpotent element in g of even depth d. Consider the binary
operation

[(ad e)i(x), (ad e)j(y)], x, y ∈ g−d.

Since with respect to the grading (1) defined by e, e itself is homogeneous of degree
2, clearly when x and y are both homogeneous of degree −2(i+ j), the result will
be homogeneous of the same degree. Moreover for i > 0 we have

[(ad e)i−1(x),(ad e)j+1(y)]

= [(ad e)i−1(x), [e, (ad e)j(y)]]

= −[(ad e)j(y), [(ad e)i−1(x), e]]− [e, [(ad e)j(y), (ad e)i−1(x)]]

= [[(ad e)i−1(x), e], (ad e)j(y)]− [e, [(ad e)j(y), (ad e)i−1(x)]]

= −[(ad e)i(x), (ad e)j(y)]− [e, [(ad e)j(y), (ad e)i−1(x)]].



SEMISIMPLE CYCLIC ELEMENTS

Now, for x, y ∈ g−2(i+j), the element [(ad e)j(y), (ad e)i−1(x)] lies in g−2(i+j+1), so
that if 2(i+ j) is equal to the depth d, the latter element will be zero by dimension
considerations. Hence we have, provided that d is even,

[(ad e)d/2(x), y]=−[(ad e)d/2−1(x), (ad e)(y)]= . . .=(−1)d/2[x, (ad e)d/2(y)]. (11)

It follows that all the operations that can be obtained in this way on g−d differ
only by sign. We will pick one of these and will always use the operation

x ∗ y := [(ad e)d/2(x), y], x, y ∈ g−d. (12)

It follows from (11) that this operation is skew-commutative when d/2 is even and
commutative when d/2 is odd (for odd d we do not get any operation on g−d).

Note that the ∗-algebra structure (12) is Z(s)-invariant. Note also that we have

Proposition 11. The symmetric bilinear form on g−d given by

(x, y) =
〈
(ad e)dx, y

〉
,

where 〈· , ·〉 is the Killing form, is non-degenerate and associative for the product
(12), provided that d is even.

Proof. Let us abbreviate the operator ad e to E, and ad f to F , where {e, f, h} is
the standard sl(2)-triple s. We have (by associativity of the Killing form)

(x, y) =
〈
Edx, y

〉
= −

〈
Ed−1x,Ey

〉
= . . . = (−1)i

〈
Ed−ix,Eiy

〉
= . . . =

〈
x,Edy

〉
,

and, by (11),

x ∗ y = [Ed/2x, y] = −[Ed/2−1x,Ey] = . . .

= (−1)j [Ed/2−jx,Ejy] = . . . = (−1)d/2[x,Ed/2y].

Thus to prove
(x ∗ y, z) = (x, y ∗ z)

means to prove 〈
Ed[Ed/2x, y], z

〉
=
〈
Edx, [Ed/2y, z]

〉
.

Let us transform the left hand side as〈
Ed[Ed/2x, y], z

〉
=
〈

[Ed/2x, y], Edz
〉

= −
〈
y, [Ed/2x,Edz]

〉
,

and the right hand side as〈
Edx, [Ed/2y, z]

〉
= (−1)d/2

〈
Edx, [y,Ed/2z]

〉
= −(−1)d/2

〈
y, [Edx,Ed/2z]

〉
.

We then see that it suffices (but in fact it is also easy to see that it is necessary)
to prove

[Ed/2x,Edz] = (−1)d/2[Edx,Ed/2z] for any x, z ∈ g−d.
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Note that both x and z are lowest weight vectors of simple (d+ 1)-dimensional
s-modules, so that

Ed/2x =
1

d!
F d/2Edx, Ed/2z =

1

d!
F d/2Edz.

Hence

[Ed/2x,Edz] =
1

d!
[F d/2Edx,Edz]

= (−1)d/2
1

d!
[Edx, F d/2Edz] = (−1)d/2[Edx,Ed/2z]. �

Proposition 12. Any Cartan subspace for the representation of ZG(s) in g−d is
a subalgebra with respect to the product ∗. Hence it is called a Cartan subalgebra.

Proof. Let q be a minimal reducing subalgebra. Then q−d is a subalgebra of (g−d, ∗)
and a Cartan subspace for ZG(s)|g−d. �

Corollary 13. All Cartan subalgebras in the algebra (g−d, ∗) are conjugate.

Proof. It follows from Theorem 5 (a) and Proposition 7. �

Note that in the case when d/2 is even we get the usual Cartan subalgebras.
In the case when d/2 is odd and e is not irreducible, then either g−d = q−d for
a minimal reducing subalgebra q, or we get Cartan subalgebras in simple Jordan
algebras, which can be defined as maximal associative semisimple subalgebras.
Their conjugacy is discussed in [J].

Now we turn to the identification of the algebras (g−d, ∗), defined by (12), as
listed in Tables 1, 2ABCD, 2E6, 2E7, 2E8 and 2FG. We use the following properties
of these algebras, which are either obvious or proved above:

(a) The product ∗ is Z(s)-invariant.
(b) The space g−d carries a non-degenerate symmetric Z(s)-invariant bilinear

form (· , ·), which is associative for the product ∗.
(c) The product ∗ is commutative if d/2 is odd, and anticommutative if d/2 is

even.
(d) The representation of Z(s) is a direct sum of at most two irreducible

representations, provided that g is simple.
(e) For any reducing subalgebra q ⊂ g the subspace q ∩ g−d is a subalgebra of

the algebra (g−d, ∗).
The following two lemmas are useful for the identification of the product ∗ when

d/2 is odd, resp. even.

Lemma 14. Let (a, ∗) be a finite-dimensional unital commutative algebra with a
non-degenerate associative symmetric bilinear form (· , ·), invariant with respect
to a group G of automorphisms of a. Suppose that, with respect to the group G,
a decomposes as a trivial 1-dimensional and non-trivial irreducible representation
V , with V ∗ V * F1, and that there is a unique, up to a scalar factor, map of
G-modules S2V → V . Then such a product on a is unique, up to isomorphism.
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Proof. Note that a = F1⊕V is the decomposition of a in an orthogonal direct sum
of G-invariant subspaces and that the bilinear form can be normalized in such a
way that (1,1) = 1. For a, b ∈ a write a ∗ b = a ∗ b + α1, where α ∈ F, a ∗ b ∈ V .
Then, taking inner product with 1 and using associativity of the bilinear form, we
obtain:

(1, a ∗ b) = (a, b) = (a ∗ b+ α1,1) = α.

Hence a ∗ b = a ∗ b+ (a, b)1. �

Lemma 15. Let (a, [−,−]) be a finite-dimensional skew-commutative algebra with
a non-degenerate associative symmetric bilinear form (· , ·), invariant with respect
to a group G of automorphisms of a. Suppose that, with respect to the group G,
a decomposes as a trivial 1-dimensional and non-trivial irreducible representation
U , with [U,U ] 6= 0. Suppose that there exists a unique, up to a scalar factor, map
of G-modules Λ2U → U . Then such a product on a is unique, up to isomorphism.

