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1 Introduction

In this paper we study Dynkin gradings on simple Lie algebras arising from
nilpotent elements. Specifically, we investigate Abelian subalgebras which are
degree 1 homogeneous with respect to these gradings.

The study of gradings associated to nilpotent elements of simple Lie algebras is
important since the finite and affine classical and quantum W-algebras are defined
using these gradings. In order to study integrable systems associated to these W-
algebras, it is useful to have their free field realizations. One of the ways to construct
them is to use the generalized Miura map [2, 4]. This construction can be further
improved by choosing an Abelian subalgebra in the term g1 of the grading. That
is why the description of such subalgebras, especially those having the maximal
possible dimension 1

2 dim g1, is important.
We show that for each odd nilpotent orbit there always exists a canonically

associated “strictly odd” nilpotent orbit, which allows us to reduce our investigations
to the latter case. (Strictly odd means that all Dynkin labels are either 0 or 1.) The
rest of the paper is devoted to the investigation of maximal Abelian subalgebras in
g1 for strictly odd nilpotent orbits in simple Lie algebras. For algebras of exceptional
type we provide tables with largest possible dimensions of such subalgebras in each
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case. For algebras of classical type, we find expressions for all possible maximal
dimensions of Abelian subalgebras in g1, and, based on that, characterize those
nilpotent orbits for which there exists such subalgebra of half the dimension of g1.

2 Recollections

Let us recall the nomenclature for nilpotent elements in a semisimple Lie algebra g.
Given a nilpotent element e, one chooses an sl2-triple (e, h, f ) for it, that is,

another nilpotent element f such that [e, f ] = h is semisimple and the identities
[h, e] = 2e, [h, f ] = −2f hold (Jacobson-Morozov theorem; see, e.g., [1]). The
Dynkin grading is the eigenspace decomposition for adh:

g =
⊕

j∈Z
gj .

Thus, a choice of a nilpotent element e defines a combinatorial object which
uniquely describes the orbit of e. It is the weighted Dynkin diagram corresponding
to e, which is the Dynkin diagram of g with numbers assigned to each node. These
numbers are the degrees αi(h) of simple root vectors ei with respect to the choice of
a Cartan and a Borel subalgebra in such a way that h (resp. e) becomes an element of
the corresponding Cartan (resp. Borel) subalgebra. The weighted Dynkin diagrams
satisfy certain restrictions—for example, the weights can only be equal to 0, 1 or 2;
moreover, if g is simple of type A, then the weights are symmetric with respect to
the center of the diagram, while for types B, C, or D there is no weight 1 occurring
to the left of 2.

A nilpotent element is called even if there are no 1’s in its weighted Dynkin
diagram, odd if it is not even, and strictly odd if there are no 2’s.

It is clear that for even nilpotent elements the question about Abelian subspaces
in g1 is trivial since g1 is zero.

We will also need the following fact from [3]:

Proposition 2.1 The degree 1 part g1 of g with respect to the grading induced by a
nilpotent element e ∈ g is generated as a g0-module by those simple root vectors of
g which have weight 1 in the weighted Dynkin diagram corresponding to e. ��

If g is a simple Lie algebra of classical type, one can assign to e another
combinatorial object—a partition λn � λn−1 � . . . which records dimensions
of irreducible representations of sl2 into which the standard representation of g
decomposes as a module over its subalgebra (e, h, f ). Alternatively, the partition
consists of sizes of Jordan blocks in the Jordan decomposition of e as an operator
acting on the standard representation of g. The partitions are restricted in a certain
way, according to the type of g. For type A one may have arbitrary partitions. For
types B and D, all even parts must have even multiplicity, while for type C all
odd parts must have even multiplicity. These conditions are sufficient as well as
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necessary, that is, any partition satisfying these conditions corresponds to a nilpotent
orbit in a simple Lie algebra of the respective classical type.

Let us recall how one calculates the weighted Dynkin diagram of a nilpotent
element defined by a partition λ = (λn � λn−1 � . . .) (cf. [6]).

Each element λk of the partition λ represents a copy of the λk-dimensional
irreducible representation of sl2, with eigenvalues of h equal to

1− λk, 3− λk, . . . , λk − 3, λk − 1.

To obtain the weighted Dynkin diagram one collects those eigenvalues for each λk ,
arranges them in decreasing order, and takes consecutive differences.

For example, take the partition 8, 6, 3, 3, 2, 1, 1. This gives the following eigen-
values of h:

−7 −5 −3 −1 1 3 5 7
−5 −3 −1 1 3 5

−2 0 2
−2 0 2

−1 1
0
0

Arranging all numbers from this table in the decreasing order gives

7 5 5 3 3 2 2 1 1 1 0 0 0 0 −1 −1 −1 −2 −2 −3 −3 −5 −5 −7.

Taking the consecutive differences then gives

2 0 2 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 2 0 2

which is already the weighted Dynkin diagram of the nilpotent in case of type A.
For the types B, C, D one has to leave only the left half of the obtained sequence

(which obviously is centrally symmetric); more precisely, for an algebra of rank
r , the first r − 1 nodes of the weighted Dynkin diagram are as stated, while the
rightmost node is defined in a specific way, depending on the type. We skip this
part, as it will not play any rôle for us; details can be found in, e.g., [1, Section 5.3].