Proof. As in the previous lemma, we may assume that (1,1) = 1, (U,1) = 0,
and that restriction of (· , ·) to U is nondegenerate. For a, b ∈ U , write [a, b] =
p[a, b] + α1, where α ∈ F and p is the projection on U . Taking inner product with
1, we get ([a, b],1) = α, in particular, α = 0 if a = b. We have [b,1] = βb for b ∈ U ,
with β ∈ F independent of b. Then due to associativity of the form, (a, [b,1]) = α,
hence β(a, b) = α. Taking a = b we obtain, as above, α = 0, hence β(a, a) = 0.
Since (· , ·) is non-degenerate on U , we conclude that β = 0. Hence [U,U ] ⊆ U ,
and g−d is a direct sum of the algebra U and a trivial 1-dimensional algebra F1.
Since on U the product is non-zero and up to a scalar there is a unique G-invariant
linear map Λ2U → U , we conclude that the product on U is uniquely defined up
to a non-zero scalar. �

5B. Lemmas 14 and 15 are used in order to identify the algebra structure (g−d, ∗)
in cases when d/2 is odd and even respectively. The lemmas are not applicable only
in a few cases of nilpotent elements in exceptional Lie algebras, when the result
can be checked directly on the computer. In many cases the algebras (g−d, ∗) are
isomorphic to the well-known Lie or Jordan algebra structures; however in general
they are neither Lie nor Jordan.

General nonassociative commutative algebras have been studied by various
authors — see, e.g., [W] (and many others). Much information about their appea-
rance in connection with various questions of differential geometry has been pro-
vided in [F].

All *-algebras that appear for irreducible nilpotent elements with odd d/2 fall
into the series of algebras Cλ(n) with the basis p1, . . . , pn that have multiplication
table

p2
i = pi, pipj = λ(pi + pj), 1 6 i 6= j 6 n, λ ∈ F.

For most λ, these algebras are not Jordan — in fact, they are Jordan only for
n = 1, or n > 2 and λ = 1/2, or λ = 0 (in the latter case they are associative).

On the other hand, it is easy to check that all algebras Cλ(n) satisfy two quartic
identities. Namely, denoting by 〈x, y, z〉 = (xy)z − x(yz) the associator, every
a, b, c, d ∈ Cλ(n) satisfy

〈a, b, c〉 d− 〈a, d, c〉 b = (ab)(cd)− (ad)(bc) (13)
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and
〈a, bd, c〉+ 〈b, cd, a〉+ 〈c, ad, b〉 = 0. (14)

The identity (14) can be also equivalently written in terms of the multiplication
operators Lx, i.e., the operators given by Lx(y) = xy:

[La, Lb]Lc + [Lb, Lc]La + [Lc, La]Lb = 0.

Note close resemblance to the Jordan identity, which is equivalent to

〈ab, d, c〉+ 〈bc, d, a〉+ 〈ca, d, b〉 = 0,

or in terms of the multiplication operators,

[Lab, Lc] + [Lbc, La] + [Lca, Lb] = 0.

As pointed out by V. Sokolov [So], the identity (14) is actually a consequence
of the identity (13).

For λ 6= 1/2 (which is the case for all of our irreducible nilpotent elements)
the algebra Cλ(n) has finitely many idempotents; since the equations determining
idempotency are quadratic and there are n of them, by Bézout’s theorem the
number of nonzero idempotents is less than 2n. In fact, (1/(2kλ+ 1))

∑
i∈S pi is

an idempotent of Cλ(n) for any subset S of {1, . . . , n} of cardinality k + 1. For
λ = −1/2k with integer 0 < k < n − 1 this gives 2n −

(
n
k+1

)
idempotents, while

for all other λ 6= 1/2, Cλ(n) has exactly 2n− 1 distinct nonzero idempotents. This
is the case in all of our situations too, so that our *-algebras with n-dimensional
g−d have 2n − 1 distinct 1-dimensional subalgebras.

It is clear from the multiplication table that the subspace of Cλ(n) spanned by
any subset S ⊆ {p1, . . . , pn} is a subalgebra (isomorphic to Cλ(k), where k is the
cardinality of S). Further subalgebras can be obtained from these via actions by
algebra automorphisms. While there is an obvious action of Sn through permuting
the generators pi, there are no other apparent automorphisms except for λ =
−1/(n− 1): indeed, in this case p0 = −p1−· · ·−pn is an idempotent and moreover
p0pi = λ(p0 + pi), so that there will be additional automorphisms permuting p0

with all other pi. Thus the automorphism group of C−1/(n−1)(n) contains Sn+1.
As shown in [H], C−1/(n−1)(n) does not have any further automorphisms, so that
its automorphism group is exactly Sn+1 (cf. the last two lines of Table 1).

In the cases occurring in Table 2ABCD we can explicitly describe all subalgebras
of Cλ(n). For Cλ(2) every proper subalgebra is 1-dimensional. For Cλ(3), looking
directly at the conditions on a 2-dimensional subspace to be a subalgebra, we obtain
that for λ 6= 1/2 there are exactly six 2-dimensional subalgebras, namely, those
spanned by 〈p1, p2〉, 〈p1, p3〉, 〈p2, p3〉, 〈p1 + p2, p3〉, 〈p1 + p3, p2〉 and 〈p2 + p3, p1〉.
Similarly, for λ 6= 1

2 the algebra Cλ(4) has only ten 3-dimensional subalgebras
〈pi, pj , pk〉 and 〈pi, pj , pk + p`〉; and for the only 4-dimensional case C−1/3(4) in
Table 2ABCD there are only 25 2-dimensional subalgebras 〈pi, pj〉, 〈pi + pj , pk〉,
〈pi + pj + pk, p`〉 and 〈pi + pj , pk + p`〉, for pairwise distinct i, j, k, `. It thus
follows that for algebras Cλ(n) occurring in Table 2ABCD, all subalgebras are
spanned by idempotents.
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First consider the case when e is an irreducible nilpotent element. It follows
from Table 1 that for d/2 even we always have dim g−d = 1, and since the product
∗ is anticommutative, the algebra (g−d, ∗) has zero multiplication. Next, when d/2
is odd and g is an exceptional Lie algebra, we identify the algebra (g−d, ∗) with
the aid of a computer, as follows.

Structure constants table of (g−d, ∗) in the root vector basis, and the z(s)-module
structure are computed using GAP. When the algebra is commutative, in each
case idempotents are computed using a generic element of g−d with indeterminate
coefficients. When there is a basis consisting of idempotents, the algebra is identi-
fied with one of the Cλ(n) using it. In Appendix B, the cases Jcn(BD) are identified
finding a basis with almost all pairwise products zero, and the algebras H5 and
H8 are identified using explicit isomorphisms.

The cases when (g−d, ∗) is a Lie algebra are determined using the command
TestJacobi, and then the isomorphism type of this algebra is determined using
the commands LeviMalcevDecomposition and SemiSimpleType in [GAP].

Finally there are cases when the product is skew-commutative and does not
satisfy the Jacobi identity. These cases are identified with the 7-dimensional simple
Malcev algebra.

The remaining cases are treated by the following two lemmas.

Lemma 16. In cases 2k and 3k of Table 1 the product ∗ is non-zero.

Proof. For e the principal nilpotent element and F the lowest root vector — in
sp(2k) for the case 2k and in so(2k + 1) for the case 3k — according to (12) we
have to show that the element

[(ad e)2k−1F, F ]

is nonzero.
Recall the well-known identity in any associative algebra (see, e.g., [Ka, (3.8.1)]):

exp(a)b exp(−a) = (exp(ad a))b.

Using this identity in the standard representation we have that (ad e)jF is a scalar
multiple of the coefficient at tj of the matrix exp(te)F exp(−te). More precisely,

(ad e)jF =

j∑
i=0

(−1)i
(
j

i

)
ej−iFei. (15)

For the case 2k, in the standard representation on F2k the matrix for e is the
largest Jordan block, while the only nonzero entry of the matrix for F is 1 in the
lower left corner. It follows that the coefficient at t2k−1 of exp(te)F exp(−te) is the
diagonal matrix with entries (−1)i−1/(i− 1)!(2k − i)!, i = 1, . . . , 2k. Moreover, for
a diagonal matrix D, the matrix [D,F ] is −D1,1 + D2k,2k times F . In our case
these diagonal entries have equal absolute values and opposite signs, so that this
gives −(2/(2k − 1)!)F 6= 0.

For the case 3k, in the standard representation on F2k+1 there also is a basis
such that the matrix of e is the largest Jordan block. In this basis, the matrix for
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the lowest root vector F has (−1)k2 at positions (2k, 1) and (2k+ 1, 2) and zeroes
elsewhere. Thus for any diagonal matrix D the matrix [D,F ] has (−1)k2(−D1,1 +
D2k,2k) at the (2k, 1)st position, (−1)k2(−D2,2 +D2k+1,2k+1) at the (2k+ 1, 2)nd
position and zeroes elsewhere.

Moreover the coefficient at t2k−1 of exp(te)F exp(−te) is the diagonal matrix D
with entries

Di,i = (−1)k2



1

(2k − 1)!
, i = 1,

(−1)i−1

(i− 1)!(2k − i)!
+

(−1)i−2

(i− 2)!(2k + 1− i)!
, 1 < i < 2k + 1,

− 1

(2k − 1)!
, i = 2k + 1.

It follows that [D,F ] in this case is
(
(−1)k2(2k − 3)/(2k − 1)!

)
F 6= 0. �

Lemma 17. In cases 4k the algebra (g−d, ∗) is isomorphic to the algebra C−k(2).

Proof. We will use the same basis of the standard representation that was described
in (10), with the choice of e such that it acts on this basis as indicated there:

x−k−1 7→ x−k 7→ · · · 7→ x−1 7→ x0 7→ x1 7→ · · · 7→ xk 7→ xk+1 7→ 0,
y−k 7→ · · · 7→ y−1 7→ y0 7→ y1 7→ · · · 7→ yk 7→ 0,

i.e., the matrix of e in the standard representation consists of two Jordan blocks,
of sizes 2k + 3 and 2k + 1. It will be convenient for us to choose F1, F2 in such
a way that (F1, (−1)kF2) is the root vector basis of g−d, with F1 the lowest root
vector. In the above basis of the standard representation these then act as follows:

F1(xk+1) = y−k, F1(yk) = −x−k−1, F2(xk+1) = x−k, F2(xk) = x−k−1,

both sending all remaining basis elements to zero.
We will compute the multiplication table of g−d in this basis, i.e., find

Fi ∗ Fj = [(ad e)2k+1Fi, Fj ], i, j = 1, 2.

Let then F̄1 = (ad e)2k+1F1, F̄2 = (ad e)2k+1F2. Using again (15), we find

F̄1(xk+1) = F̄1(x−k−1) = 0,

F̄1(xj) = −(−1)k+j

(
2k + 1

k + j

)
yj , F̄1(yj) = −(−1)k−j

(
2k + 1

k − j

)
xj ,−k 6 j 6 k

and

F̄2(xk+1) = xk+1, F̄2(x−k−1) = −x−k−1,

F̄2(xj) = −(−1)k−j
((

2k + 1

k + j

)
−
(

2k + 1

k − j

))
xj , F̄2(yj) = 0,−k 6 j 6 k.
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From this we get the multiplication table,

F1 ∗ F1 = −(2k + 1)F2, F1 ∗ F2 = F2 ∗ F1 = −F1, F2 ∗ F2 = (2k − 1)F2.

By solving (α1F1 + α2F2) ∗ (α1F1 + α2F2) = α1F1 + α2F2 for α1, α2, we find
that the elements

P = −F1 + F2

2
, Q =

F1 − F2

2

are idempotents, and moreover

P ∗Q =

(
−F1 + F2

2

)
∗
(
F1 − F2

2

)
=
F2 ∗ F2 − F1 ∗ F1

4

=
(2k − 1)F2 + (2k + 1)F2

4
= kF2 = −k(P +Q),

which gives the multiplication table for C−k(2). �

In all irreducible cases one has

Proposition 18. If e is irreducible, then for any F ∈ g−d, the cyclic element e+F
is semisimple if and only if F does not lie in any proper subalgebra of (g−d, ∗).

Proof. This is clear when dim g−d = 1. For the case 4k this follows by comparing
computations with (10) and the proof of Lemma 17 above. Indeed with the former
we saw that, for some particular choice of e, the element e + λ1F1 + λ2F2 is
semisimple if and only if λ1 6= 0 and λ2 6= ±λ1, where (F1, F2) is the root
vector basis of g−d, with F1 the lowest root vector. While with the latter, for
the same choice of e, we saw that nonzero idempotents in the algebra (g−d, ∗)
are −(F1 + F2)/2, (F1 − F2)/2 and F2/(2k − 1), so that there are three proper
subalgebras, spanned by these elements. But these are precisely 1-dimensional
subspaces spanned by an element λ1F1 +λ2F2 with λ1 = −λ2, λ1 = λ2 and λ1 = 0
respectively.

In the remaining cases of irreducible e (cases 7,11,16,17,18 of Table 1) we
similarly compare the semisimplicity condition on a generic cyclic element with
the algebra structure on (g−d, ∗). As an illustration, let us treat here the last of
these cases, 18 (nilpotent element with label E8(a7), depth 10, dim(g−10) = 4) —
other cases are similar but shorter. Let us choose an orbit representative e in the
form

e00010
0

00 + e00011
1

10 + e01111
1

00 + e00012
1

11 + e00111
1

11 + e01111
0

11 + e00112
1

10 + e11111
0

10.

Let
F1 = f12356

3
42, F2 = f12456

3
42, F3 = f13456

3
42, F4 = f23456

3
42

be the root vector basis of g−10. As explained before (at the start of the proof
of (10)), it follows from [Sp, 9.5] that a cyclic element C = e + λ1F1 + λ2F2 +
λ3F3 + λ4F4 is semisimple if and only if it is regular semisimple. Then regular
semisimplicity can be checked by looking at the appropriate coefficient of the
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characteristic polynomial for adC. In our case this coefficient turns out to be
a scalar multiple of a power of

(λ1 + λ2 − λ3 − λ4)(λ1 − λ2 + λ3 − λ4)(−λ1 + λ2 + λ3 − λ4)

· (λ1 + λ2 + λ3 + λ4)(λ2
1 − λ2

2)(λ2
1 − λ2

3)(λ2
2 − λ2

3).
(16)

On the other hand, computing Fi ∗ Fj = [(ad e)5Fi, Fj ] gives

F1 ∗ F2 = 10F3, F2 ∗ F3 = 10F1, F1 ∗ F3 = 10F2,

F1 ∗ F1 = F2 ∗ F2 = F3 ∗ F3 = 10F4,

F4 ∗ F4 = −6F4, and Fi ∗ F4 = 2Fi, i = 1, 2, 3.

One checks that with respect to this multiplication the elements

P1 =
F1 − F2 − F3 + F4

24
, P2 =

−F1 + F2 − F3 + F4

24
,

P3 =
−F1 − F2 + F3 + F4

24
, P4 =

F1 + F2 + F3 + F4

24

are idempotents and satisfy

Pi ∗ Pj = −1

3
(Pi + Pj), i, j ∈ {1, 2, 3, 4}, i 6= j.