For example, the same partition 8, 6, 3, 3, 2, 1, 1 also encodes a nilpotent orbit
in a simple Lie algebra of type C, since all of its odd parts come with even
multiplicities. Then, the weighted Dynkin diagram of this nilpotent is

2 0 2 0 1 0 1 0 0 1 0 0.

It is easy to see from the above procedure that the resulting weighted Dynkin
diagram begins with certain sequence of 0’s and 2’s; if the largest part of the partition
is λn with multiplicity mn, and the parts of the same parity following it are λn−1
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with multiplicitymn−1, λn−2 with multiplicitymn−2, . . . , λn−k+1 with multiplicity
mn−k+1, while the next part λn−k has the opposite parity, then the first 1 appears at
the (kmn + (k − 1)mn−1 + . . .+ 2mn−k+2 +mn−k+1)-st place. For the type A the
picture is symmetric, so one has the weights 2 and 0 at both ends of the diagram,
and the weights 1 and 0 in the middle, while for the types B, C, or D the sequence
of weights starts with 0 and 2 followed by a sequence of weights 0 and 1, without
any further 2’s.

According to the above procedure for assigning to a partition a weighted Dynkin
diagram, it is easy to see the following

Proposition 2.2 A nilpotent element in a simple Lie algebra of classical type is
even iff all the parts of the corresponding partition are of the same parity; it is odd
iff there are some parts with different parities, and strictly odd iff the largest part
and the next largest part differ by 1. ��

3 Important Reduction

Let V and U be finite-dimensional modules over a reductive Lie algebra g and let
V ⊗ V → U be a g-module homomorphism. We see this homomorphism as a
g-equivariant algebra structure on V with values in U .

Proposition 3.1 Suppose that there exists an Abelian subalgebra of dimension d
of the algebra V . Then there exists an Abelian subalgebra of the algebra V of
dimension d, spanned by weight vectors of V .

Proof (Proposed by the Referee) It follows from Borel’s fixed point theorem.
Indeed, the Cartan subgroup acts on the complete variety of d-dimensional Abelian
subalgebras of V , hence has a fixed point. ��

Using this, in what follows we will assume throughout that for a simple Lie
algebra of classical type we are given a basis in the standard representation
consisting of weight vectors corresponding to the weights ±εi , i = 1, . . . , n
and moreover, for the type B, to the zero weight. In the adjoint representation,
accordingly, we will have a basis corresponding to ± εi ± εj , i �= j (accounting
for tensor products of basis vectors of the standard representation corresponding
to ±εi and to ±εj ) and moreover, for the type B only, those corresponding to
±εi (accounting for tensor product of a basis vector corresponding to ±εi and
that corresponding to the zero weight) and, for C only, corresponding to ±2εi
(accounting for the tensor product of a basis vector of the standard representation
corresponding to ±εi with itself), i = 1, . . . , n.

Proposition 3.2 For any weighted Dynkin diagram corresponding to a nilpotent
element e in a simple Lie algebra g, consider a subdiagram obtained as a result of
erasing all nodes with weight 2. Consider the resulting subdiagram together with
the remaining weights. Then all connected components of this subdiagram, except
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possibly one of them, have all weights equal to zero. Moreover, this one component
(if it exists) is a weighted Dynkin diagram of some strictly odd nilpotent orbit in the
diagram subalgebra g̃ ⊆ g of the type determined by the shape of the component.

Proof For algebras of classical type, this is proved in Lemma 4.6 below. For an
algebra of type G2 this is clear as all nilpotent elements in it are either even or strictly
odd. As for the exceptional Lie algebras of types E or F, the assertion can be seen
to be true directly from looking at the Tables F4o, E6o, E7o, E8o given in the last
section. ��
Corollary 3.3 For any odd nilpotent element e in a simple Lie algebra g there exists
a simple diagram subalgebra g̃ ⊆ g and a strictly odd nilpotent element ẽ ∈ g̃ such
that

g1(e) = g̃1(ẽ),

i.e., the degree 1 homogeneous parts for the grading on g induced by e and for the
grading on g̃ induced by ẽ coincide. In particular, these degree 1 homogeneous parts
have the same Abelian subspaces.

Proof Let g̃ be the subalgebra corresponding to the connected component of the
weighted Dynkin diagram of e as described in Proposition 3.2 above. Moreover, let
ẽ be a representative of the orbit corresponding to the weights on this connected
component—it exists by Proposition 3.2.

By construction, this subalgebra contains all simple root vectors of degree 1, and,
moreover, they will be precisely the root vectors of those simple roots of g̃ which
contribute to the degree 1 part for the grading induced by ẽ. From Proposition 2.1
we know that g1(e) is the g0(e)-module generated by these root vectors, while g̃1(ẽ)

is the g̃0(ẽ)-module generated by them.
Now observe that the only removed nodes which connect with an edge to some

node in the remaining connected component have weight 2, so that all simple root
vectors corresponding to removed nodes with weight 0 commute with every simple
root vector in this component.

It follows that the g0(e)-module generated by the root vectors corresponding to
weight 1 nodes is no larger than the g̃0(ẽ)-module generated by them, i. e. g1(e)

coincides with g̃1(ẽ). ��
Definition 3.4 For the orbit of an odd nilpotent element in a simple Lie algebra g,
call its strictly odd reduction the nilpotent orbit in the simple Lie algebra g̃ obtained
as in Corollary 3.3.