It follows that (g−10, ∗) is isomorphic to C−1/3(4) and its maximal (3-dimensional)
subalgebras are spanned by linearly independent triples from the set of vectors
Pi, Pi + Pj , Pi + Pj + Pk, P1 + P2 + P3 + P4. This amounts to ten 3-dimensional
subspaces, four spanned by {Pi, Pj , Pk}, {i, j, k} ⊂ {1, 2, 3, 4} and six spanned
by {Pi, Pj , P1 + P2 + P3 + P4}, {i, j} ⊂ {1, 2, 3, 4}. It is then straightforward to
check that the subspace spanned by {P1, P2, P3} consists of λ1F1 +λ2F2 +λ3F3 +
λ4F4 with λ1 + λ2 + λ3 + λ4 = 0, that spanned by {Pi, Pj , P4}, {i, j} ⊂ {1, 2, 3}
corresponds to λi + λj = λk + λ4, with {k} = {1, 2, 3} \ {i, j}, the one spanned
by {Pi, Pj , P1 + P2 + P3 + P4}, {i, j} ⊂ {1, 2, 3} corresponds to λi + λj = 0,
and the one spanned by {Pi, P4, P1 + P2 + P3 + P4}, i ∈ {1, 2, 3} corresponds
to λj = λk, where {j, k} = {1, 2, 3} \ {i}. Comparing these to (16) we see that
indeed C = e + λ1F1 + λ2F2 + λ3F3 + λ4F4 loses semisimplicity if and only if
λ1F1 + λ2F2 + λ3F3 + λ4F4 belongs to a proper subalgebra of (g−10, ∗). �

5C. We return to the identification of the algebra (g−d, ∗) with those listed in
Tables 2ABCD, 2E6, 2E7, 2E8 and 2FG.

Recall that a Malcev algebra is defined by a skewsymmetric bracket, satisfying
a quartic identity, which is implied by the Jacobi identity (thus any Lie algebra is a
Malcev algebra). It was proved in [Sa] and [Ku] that any simple finite-dimensional
Malcev algebra is either one of the simple Lie algebras, or is the 7-dimensional
space of imaginary octonions, equipped with the usual bracket [a, b] = ab− ba. We
denote the latter algebra by M .
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Recall that isomorphism classes of simple finite-dimensional Jordan algebras
are in bijective correspondence to conjugacy classes of even nilpotent elements e
of depth 2 in simple Lie algebras (see [J]). Namely the product ∗ on g−2 defines
a structure of a Jordan algebra and all simple Jordan algebras are thus obtained.
The complete list consists of all n×n matrices with product a · b = ab+ ba, which
we denote by Jn(A), the subalgebra of Jn(A) consisting of matrices selfadjoint
with respect to a symmetric (respectively skewsymmetric) non-degenerate bilinear
form, which we denote by Jn(C) (resp. Jn(D)), and the space V ⊕ F1, where V
is the n-dimensional space with a non-degenerate symmetric bilinear form (· | ·),
with product a · b = (a | b)1, a ·1 = 1 ·a = a for a, b ∈ V , 1 ·1 = 1, which we denote
by Jn(BD). Finally there is the 27-dimensional exceptional Albert’s algebra which
we denote by J(E). All of these Jordan algebras are simple. This notation stems
from the fact that these Jordan algebras correspond to nilpotent elements in the
Lie algebras of the corresponding type A, B, C, D or E7.

It suffices to identify the algebra (g−d, ∗) in the cases g = gev, using the
passage from g to gev, described in Appendix A. The “shortest” case d = 2
of e ∈ gev corresponds to an even nilpotent element of depth 2. As mentioned
above, conjugacy classes of these nilpotent elements correspond bijectively to the
isomorphism class of a structure of a simple Jordan algebra on g−2.

Next, consider the case d/2 odd and > 1. By property (e), for the nilpotent
elements e with qmax = qmin the identification of (g−d, ∗) reduces to that of
(qmin, ∗), which is the case of irreducible nilpotent elements, discussed above. As a
result, only the following nilpotent elements with d/2 odd remain to be considered:

sl(2kn) 3 [(2k)(n)], sp(2kn) 3 [(2k)(n)], so(4kn) 3 [(2k)(2n)].

But in all these cases qmin is a commutative associative semisimple subalgebra and
the representation of Z(s) on g−d is a direct sum of a non-trivial irreducible and
the trivial 1-dimensional subrepresentations. This and properties (a), (b), (c)along
with Lemma 14 allow us to identify the algebras (g−d, ∗) with the Jordan algebras
Jn(A), Jn(C) and Jn(D) respectively. In order for Lemma 14 to be applicable
here requires ensuring that the symmetric squares of the representations adsl(n),
S2(stso(n)) and Λ2(stsp(2n)) each contain a unique copy of the same representation,
respectively. It can be checked, e.g., using [OV, Table 5 (pages 300–303)]. The least
obvious of these cases is the one for Jn(D). In this case n = 2j is even; consider
the involution ι on the algebra of 2j × 2j matrices given by

ι

(
A11 A12

A21 A22

)
:=

(
Aᵀ

22 −Aᵀ
12

−Aᵀ
21 Aᵀ

11

)
. (17)

Fixed points of this involution consist of 2× 2 blocks of j × j matrices with skew-
symmetric A12 and A21 and with A22 = Aᵀ

11. They thus can be identified with
the exterior square of a 2j-dimensional space through the canonical isomorphism
Λ2(V ∗⊕V ) ∼= Λ2(V )∗⊕gl(V )⊕Λ2(V ) for a j-dimensional space V . They are closed
under anticommutator and form a simple Jordan algebra of symplectic type, acted
upon via derivations by commutators with the Lie algebra of anti-fixed points of ι.
The latter in turn can be identified with the symmetric square of a 2j-dimensional
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space through S2(V ∗⊕V ) ∼= S2(V )∗⊕gl(V )⊕ S2(V ), being blocks with A22 = −Aᵀ
11

and A12, A21 symmetric, which is the Lie algebra sp(2j), with respect to the
standard skew-symmetric form ω on V ∗ ⊕ V given by ω(ϕ,ϕ′) = ω(v, v′) = 0,
ω(ϕ, v) = −ω(v, ϕ) = ϕ(v).

It remains to consider the case when d/2 is even. As before, when dim g−d = 1
we have the 1-dimensional algebra with zero multiplication. Since we may assume
that g = qmax, we are left with the following cases:

sl(2kn+n) 3 [(2k+1)(n)]; sp(4kn+2n) 3 [(2k+1)(2n)]; so(4kn+2n) 3 [(2k+1)(2n)]

for classical Lie algebras, and the following cases for exceptional Lie algebras:

E6 3 [2A2]; E7 3 [2A2], [A6]; E8 3 [2A2], [A6]; F4 3 [Ã2].

In all these cases there exists a unique, up to constant factors, product, satisfying
properties (a), (b), (c). It remains to prove that product ∗ in these cases is non-
zero on each non-trivial irreducible component of the Z(s)-module g−d. For g
of exceptional type, this is done by direct calculation: with the GAP command
DirectSumDecomposition the irreducible components are found, and the ∗-pro-
ducts of generic elements of these components are computed to be nonzero (as
mentioned, we use the SLA package by W. de Graaf [deG] for the GAP system
[GAP]). As an example, take the case 2A2 in E8. Here Z(s) is the semidirect
product of a 2-element cyclic group with G2 ×G2. Here g−d is 14-dimensional and
representation of Z(s) on it realizes two copies of the 7-dimensional irreducible
representation of G2. Decomposing the exterior square of this representation we
find that it contains two 7-dimensional irreducible components. Since the ∗-product
must be G2×G2-invariant, we deduce that each of these components can only map
nontrivially to separate 7-dimensional summands in g−d. We then check by direct
calculation that there are indeed nonzero products on each of these separately. We
then finally conclude that the algebra structure is isomorphic to that of two copies
of the simple 7-dimensional Maltsev algebra.

For g in Table 2ABCD, the applicability of Lemmas 14 and 15 when d/2 is
odd, resp. even, still requires us to show that there is at least one instance of the
∗-product with nonzero projection to the nontrivial irreducible summand. This
follows from

Lemma 19. Let e be a nilpotent element with partition of the form [n(m)] in a
classical simple Lie algebra g. Then the algebra (g−d, ∗) is as in Table 2ABCD.

Proof. We can choose a basis in the standard representation in such a way that
elements of g are represented by block matrices, consisting of n× n blocks of size
m×m each, in such a way that in this basis e is “block-principal”, i.e., represented
by a matrix with identity matrices in blocks E12, E23, . . . , En−1,n and zeroes
elsewhere, while elements F ∈ g−d are represented by a single block Fn1 = F with
zeroes elsewhere. Moreover, using the argument from [EKV, Sect. 4], this basis can
be chosen in such a way that the m×m matrix Fn1 is

• symmetric if g = sp(mn) with n even,
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• anti-fixed point of the involution (17) if g = sp(mn) with n odd (hence m
even),

• fixed point of the involution (17) if g = so(mn) with n even (hence m even),
• skew-symmetric if g = so(mn) with n odd.

In our case d = 2n−2, and using (15) we see that the matrix (ad e)d/2F is block-
diagonal, with matrices Dii = (−1)i−1

(
n−1
i−1

)
F , i = 1, . . . , n, along the diagonal.

Consequently

F ∗ F ′ = [(ad e)n−1F, F ′] = [diag(D11, . . . , Dnn), F ′n1]

= D11F
′ − F ′Dnn = FF ′ − (−1)n−1F ′F,

so that the algebra structure on g−d is indeed as claimed. �

Examining the respective instances in Tables 2ABCD, 2FG, 2E6, 2E7, 2E8 we
arrive at

Theorem 20. There are the following three possibilities for a nilpotent element e
of semisimple type.

(a) rk e = dim g−d and d/2 is odd (resp. even). Then the algebra g−d with
product (12) is isomorphic to one of the commutative algebras Cλ(n), where
n = dim g−d (resp. to the 1-dimensional Lie algebra);

(b) rk e < dim g−d and d/2 is odd. Then the algebra g−d with product (12) is
isomorphic to one of the simple Jordan algebras;

(c) rk e < dim g−d and d/2 is even. Then the algebra g−d with product (12) is
isomorphic to a direct sum of at most two simple Malcev algebras, including
the 1-dimensional one.

As explained in the introduction, by looking at the tables, we obtain the follow-
ing theorem.

Theorem 21. Let e be a nilpotent element of semisimple type in a simple Lie
algebra g. We have the following description of the set Sg(e):

— Case (a) of Theorem 20: F lies outside of the union of hyperplanes, spanned
by idempotents.

— Case (b) of Theorem 20:
(i) (g−d, ∗) 6' Jn(BD), then

Sg(e) = {F ∈ g−d | ZG(s)F is closed and LF ∈ End g−d has maximal rank} ,

(ii) (g−d, ∗) ' Jn(BD), then

Sg(e) = {F ∈ g−d | F ∗ F /∈ FF} .

— Case (c) of Theorem 20:

Sg(e) = {F ∈ g−d | Zg(s)F is closed and LF ∈ End g−d has maximal rank} .

Conjecture 22. Description of F ∈ Sg(e), for which G(e + F ) has maximal
dimension:
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(i) in cases (a) and (b)(ii) of Theorem 21 all have maximal dimension,
(ii) in the remaining cases the orbit of F has maximal dimension among the

ZG(s)-orbits in g−d, and F ∈ c, a Cartan subalgebra of (g−d, ∗), lies outside
of the union of reflection hyperplanes of the Weyl group of the polar linear
group Z◦G(s)|g−d.

Remark 3. Let e ∈ g be a nilpotent element of even depth d, not divisible by 4,
and assume that dim g−d = 1, so that g−d = Fa for some non-zero element a. Then
by (12) we have a ∗ a = [(ad e)d/2(a), a] = P (e)a, where P (e) is a homogeneous
polynomial in e ∈ g2 of degree d/2. It is easy to see that this polynomial is G0-
semi-invariant, with character χ−1 where χ is the character for the action of G0 on
g−d. An interesting problem is to compute this polynomial. We found the answer
in the case of a principal nilpotent element of a simple Lie algebra g of rank r.
In this case d = 2(h − 1), where h is the Coxeter number. So d/2 is odd iff h is
even, which excludes g of type An, n even. Write e =

∑r
i=1 xiei ∈ g2, where ei are

the root vectors attached to simple roots αi, and let θ =
∑r
i=1 aiαi be the highest

root. Then P (e) =
∏r
i=1 x

ai
i .

Appendices

A. Even reductions

Given a nilpotent element e in a simple Lie algebra g with the standard sl(2)-
triple s = {e, f, h}, the even part gev :=

⊕
k g2k of the grading of g is a subalgebra

containing e, whose derived subalgebra is reducing, unless e happens to be of
nilpotent type (since then depth of e in gev drops by 1). Denoting by G the adjoint
group of g and by S ⊂ Gev the subgroups corresponding to s, resp. gev, we easily
see that gev is the algebra of fixed points for an involution corresponding to the
adjoint action of an order 2 element of S which lies in the center of Gev.

Fixed point algebra of an order two inner automorphism of a simple Lie algebra
g of rank r is obtained by considering its extended Dynkin diagram whose nodes
are labeled by coefficients a0 = 1, a1, . . . , ar of the integer linear dependence of
the columns of the extended Cartan matrix. Then a fixed point subalgebra of an
inner involution is obtained by removing one node with label 2 or two nodes with
label 1; in the second case one adds T 1 [Ka, Chap. 8]:

algebra type even subalgebra types
An Ak+ An−k−1 + T 1, 1 6 k 6 n− 1
Bn Bn−1 + T 1, Dk+ Bn−k, 2 6 k 6 n
Cn An−1 + T 1, Ck+ Cn−k, 1 6 k 6 n− 1
Dn An−1 + T 1, Dn−1 + T 1, Dk+ Dn−k, 2 6 k 6 n− 2
E6 A5+ A1, D5 + T 1

E7 D6+ A1, A7, E6 + T 1

E8 E7+ A1, D8

F4 B4, C3+ A1

G2 2A1

For classical types, if e is not even then the corresponding partition contains
parts of both even and odd parities. Let us separate this partition into two parti-
tions, one containing even parts only and another odd parts only. The derived
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subalgebra of gev is the direct sum of two subalgebras, with e decomposing into
the sum of two nilpotent elements, one in each of these subalgebras, with these two
partitions. Here we assume that the partition with all parts equal to 1 corresponds
to the zero nilpotent, i.e., if the odd subpartition is such then e has zero projection
to the corresponding summand of gev.