Given a nilpotent element e ∈ g as in Proposition 3.2, one can explicitly construct
a nilpotent element ẽ ∈ g̃ from the orbit corresponding to its strictly odd reduction
in the sense of Definition 3.4 as follows. The nilpotent element e clearly lies in the
degree 2 subspace g2 for the corresponding grading. This subspace is a g0-module
and it decomposes canonically into the direct sum of its submodule [g1, g1] and the
submodule g2(2) generated by the root vectors of g corresponding to the simple
roots of weight 2.
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Proposition 3.5 Given a nilpotent element e, represent it (in a unique way) as a
sum e1+e2 with e1 ∈ [g1, g1] and e2 ∈ g2(2). Then the weighted Dynkin diagram of
e1 in the subalgebra corresponding to the subdiagram described in Proposition 3.2
is given by the weights on that subdiagram.

Proof We have a reductive groupG0 corresponding to g0 acting on g2 = [g1, g1]+
g2(2), with the element e = e1 + e2 having an open orbit in g2. This means that
[g0, e1 + e2] = g2. But this implies that [g0, e1] = [g1, g1] (and similarly for e2).
Hence G0e1 is an open orbit in [g1, g1].

Let us consider an intermediate subalgebra g̃ ⊆ g′ ⊆ g corresponding to
the diagram, obtained by erasing the nodes with weight 2, but leaving all other
nodes together with their weights intact (this diagram can be disconnected).
Proposition 3.2 easily implies that g′ is a direct sum of g̃ and of some simple algebras
of type A. Hence e1, viewed as an element of this direct sum, obviously has zero
summands in all these components of type A.

On the other hand, Proposition 3.2 implies that there exists a (strictly odd)
nilpotent element ẽ in [g1, g1], which has the needed Dynkin diagram. Then,
similarly to e1, the element ẽ can also be seen as a nilpotent element in g′,
having zero components in all remaining type A components of g′. It is then clear
that this nilpotent element will have the weighted Dynkin diagram obtained as
in Proposition 3.2. Moreover, it will have an open G0-orbit in [g1, g1], hence it
coincides with the G0-orbit of e1, so ẽ and e1 have the same weighted Dynkin
diagram when viewed as nilpotent elements in g′. This implies that these elements
have the same weighted Dynkin diagram with respect to g̃, since the latter is
obtained just by throwing out type A components with zero weights only. ��
Remark 3.6 It would be convenient to supplement Corollary 3.3 with an explicit
construction, assigning to an sl2-triple (e, f, h) corresponding to a given nilpotent
orbit in g, an sl2-triple (ẽ, f̃ , h̃) for its strictly odd reduction as in Definition 3.4.
Since g̃ comes with a grading (determined by the weights on the corresponding
subdiagram), the semisimple element h̃ of g̃ is determined by this grading, while
f̃ , which we know to exist by Corollary 3.3, is uniquely determined by ẽ and h̃.
Thus having an explicit construction of f̃ would provide an alternative proof of
Corollary 3.3 that would not require case-by-case analysis of the exceptional types.
One possibility that comes to mind is to produce f̃ from f in the same way as
we produced ẽ from e in Proposition 3.5—that is, take f̃ = f1 where f = f1 +
f2 is the unique decomposition of f ∈ g−2 into a sum of f1 ∈ [g−1, g−1] and
f2 ∈ g−2(2), the latter being the g0-submodule of g−2 generated by the root vectors
corresponding to negatives of the simple roots with weights 2 on the initial weighted
Dynkin diagram. However, as the following example shows, this does not give the
correct value of f̃ in general.

Example 3.7 For g of type D6, consider the nilpotent orbit corresponding to the

weighted Dynkin diagram 20101
1 (and to the partition 5, 3, 2, 2). The following

sum of positive root vectors
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e := e11000
0
+ e01111

0
+ e00111

0
+ e00110

1
+ e00011

1

where the subscripts denote the linear combinations of simple roots that give the
corresponding positive roots, yields a representative of this orbit. The corresponding
f in the sl2-triple for e is the following combination of negative root vectors:

f := 2f10000
0
+ 4f11000

0
+ 2f01111

0
− 2f01110

1
+ 2f00111

0
+ 4f00110

1
+ f00011

1
,

where the subscripts are linear combinations of negative simple roots. Thus h =
[e, f ] determines the grading corresponding to the above weighted Dynkin diagram.
It is straightforward to check that in the degree 2 subspace g2, root vectors
corresponding to the combinations 10000

0 and 11000
0 of simple roots span the g0-

submodule g2(2) ⊆ g2 generated by the root vector of 10000
0, i. e. of the simple root

with weight 2, while the remaining positive root vectors from g2 lie in [g1, g1]. Thus,
according to Proposition 3.5, a strictly odd nilpotent element ẽ = e1 in the diagram
subalgebra g̃ of type D5 corresponding to the subdiagram obtained by omitting the
node with weight 2 is obtained by omitting in the sum for e the leftmost summand
(the one that lies in g2(2)). Thus,

ẽ = e01111
0
+ e00111

0
+ e00110

1
+ e00011

1
.

Now, if we try to choose for the companion of ẽ in the sl2-triple the element f1
obtained in the same way from f , i. e. by omitting in the sum for f the summands
that lie in g−2(2), we obtain

f1 = 2f01111
0
− 2f01110

1
+ 2f00111

0
+ 4f00110

1
+ f00011

1
.