Examples. Let e be a nilpotent element in g of type B8 with partition [5, 2(4), 1(4)].
The odd subpartition [5, 1(4)] is the partition of a nilpotent element in B4 and the
even one [2(4)] is the partition of a nilpotent element in D4. Accordingly, gev has
type B4 + D4, and e ∈ gev decomposes into the sum of nilpotent elements with
indicated partitions in these summands.

If g is of type C9 and e has partition [4, 2(2), 1(10)], then the even subpartition
[4, 2(2)] belongs to a nilpotent element in C4 and [1(10)] represents the zero nilpotent
element in C5. In this case gev is C4 +C5, and e belongs to the summand C4, having
partition [4, 2(2)] there and projecting to zero in C5.

For odd nilpotent elements in exceptional simple Lie algebras, we get the follow-
ing picture. Nilpotent elements of nilpotent type are marked with an “*”.

G2, even subalgebra 2A1:

nilpotent e partitions

A1 01 [2], [1(2)]

* Ã1 10 [2], [1(2)]

F4, even subalgebra C3+ A1:

nilpotent e partitions in C3, A1

A1 01 00 [1(6)], [2]

* A1 + Ã1 00 01 [2(3)], [1(2)]

* Ã2+ A1 10 01 [3(2)], [2]
C3(a1) 01 10 [4, 2], [1(2)]
C3 21 10 [6], [1(2)]

F4, even subalgebra B4:

nilpotent e partition in B4

Ã1 10 00 [3, 1(6)]

A2 + Ã1 00 10 [3(3)]
B2 12 00 [5, 1(4)]

E6, even subalgebra A5+ A1:

nilpotent e partitions in A5, A1

A1

1

0000000000 [1(6)], [2]

* 3A1

0

0000110000 [2(3)], [1(2)]

A2+ A1

1

1100000011 [3, 1(3)], [2]

* 2A2+ A1

0

1100110011 [3(2)], [2]

A3+ A1

1

0011001100 [4, 2], [1(2)]

A4+ A1

1

1111001111 [5, 1], [2]

A5

1

2211001122 [6], [1(2)]

E6, even subalgebra D5 + T 1:

nilpotent e partition in D5

2A1

0

1100000011 [3, 1(7)]

A2 + 2A1

0

0011001100 [3(3), 1]

A3

2

1100000011 [5, 1(5)]

D5(a1)
2

1111001111 [7, 3]
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E7, even subalgebra D6+ A1:

nilpotent e partitions in D6, A1

A1

0

110000000000 [1(6)], [2]

2A1

0

000000001100 [3, 1(9)], [1(2)]

* [3A1]′

0

001100000000 [2(6)], [1(2)]

* 4A1

1

000000000011 [2(6)], [2]

A2+ A1

0

110000001100 [3(2), 1(6)], [2]

A2 + 2A1

0

000011000000 [3(3), 1(3)], [1(2)]

A3

0

220000001100 [7, 5], [1(2)]

* 2A2+ A1

0

001100001100 [3(4)], [2]

[A3 + A1]′

0

110011000000 [4(2), 2(2)], [1(2)]

A3 + 2A1

0

110000110011 [4(2), 2(2)], [2]

D4(a1)+ A1

1

001100000011 [5, 3, 1(4)], [2]

A3+ A2

0

000011001100 [5, 3(2), 1], [1(2)]

D4+ A1

1

221100000011 [7, 5], [2]

A4+ A1

0

110011001100 [5(2), 1(2)], [2]

D5(a1)
0

220011001100 [7, 3, 1(2)], [1(2)]

[A5]′

0

110011002200 [6(2)], [1(2)]

A5 + A1

0

110011001122 [6(2)], [2]

D6(a2)
1

001100110022 [7, 5], [1(2)]

D5+ A1

1

221100111100 [9, 3], [2]

D6(a1)
1

221100110022 [9, 3], [1(2)]

D6

1

221100112222 [11, 1], [1(2)]
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E8, even subalgebra E7+ A1:

nilpotent e label in E7 diagram in E7 partition in A1

A1

0

00000000000011 0 [2]

* 3A1

0

00000000001100 [3A1]′′

0

000000000022 [1(2)]

A2+ A1

0

11000000000011 A2

0

220000000000 [2]

A2 + 3A1

0

00110000000000 A2 + 3A1

2

000000000000 [1(2)]

* 2A2+ A1

0

11000000001100 2A2

0

000000002200 [2]

A3+ A1

0

00000000110011 [A3 + A1]′′

0

220000000022 [1(2)]

D4(a1)+ A1

1

00000000001100 D4(a1)
0

002200000000 [2]

A3+ A2+ A1

0

00001100000000 A3+ A2+ A1

0

000000220000 [1(2)]

D4+ A1

1

00000000001122 D4

0

222200000000 [2]

A4+ A1

0

11000000110011 A4

0

220000002200 [2]

A5

0

22000000110011 [A5]′′

0

220000002222 [1(2)]

D5(a1)+ A1

0

00001100000022 D5(a1)+ A1

0

220000220000 [1(2)]

A4+ A2+ A1

0

00110000110000 A4+ A2

0

000022000000 [2]

E6(a3)+ A1

0

11000011001100 E6(a3)
0

002200002200 [2]

E7(a5)
0

00001100110000 E7(a5)
0

000022000022 [1(2)]

D5+ A1

0

11000011001122 D5

0

222200002200 [2]

A6+ A1

0

11001100110000 A6

0

000022002200 [2]

E7(a4)
0

00001100110022 E7(a4)
0

220022000022 [1(2)]

E6(a1)+ A1

0

11001100110022 E6(a1)
0

220022002200 [2]

E7(a3)
0

22001100110022 E7(a3)
0

220022002222 [1(2)]

E6+ A1

0

11001100112222 E6

0

222222002200 [2]

E7(a2)
1

00110011002222 E7(a2)
2

222200220022 [1(2)]

E7(a1)
1

22110011002222 E7(a1)
2

222200222222 [1(2)]

E7

1

22110011222222 E7

2

222222222222 [1(2)]
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E8, even subalgebra D8:

nilpotent e partition in D8

2A1

0

11000000000000 [3, 1(13)]

* 4A1

1

00000000000000 [2(8)]

A2 + 2A1

0

00000000110000 [3(3), 1(7)]

A3

0

11000000000022 [5, 1(11)]

* 2A2 + 2A1

0

00000011000000 [3(5), 1]

A3 + 2A1

0

00110000000011 [4(2), 2(4)]

A3+ A2

0

11000000110000 [5, 3(2), 1(5)]

* 2A3

0

11000011000000 [4(4)]

D5(a1)
0

11000000110022 [7, 3, 1(6)]

A4 + 2A1

0

00001100000011 [5(2), 3, 1(3)]

* A4+ A3

0

00001100001100 [5(3), 1]

A5+ A1

0

11001100000011 [6(2), 2(2)]

D5(a1)+ A2

0

00110000110011 [7, 3(3)]

D6(a2)
1

00110000001100 [7, 5, 1(4)]

D6(a1)
1

00110000001122 [9, 3, 1(4)]

D6

1

22110000001122 [11, 1(5)]

D7(a2)
0

11001100110011 [9, 5, 1(2)]

* A7

0

11001100111100 [8(2)]

D7

1

22110011110011 [13, 1(3)]

Remark. Note that not all possible fixed point algebras of involutive automor-
phisms are realized as gev for some nilpotent element. Indeed, the subalgebra gev

of g is the fixed point set of an involutive automorphism of g, which lies in the
center of the subgroup SL(2) of G with Lie algebra s, acts as 1 on gev and as −1
on the odd part of the grading. This rules out some of the fixed point subalgebras,
listed above, as gev. For example, this rules out gev in E7 of types E6 + T 1 and
A7. All other possibilities in exceptional Lie algebras do occur. For classical types,
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all possibilities are realized for type A, all semisimple gev occur for types B, C, D,
and, in addition, the subalgebra D2m + T 1 occurs for D2m+1.

B. Algebra (g−d, ∗) for mixed type nilpotent elements

Here we describe the algebra structures (g−d, ∗) for nilpotent elements e of mixed
type.

Let us recall from [EKV, Rem. 3.2] that reducing subalgebras q for such e can
be defined as semisimple subalgebras normalized by the sl(2)-triple s for e such
that in the decomposition e = eq+e′, where eq ∈ q, e′ ∈ z(q), the nilpotent element
eq has the same depth and rank in q as e in g. We then have

Proposition. Let q be a reducing subalgebra in the above sense, for any e ∈ g
(of even depth). Then for any F, F ′ ∈ q−d their ∗-product in g−d induced by e
coincides with that induced by eq. In particular, q−d ⊆ g−d is a ∗-subalgebra.

Proof. From e = eq + e′ with e′ ∈ z(q), it follows that (ad e)x = (ad eq)x for any
x ∈ q. Thus for F, F ′ ∈ q−d we have

[(ad e)d/2F, F ′] = [(ad eq)d/2F, F ′],

i.e., the two ∗-products on q−d coincide. �

Moreover it is shown in [EKV] that for any e of mixed type there is a reducing
subalgebra q in this sense such that eq is of semisimple type in q.

This is used in [EKV] to group nilpotent elements into bushes ; each bush is a
subset of nilpotent elements admitting a common reducing subalgebra q with the
same eq, the latter being the unique nilpotent element of semisimple type in the
bush.

In particular, if q−d = g−d then the *-algebra structure on g−d is one of those
corresponding to a nilpotent element of semisimple type that we have already
described. It thus remains to consider the cases when for any reducing subalgebra
q with eq of semisimple type in q, the space q−d is a proper subalgebra of g−d.

Note that such e can be also characterized using the particular reducing sub-
algebra described in [EKV, Prop. 3.10]: these are precisely the nilpotent elements
with the property that, for the sl(2)-triple s of e in the reducing subalgebra q
generated by the s-submodule of g generated by g−d, eq is not of semisimple type
in q.

In what follows we will encounter commutative algebras over F of the following
kind.

We will denote by Jcn(BD), c ∈ F, the commutative algebra of dimension n+ 1,
with basis 1, x1, . . . , xn and multiplication table

1xi = xi, x2
i = 1, xixj = 0 for i 6= j, and 12 = c1.

Furthermore, let (H8, ∗) denote the 8-dimensional space of traceless 3× 3 mat-
rices, with the multiplication

A ∗B :=
AB +BA

2
− 1

3
Trace

(
AB +BA

2

)
,
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and let H5 ⊂ H8 be its 5-dimensional subspace consisting of symmetric matrices.
Clearly then H5 is a ∗-subalgebra of H8. It contains the subalgebra of diagonal
matrices isomorphic to C−1(2), as well as infinitely many subalgebras isomorphic
to J−1

2 (BD), for example the subalgebra spanned by diagonal matrices and any
one of the e12 + e21, e13 + e31, or e23 + e32 is such.

Thus J1
n(BD) is isomorphic to the Jordan algebra Jn(BD). Moreover a calcula-

tion, similar to that in Lemma 17, shows that the algebra Jc1(BD) is isomorphic to
C(c−1)/2(2). For most other values of n and c this algebra does not have unity and
is not Jordan, neither does it satisfy the identities (13) or (14). Note that Jcn(BD)
contains isomorphic copies of Jcm(BD) for m 6 n.

Note also that the ∗-multiplication on H8 is the unique commutative multiplica-
tion invariant under the adjoint action of sl(3) on it, while the ∗-multiplication
on H5 is the unique commutative multiplication invariant under the action of
so(3) ∼= sl(2) realizing H5 as the 5-dimensional irreducible representation of sl(2)
(= the 5-dimensional irreducible summand of the symmetric square of the adjoint
representation of so(3)).

For classical type Lie algebras g, we have the following cases when g−d is strictly
larger than the −d degree component for the nilpotent element of the semisimple
type in the same bush:

In so((2k + 1)(2` + 1) + n1 + · · · + nj), the nilpotent element e with the orbit
partition [(2k + 1)(2`+1), n1, . . . , nj ], k, ` > 1, n1, . . . , nj < 2k + 1 — depth is 4k,
with eq having partition [(2k+1)2`] in the reducing subalgebra q = so(2`(2k+1)).
Then the algebra (g−d, ∗) is so(2` + 1) with the adjoint action of Z(s), while in
the reducing subalgebra q its subalgebra q−d is isomorphic to so(2`).

In so((2k + 1)(` + 1) + 2 + n1 + · · · + nj), the nilpotent element e with the
orbit partition [2k + 3, (2k + 1)(`), n1, . . . , nj ], k, ` > 1, n1, . . . , nj < 2k + 1 —
depth is 4k+2, with eq having partition [2k+3, 2k+1] in the reducing subalgebra

q = so(4k + 4). Here the algebra (g−d, ∗) is isomorphic to J
−(2k−1)
` (BD). Its

subalgebra q−d ⊆ g−d is isomorphic to J
−(2k−1)
1 (BD) ∼= C−k(2).

It follows from the description of bushes for algebras of classical types in [EKV,
end of Sect. 4] that the above are the only cases for classical types when dim g−d
is larger than that for the element of the semisimple type in the bush.

For exceptional type Lie algebras g, nilpotent elements e such that for any
reducing subalgebra q with eq of semisimple type one has q−d $ g−d are the
following:

F4, label A2 +Ã1: depth is 4, the algebra (g−d, ∗) is isomorphic to sl(2), realizing
the adjoint representation of z(s) ∼= sl(2). The subalgebra q of g generated by the
s-submodule of g generated by the 1-dimensional Cartan subalgebra (q−d, 0) of
(g−d, ∗) is of type A2, and in the decomposition e = eq + e′ of e in q ⊕ z(q) the
nilpotent element eq is principal in q. It has label A2 in g and (e, eq) constitute a
bush in F4.

E6, label A2+2A1: depth is 4, the algebra (g−d, ∗) is isomorphic to sl(2), realizing
the adjoint representation of z(s) ∼= sl(2). The subalgebra q of g generated by the
s-submodule of g generated by the Cartan subalgebra of (g−d, ∗) is of type A2,
and in the decomposition e = eq + e′ of e in q ⊕ z(q) the nilpotent element eq is
principal in q. It has label A2 in g and (e, eq) together with the nilpotent element
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with label A2 + A1 (having dim(g−d) = 1) constitute a bush in E6.

E7, label A2 + 2A1: same properties as the element with the same label in E6,
except that the bush contains one more element, with label A2 + 3A1 (see next
entry).