However, it turns out that [e1, f1] is not the semisimple element determining the
grading of g̃. As a matter of fact, this element is not semisimple, rather it has form

[e1, f1] = h′ − e01000
0

with h′ in the Cartan subalgebra of g̃. A correct f̃ (the one with [ẽ, f̃ ] = h̃ an
element in the Cartan subalgebra of g̃ which gives the correct grading of g̃) is

f̃ = 2f 01111
0− 2f 01110

1+ 2f 00110
1+ f 00011

1

and it is thus not obtained from f by projecting it to [g−1, g−1] or in any other
obvious way.

Let us add that there are also many examples (even for the algebras of type A)
when the bracket of the projections [e1, f1] of e and f is semisimple but does not
induce the required grading on g̃.
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4 Maximizing Abelian Subspaces

We are interested in Abelian subspaces of g1. First of all, one has the following
well-known fact.

Proposition 4.1 Dimension of g1 is even, and the largest possible dimension of an
Abelian subspace in g1 is at most 1

2 dim g1.

Proof Let e be an element of the orbit, and choose an sl2-triple (e, h, f )with e ∈ g2,
and h inducing the grading. Then one may define a bilinear form on g1 via

(x, y)f := 〈f, [x, y]〉,

where 〈−,−〉 is the Killing form. It is well known that the skew-symmetric form
(−,−)f is nondegenerate (since ad f : g1 → g−1 is an isomorphism), so that
dimension of g1 is indeed even. Moreover any commuting elements of g1 are
orthogonal with respect to this form. Since such a form does not possess isotropic
subspaces of more than half dimension of the space, we obtain that there are no
Abelian subspaces of more than half dimension of g1. ��
Remark 4.2 It is known, more generally, that any homogeneous part g2i−1 of odd
degree possesses a nondegenerate skew-symmetric form—see [5, Proposition 1.2].
Thus, each dim g2i−1 is even, too.

We now consider the Abelian subalgebras in g1, separately for the simple
algebras of classical types (right now) and for the algebras of exceptional types
(in Sect. 5).

We now consider the simple algebras of classical types. For the type A, it has
been proved in [7] that a half-dimensional Abelian subspace in g1 exists for any
nilpotent orbit.

The central result of this section is the following characterization, in terms of
the associated partitions, of those strictly odd nilpotent orbits in types B, C or D
admitting an Abelian subspace of half the dimension in g1. We will then deduce
the general (not necessarily strictly odd) case, using strictly odd reduction as in
Definition 3.4.

Theorem 4.3 Given a strictly odd nilpotent element in a simple Lie algebra g of
type B, C, or D, there is an Abelian subspace of half dimension in g1 if and only
if the partition corresponding to the nilpotent element satisfies one of the following
conditions:

• the largest part μ of the partition is even and there are no other even parts;
moreover if g is of type B then μ has multiplicity 2.

• the largest part μ of the partition is odd, and either there are no other odd parts,
or g is not of type C, and the only other parts are μ− 1 with multiplicity 2 and 1
(with any multiplicity).
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In other words, Abelian subspaces of half dimension in g1 occur precisely for those
strictly odd nilpotent elements corresponding to the partitions of the following kind:

type C : [12ν1 32ν3 · · · (2k − 1)2ν2k−1 (2k)ν
]
(ν2k−1ν �= 0),

[
2ν2 4ν4 · · · (2k)ν2k (2k + 1)2ν

]
(ν2kν �= 0);

type B or D : [22ν2 42ν4 · · · (2k)2ν2k (2k + 1)ν
]

(ν2kν �= 0),
[
1ν1 (2k)2(2k + 1)ν

]
(ν2kν �= 0);

type B : [1ν1 3ν3 · · · (2k − 1)ν2k−1 (2k)2
]

(ν2k−1 �= 0),

type D : [1ν1 3ν3 · · · (2k − 1)ν2k−1 (2k)2ν
]

(ν2k−1ν �= 0).

Proof It will be convenient to introduce the following notations: for a partition as
above, let mk be the multiplicity of the number k in it. Moreover let Sk be the h-
eigensubspace with eigenvalue k in the standard representation, and let sk denote
dimension of this subspace, i.e. multiplicity of the eigenvalue k for h.

As recalled in Sect. 1 above, the adjoint representation can be identified with the
symmetric square of the standard one for type C, and with its exterior square for
types B and D.

Because of this, clearly the degree 1 part of the adjoint representation is the direct
sum of spaces of the form S∗k ⊗ Sl with l − k = 1, k � 0, and

dim g1 = s0s1 + s1s2 + . . .

Now, from the correspondence described in Sect. 2, one has

s0 = m1 +m3 +m5 + . . .
s1 = m2 +m4 +m6 + . . .
s2 = m3 +m5 +m7 + . . .
s3 = m4 +m6 +m8 + . . .
. . .

sμ−4 = mμ−3 +mμ−1

sμ−3 = mμ−2 +mμ
sμ−2 = mμ−1

sμ−1 = mμ

(1)

Dimension of the subspace g1 of grading 1 with respect to the corresponding
sl2-triple is thus given by

s0s1 + s1s2 + s2s3 + s3s4 + . . . =
∑

i,j>0

imimi+2j−1

= m1m2 + 2m2m3 +m1m4 + 3m3m4 + 2m2m5 + . . .
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Given an Abelian subspace in g1, we may assume, using Proposition 3.1, that it
has a basis consisting of root vectors. In particular, each of our basis vectors belongs
to one of the direct summands S∗k ⊗ Sk+1.

Note that the elements of S∗k−1 ⊗ Sk commute with the elements of S∗l ⊗ Sl+1
for l > k; whereas, when l = k, we obtain a non-commuting pair as soon as our
basis contains an element of the form x ⊗ y ∈ S∗k−1 ⊗ Sk and y′ ⊗ z ∈ S∗k ⊗ Sk+1
with y and y′ mutually dual basis elements. We are thus forced to choose non-
intersecting subsets Xk , Yk in the weight vector bases of Sk and include in the basis
of the Abelian subspace only those x ⊗ y which satisfy x ∈ Xk−1 and y ∈ Yk . This
does not concern k = μ − 1, where μ − 1 is the maximal occurring eigenvalue of
h (μ, as above, is the largest part of the corresponding partition): in Sμ−1 we may
choose arbitrary subset of the basis without affecting Abelianness; and since we are
interested in maximal Abelian subspaces, we choose the whole basis of Sμ−1.

Moreover, any such choice of non-intersecting subsetsXk , Yk of bases of Sk gives
indeed an Abelian subspace, and we may further assume that Xk ∪ Yk is the whole
basis, since otherwise our Abelian subspace would not be maximal.

The case k = 0 is special, and depends on the type considered.
Namely, it may happen that two basis vectors, both from S∗0 ⊗ S1, do not

commute. Two basis elements of this subspace, being the tensor products of basis
vectors corresponding to±ε(0)i +ε(1)j and±ε(0)k +ε(1)l respectively, will commute if

and only if the sum±ε(0)i + ε(1)j ± ε(0)k + ε(1)l is not a root. This implies that the root
vector basis of an Abelian subspace in g1 cannot contain root vectors corresponding
to both ±ε(0)i + ε(1)j and ∓ε(0)i + ε(1)k for j �= k (since the sum of these is the root

ε
(1)
j + ε(1)k ).

This is the only restriction on S∗0⊗S1 for type D. For type C, there is an additional
restriction that an Abelian subspace of g1 cannot contain root vectors corresponding
to both ±ε(0)i + ε(1)j and ∓ε(0)i + ε(1)j (since the sum of these is the root 2ε(1)j ). For
type B, an additional restriction is that an Abelian subspace of g1 cannot contain
root vectors corresponding to both (0+)ε(1)j and (0+)ε(1)k for j �= k (since the sum

of these is the root ε(1)j + ε(1)k ).
It follows that to obtain a maximal Abelian subspace of g1, in addition to splitting

the weight vector basis of S1 into nonintersecting subsets (X1 and its complement
Y1), for any weights ε(1)j and ε(1)k corresponding to a weight basis vector in X1 we

have to pick in S∗0⊗S1 the root basis elements corresponding either only to ε(0)i +ε(1)j
and ε(0)i + ε(1)k or only to −ε(0)i + ε(1)j and −ε(0)i + ε(1)k for all possible i, but not
both. Thus the maximal possible number of basis vectors from S∗0 ⊗ S1 which we
may include in an Abelian subspace of g1 is either

[
s0
2

]
x1 (if we choose either only

ε
(0)
i + ε(1)j or only −ε(0)i + ε(1)j for all possible i and j ) or s0, provided we are not in

type C and moreover X1 consists of a single element (corresponding to some ε(1)j ,

and we choose root basis vectors corresponding to ±ε(0)i + ε(1)j for all possible i).
In addition, if we are in type B, we may add one more root basis vector v0⊗v1 with
v0 a weight basis vector with zero weight and v1 some weight basis vector from X1.
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Thus, we have the following possibilities for the maximal dimension of the piece
of an Abelian subspace corresponding to S∗0 ⊗ S1:

B C D

x1 = 0 0 0 0

x1 = 1 s0
s0
2 s0

x1 > 1 s0−1
2 x1 + 1 s0

2 x1
s0
2 x1

This results in the following possibilities for the maximal dimension of an
Abelian subspace in g1:

s0−1
2 x1 + 1+ (s1 − x1)x2 + (s2 − x2)x3 + . . .+ (sμ−3 − xμ−3)xμ−2 + (sμ−2 − xμ−2)sμ−1

(for type B);
s0
2 x1 + (s1 − x1)x2 + (s2 − x2)x3 + . . .+ (sμ−3 − xμ−3)xμ−2 + (sμ−2 − xμ−2)sμ−1

(for type C or D);

s0 + (s1 − 1)x2 + (s2 − x2)x3 + . . .+ (sμ−3 − xμ−3)xμ−2 + (sμ−2 − xμ−2)sμ−1

(for type B or D).

(2)

where μ is the largest part of the partition.
We thus want to maximize each of these quantities for 0 � xk � sk , k =

1, . . . , μ − 2. Note that each of them is linear in all of the xk separately, hence
any possible maxima are attained when every xk is either 0 or sk . In fact, more is
true:

Lemma 4.4 An Abelian subspace of maximal possible dimension in g1 can be
obtained either with x2j−1 = 0, x2j = s2j or with x2j−1 = s2j−1, x2j = 0 for
all j .