E7, label A2 + 3A1: depth 4, the algebra (g−d, ∗) is isomorphic to the simple
Malcev algebra M of dimension 7, realizing the smallest irreducible representation
of z(s), which is of type G2. The subalgebra q of g generated by the s-submodule
of g generated by the Cartan subalgebra of (g−d, ∗) is of type A2, with eq principal
there. Moreover (g−d, ∗) admits an infinite family of 3-dimensional subalgebras,
each isomorphic to sl(2). For the reducing subalgebras q generated by the s-
submodules generated by any one of those sl(2)-subalgebras of (g−d, ∗), the element
eq has label A2 + 2A1 in g.

E7, label A4 +A2: depth is 8, (g−d, ∗) is isomorphic to sl(2), realizing the adjoint
representation of z(s) ∼= sl(2). For the reducing subalgebra q generated by the s-
submodule generated by the Cartan subalgebra of (g−d, ∗), the nilpotent element
eq is of semisimple type; in g it has label A4. The bush also contains the nilpotent
element with label A4 + A1, with dim g−d = 1.

E7, label A3 + A2: depth 6, the 3-dimensional algebra (g−d, ∗) is isomorphic to
J−1

2 (BD). Here z(s) is a 1-dimensional torus acting on g−d with eigenvalues ±1
and 0. To obtain the element of semisimple type from the bush we may take any
subalgebra of J−1

2 (BD) spanned by 1 and some element x with x ∗ x = 1. This
subalgebra is isomorphic to C−1(2) and the s-submodule generated by it generates
a reducing subalgebra q such that eq is of semisimple type in it. In g it has label
D4(a1). The bush also contains an element with label D4(a1) + A1, with g−d the
same as for eq, as well as one more element (see the next entry).

E7, label A3 + A2 + A1: depth 6, the algebra (g−d, ∗) is isomorphic to H5. Here
z(s) is sl(2), and its representation on g−d is irreducible. 3-dimensional subalgebras
of H5 isomorphic to J−1

2 (BD) realize, by the same procedure, nilpotent elements
with label A3 + A2.

E8, labels A2 + 2A1 and A2 + 3A1 — this bush has exactly the same properties
as the one with these labels in E7.

E8, label A4 +A2 — same as the nilpotent element with this label in E7, but the
bush contains two more elements: the one with label A4 + 2A1, with dim g−d = 1,
and the one described in the next entry.

E8, label A4 +A2 +A1 — depth is 8 and dim g−d = 3; the algebra (g−d, ∗) is the
same as the one for the element with label A4 + A2 in the same bush.

E8, labels A3 +A2 and A3 +A2 +A1 — same properties as the ones of this bush
in E7, but the bush here contains one more element, see the last entry.

E8, label D4(a1) + A2: here, as for other elements in the bush, depth is 6. The
algebra (g−d, ∗) is isomorphic toH8, realizing the adjoint action of z(s) which in this
case is sl(3). The algebra H8 contains infinitely many 5-dimensional subalgebras
giving rise to nilpotent elements with label A3 + A2 + A1 from the bush. For
example, H5 is such, but also isomorphic to H5 is the subalgebra of H8 spanned
by the diagonals, two of the antisymmetric matrices e12 − e21, e13 − e31, e23 − e32

and their ∗-product, which is symmetric, e. g. e12 − e21, e23 − e32 and e13 + e31.
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C. Chains of nilpotent elements

Recall [EKV] that any nilpotent element e ∈ g not of nilpotent type uniquely
decomposes in a sum of commuting elements: e = es + en, where es lies in the
minimal reducing subalgebra qmin and en lies in its centralizer. The nilpotent
element es is of semisimple type in g, and en can be of any type. Let f(e) = en.
Thus f(e) = 0 for e of semisimple type; for e of nilpotent type it is natural to put
f(e) = e. Then for each nilpotent element e we have a chain

e = f0(e), f(e) = f1(e), f(f(e)) = f2(e), . . . , f `−1(e),

where `, the length of the chain for e, is the smallest natural number such that the
iterate f `−1(e) is of either semisimple or of nilpotent type. Thus for e of mixed
type ` > 2.

If g is of classical type, and e is a nilpotent element, corresponding to the
partition (n1, . . . , nk), with n1 > · · · > nk > 0, then es corresponds to the partition
(n1, . . . , nj , 1

(nj+1+···+nk)) for some 0 6 j 6 k, and en = f(e) corresponds to
the partition (nj+1, . . . , nk, 1

(n1+···+nj)). According to [EKV, p. 111], except for
e of nilpotent type, here j is the largest natural number with the property that
(n1, . . . , nj , 1

(nj+1+···+nk)) is the partition of a nilpotent of semisimple type in g.
This rule determines the chain for e.

For orthogonal Lie algebras the chain can terminate with an element of nilpotent
type. One can show that this happens if and only if in the corresponding partition
n1 > · · · > nk, there is an odd nj with nj+1 = nj − 1 such that the maximal
subsequence ni > · · · > nj consisting of consecutive odd numbers (repetitions
allowed) has an odd sum.

Examples. In B27, there is a chain

(7, 5(4), 4(4), 2(2), 1(8)) 7→ (5(3), 4(4), 2(2), 1(20)) 7→ (5, 4(4), 2(2), 1(30)),

the last one is of nilpotent type.
In D9,

(5(3), 3) 7→ (5, 3, 1(10)),

the last one is of semisimple type.
In C17,

(5(2), 4(3), 3(4)) 7→ (4(3), 3(4), 1(10)) 7→ (3(4), 1(22)),

the last one is of semisimple type.
For g of exceptional types, the length of all mixed type nilpotent elements e is

equal to 2, with two exceptions, both in E8, when the length is 3:

A4 + A2 + A1 7→ A2 + A1 7→ A1 and D5(a1) + A2 7→ A2 + 2A1 7→ 2A1.

Moreover, for exceptional types all ending elements of chains for mixed types are
of semisimple type, with one exception, again in E8, which is the last entry for E8

below.
The chains of length 2 for mixed type nilpotent elements in g of exceptional

type are as follows:



SEMISIMPLE CYCLIC ELEMENTS

In E6,
all of A2 + A1, A3 + A1, A4 + A1 go to A1 in one step;
A2 + 2A1, D5(a1) go to 2A1.

In E7,
A2 +A1, [A3 +A1]′, [A3 +A1]′′, A4 +A1, A5 +A1, D4 +A1, D4(a1) +A1, D5 +A1,
and E7(a3) go to A1;
A2 + 2A1, A3 + 2A1, A3 + A2, D5(a1), D6(a1) go to 2A1;
A2 + 3A1, A3 + A2 + A1, D5(a1) + A1, E7(a2), E7(a4) go to [3A1]′′;
A4 + A2 goes to A2.

In E8,
A2 +A1, A3 +A1, D4(a1) +A1, D4 +A1, A4 +A1, A5 +A1, E6(a3) +A1, D5 +A1,
A6 + A1, E6(a1) + A1, E7(a3), E6 + A1, E8(b4), E8(a3) go to A1;
D4(a1) + A2, A4 + A2, D4 + A2, D5 + A2, E8(b6), E8(b5) go to A2;
D7 (a2) goes to A3;
A2 + 2A1, A3 + 2A1, A3 + A2, D5(a1), A4 + 2A1, D6(a1), D7(a1) go to 2A1;
A2 + 3A1, A3 + A2 + A1, D5(a1) + A1, E7(a4), E7(a2) go to 3A1.

In F4,
C3(a1) 7→ A1,

A2 + Ã1 7→ Ã1.
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