Proof Looking at the subsum

. . .+ (sk−2 − xk−2)xk−1 + (sk−1 − xk−1)xk + (sk − xk)xk+1 + . . .

determining dimension of the Abelian subspace, it is easy to see that each of the
following changes:

xk−1 = 0, xk = 0 	→ xk−1 = 0, xk = sk,
xk−1 = sk−1, xk = sk 	→ xk−1 = sk−1, xk = 0

does not decrease the dimension of the Abelian subspace.
Indeed, these changes do not affect any other summands except those in the above

subsum. The first change transforms

. . .+ (sk−2 − xk−2)0+ (sk−1 − 0)0+ (sk − 0)xk+1 + . . .
	→ . . .+ (sk−2 − xk−2)0+ (sk−1 − 0)sk + 0xk+1 + . . . ,
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i.e., changes the sum by the amount equal to the change from skxk+1 to sk−1sk . But
xk+1 � sk+1, and sk+1 � sk−1 by (1), so that indeed the sum does not decrease.

Similarly, the second change transforms

. . .+ (sk−2 − xk−2)sk−1 + (sk−1 − sk−1)sk + (sk − sk)xk+1 + . . .
	→ . . .+ (sk−2 − xk−2)sk−1 + (sk−1 − sk−1)0+ (sk − 0)xk+1 + . . . ,

i.e., changes the sum by the amount equal to the change from 0 to skxk+1, which is
obviously a nondecreasing change.

Now using the above changes we may arrive at one of the needed choices. For
simplicity, let us encode a given choice of x’s by a sequence of zeroes and ones (at
the kth place of the sequence stands zero if xk = 0 and one if xk = sk). We are
allowed to perform “local transformations” of the kind · · · 00 · · · 	→ · · · 01 · · · and
· · · 11 · · · 	→ · · · 10 · · · . Using one of these transformations, we can always shift the
place of the leftmost occurrence of two consecutive identical symbols to the right:
say, if this leftmost occurrence is · · · 11 · · · we change it to · · · 10 · · · and if it is
· · · 00 · · · , we change it to · · · 01 · · · , and in the worst case the place of the leftmost
occurrence of consecutive identical symbols still shifts to the right by at least one
position. Thus, if we keep applying the appropriate transformations to the leftmost
occurrence of consecutive identical symbols, we inevitably arrive either at 10101 . . .
or at 01010 . . . . ��

Applying this in (2), we obtain that the maximal possible dimension of an
Abelian subspace in g1 can only be equal to one of the following six expressions:

s0−1
2 s1 + 1+ s2s3 + s4s5 + . . . s1s2 + s3s4 + s5s6 + . . . (for type B)

s0
2 s1 + s2s3 + s4s5 + . . . s1s2 + s3s4 + s5s6 + . . . (for types C, D)
s0 + s2s3 + s4s5 + . . . s0 + (s1 − 1)s2 + s3s4 + s5s6 + . . . (for types B, D)

To find out whether there is an Abelian subspace of half the dimension in g1 is thus
equivalent to finding out whether subtracting from the dimension of g1, i. e. from
s0s1 + s1s2 + . . ., one of these sums doubled gives zero, i. e. whether one of the
sums

s0s1 + s1s2 + . . . −2( s0−1
2 s1 + 1+ s2s3 + s4s5 + . . .) s0s1 + s1s2 + . . . −2(s1s2 + s3s4 + s5s6 + . . .) (B)

s0s1 + s1s2 + . . . −2( s02 s1 + s2s3 + s4s5 + . . .) s0s1 + s1s2 + . . . −2(s1s2 + s3s4 + s5s6 + . . .) (C, D)

s0s1 + s1s2 + . . . −2(s0 + s2s3 + s4s5 + . . .) s0s1 + s1s2 + . . . −2(s0 + (s1 − 1)s2 + s3s4 + s5s6 + . . .) (B, D)

is zero.
Simplifying, we obtain respectively

s1 − 2+ s1s2 − s2s3 + s3s4 − s4s5 + s5s6 − . . . s0s1 − s1s2 + s2s3 − s3s4 + s4s5 − . . . (B)

s1s2 − s2s3 + s3s4 − s4s5 + . . . s0s1 − s1s2 + s2s3 − s3s4 + . . . (C, D)

−2s0 + s0s1+ s1s2 − s2s3 + s3s4 − . . . −2s0 + 2s2+ s0s1 − s1s2 + s2s3 − s3s4 + . . . (B, D)
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Rewriting this further as

s1 − 2+ (s1 − s3)s2 + (s3 − s5)s4 + (s5 − s7)s6 + . . . (s0 − s2)s1+ (s2 − s4)s3 + (s4 − s6)s5 + . . . (B)

(s1 − s3)s2 + (s3 − s5)s4 + (s5 − s7)s6 + . . . (s0 − s2)s1+ (s2 − s4)s3 + (s4 − s6)s5 + . . . (C, D)

s0(s1 − 2)+ (s1 − s3)s2 + (s3 − s5)s4 + . . . (s0 − s2)(s1 − 2)+ (s2 − s4)s3 + (s4 − s6)s5 + . . . (B, D)

and taking (1) into account this can be rewritten as

s1 − 2+m2s2 +m4s4 +m6s6 + . . . m1s1+m3s3 +m5s5 + . . . (B)
m2s2 +m4s4 +m6s6 + . . . m1s1+m3s3 +m5s5 + . . . (C, D)

s0(s1 − 2)+m2s2 +m4s4 + . . . m1(s1 − 2)+m3s3 +m5s5 + . . . (B, D)

Let us now assume that our nilpotent element is strictly odd, which, in terms
of the corresponding partition, means that mμ−1 > 0 (here, as before, μ is the
largest nonzero part of the partition). This then implies that all multiplicities si are
nonzero. Thus, to obtain an Abelian subspace of half the dimension of g1, we have
the following possibilities:

s1 = 2 and m2k = 0 for 2k < μ m2k−1 = 0 for 2k − 1 < μ (B)

m2k = 0 for 2k < μ m2k−1 = 0 for 2k − 1 < μ (C, D)

s1 = 2 and m2k = 0 for 2k < μ m1 = 0 or s1 = 2, and m2k−1 = 0 for 1 < 2k − 1 < μ (B, D)

We now make the following observations, according to the parity of μ:

• if μ is odd, then the cases in the first column are not realizable, since they require
that the partition has no even parts, while, by strict oddity, both mμ−1 and mμ
must be nonzero;

• if μ is even, the cases in the second column are not realizable by exactly the same
reason.

Taking this into account, we are left with the following cases: for μ even,

m2 = m4 = . . . = mμ−2 = 0, mμ−1 > 0, mμ = 2 — (B)
m2 = m4 = . . . = mμ−2 = 0, mμ−1 > 0, mμ > 0 — (C, D)
m2 = m4 = . . . = mμ−2 = 0, mμ−1 > 0, mμ = 2 — (B, D)

and for μ odd,

— m1 = m3 = . . . = mμ−2 = 0, mμ−1 > 0, mμ > 0 (B)
— m1 = m3 = . . . = mμ−2 = 0, mμ−1 > 0, mμ > 0 (C, D)
— m3 = m5 = . . . = mμ−2 = 0, mμ > 0 and either m1 = 0 (B, D)

or m2 = m4 = . . . = mμ−3 = 0 and mμ−1 = 2
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Let us also observe the following:

• for μ even, the first case is subsumed by the third one;
• for μ even, the third case is subsumed by the second one for type D;
• for μ odd, the subcase m1 = 0 of the third case is subsumed by the first one for

type B, and by the second one for type D.

Taking all of the above into account gives the partitions as described. ��
Remark 4.5 Another way to formulate the theorem is the following. In case of type
C, there is exactly one parity change along the partition, while in cases B or D there
might be either one or two parity changes; but if there are two parity changes, then
there must be only parts equal to 1, μ − 1, μ and, moreover, μ − 1 must have
multiplicity 2. Moreover, for the type B there is one more restriction in case there
is only one parity change: namely, if the largest part is even, its multiplicity must
be 2.

We now turn to the not necessarily strictly odd nilpotent orbits, using strictly
odd reduction from Definition 3.4. For classical types, its reformulation in terms of
partitions is as follows.

Lemma 4.6 Let g be a simple Lie algebra of classical type, and let e be a nilpotent
element of g corresponding to the partition [. . . kmk�m� . . . nmn ], with . . . < k <

� < . . . < n such that k and � are of opposite parity while all the larger parts j
(those with � � j � n) are of the same parity.

Then the partition [. . . kmk (k + 1)m�+...+mn ] defines a strictly odd nilpotent
element in a Lie algebra of the same type, and corresponds to the strictly odd
reduction of e, as defined in Definition 3.4.

Proof Let us begin by noting that the modified partition is indeed suitable for the
same type: if this requires that all parts of the same parity as k have even multiplicity,
then we have not touched them; while if this requires that all parts of the same parity
as k + 1 are even, then � and all larger parts are of the same parity as k + 1, so each
of the multiplicities m�, . . . , mn was even, hence their sum is even too, and we
indeed stay with the same type. Moreover, the corresponding nilpotent element is
strictly odd since its largest parts are k and k + 1.

Let us now reformulate the passage from the original partition to the modified
partition in terms of weighted Dynkin diagrams. We get the following procedure:
one removes all nodes (and weights) from left to right until no more 2’s are left; for
the types B, C, D that’s all that has to be done; for the type A one has to similarly
remove all 2’s on the right.

This procedure precisely means leaving the connected component of the
weighted Dynkin diagram that contains nonzero weights, as described in Propo-
sition 3.2 above, so that we indeed obtain the strictly odd reduction of e. ��
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Corollary 4.7 Given a nilpotent element in a simple Lie algebra g of classical
type B, C, or D, there is an Abelian subspace of half dimension in g1 if and
only if the partition corresponding to the nilpotent element satisfies the following
conditions:

type C: there is no more than one parity change along the partition;
types B and D: there are no more than two parity changes
and, if there is at least one parity change, then

• if the largest part of the partition is even, then there is only one parity change, and
in the B case moreover it must be the unique even part and must have multiplicity
2;

• if there are two parity changes, then the largest part of the partition is odd, there
is a unique even part, it has multiplicity 2, and all smaller parts are equal to 1.

Thus, Abelian subspaces of half dimension in g1 occur precisely for nilpotent
elements corresponding to partitions of one of the following kind (with k � �):

any type : [· · · (2k − 2)ν2k−2(2k)ν2k (2�+ 1)ν2�+1(2�+ 3)ν2�+3 · · · ] ;
type C or D : [· · · (2k − 3)ν2k−3(2k − 1)ν2k−1(2�)ν2� (2�+ 2)ν2�+2 · · · ] ;
type B or D : [1ν1(2k)2(2�+ 1)ν2�+1(2�+ 3)ν2�+3 · · · ] ;
type B : [· · · (2k − 3)ν2k−3(2k − 1)ν2k−1(2�)2

]
,

Proof This follows from Lemma 4.6. Indeed the latter shows that g1(e) for a
nilpotent element e corresponding to some partition has an Abelian subspace of half
dimension if and only if g̃1(ẽ), as described in Corollary 3.3, has such a subspace;
and this happens if and only if the partition modified as in Lemma 4.6 satisfies
conditions of Theorem 4.3.

It remains to note that a partition is of the indicated kind if and only if the partition
obtained from it as in Lemma 4.6 satisfies conditions of Theorem 4.3. ��

5 Computations

It remains to find out which of the strictly odd nilpotent orbits in simple Lie algebras
of exceptional type have an Abelian subspace of half dimension in degree 1.

For that, we used the computer algebra system GAP. In the package SLA by
Willem A. de Graaf included in this system one can compute with nilpotent orbits
of arbitrary semisimple Lie algebras. In particular, one obtains canonical bases
consisting of root vectors for the homogeneous subspaces of all degrees in the
grading of the Lie algebra induced by a nilpotent element.
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Using Proposition 3.1, we can determine Abelian subspaces in g1 as follows. Let
B be the basis of g1 consisting of positive root vectors. Let us construct a graph
with the set of vertices B, where two vertices eα and eβ are connected with an edge
if and only if they do not commute, that is, if and only if α + β is a root. Then,
by Proposition 3.1, g1 has an Abelian subspace of dimension d if and only if the
basis consisting of root vectors has a subset of cardinality d consisting of pairwise
commuting root vectors.

Clearly, this is equivalent to the corresponding graph having an independent set
of cardinality d—that is, a subset consisting of d vertices such that no two of these
vertices are connected by an edge. Hence, describing all possible dimensions of
Abelian subspaces in g1 reduces to listing all possible cardinalities of independent
subsets in the corresponding graph.

There is another package, GRAPE by Leonard H. Soicher in GAP, which can be
used to list all independent sets in a finite graph. Using this package, we determine
independent sets of maximal possible cardinality in the graph corresponding to a
nilpotent orbit.

The results are given in the tables below. A GAP code for computing maximal
dimensions of Abelian subspaces in g1 for arbitrary semisimple Lie algebras is
available at [8]. In fact, the program can list all subsets of any given cardinality
of pairwise commuting elements in the root vector basis.

As an illustration, we present below two cases for E6.

Examples 5.1 The nilpotent orbit with the weighted Dynkin diagram
1

1100000011 has
g1 of dimension 14. The corresponding graph with 14 vertices and edges connecting
vertices corresponding to non-commuting root vectors in g1 looks as follows:

This graph has independent sets with 6 vertices, e. g. {2, 5, 8, 9, 12, 14}, but any
subset on more than 6 vertices contains a pair of vertices connected with an edge,
thus for this nilpotent orbit maximal dimension of an Abelian subspace is equal to 6.
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Another orbit in E6, with the diagram , has g1 of dimension 10
corresponding to the graph

with 10 vertices. It is easy to find in this graph an independent subset with five
elements – e. g. {1, 2, 3, 4, 8}.

Thus, the orbit of the first example has no Abelian subspace of half dimension in
g1, while that of the second example has.

Tables

Table G2s Strictly odd
nilpotent orbits in G2, all with
half-Abelian g1

Name Diagram dim 1

A1 01 4
A1 10 2

Table F4s Strictly odd nilpotent orbits in F4

With half-Abelian 1 Without half-Abelian 1

Name Diagram dim 1 Name Diagram

dim 1 (largest
dimension of an
Abelian subspace)

A1 01 00 14 A1 10 00 8 (2)
A1 + A1 00 01 12 A2 + A1 00 10 6 (2)
C3(a1) 01 10 6 A2 + A1 10 01 8 (3)
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Table E6s Strictly odd nilpotent orbits in E6

With half-Abelian 1 Without half-Abelian 1

Name Diagram dim 1 Name Diagram

dim 1 (largest
dimension of an
Abelian subspace)

A1

1

00000 20 A2 + A1

1

10001 14 (6)

2A1

0

10001 16 2A2 + A1

0

10101 12 (5)

3A1

0

00100 18

A2 + 2A1

0

01010 12

A3 + A1

1

01010 10

A4 + A1

1

11011 8

Table E7s Strictly odd nilpotent orbits in E7

With half-Abelian 1 Without half-Abelian 1

Name Diagram dim 1 Name Diagram

dim 1 (largest
dimension of an
Abelian subspace)

A1

0

100000 32 4A1

1

000001 26 (11)

2A1

0

000010 32 A2 + A1

0

100010 24 (9)

3A1

0

010000 30 2A2 + A1

0

010010 20 (8)

A2 + 2A1

0

001000 24 A3 + 2A1

0

100101 18 (7)

(A3 + A1)
0

101000 18 A4 + A1

0

101010 14 (6)

D4(a1) + A1

1

010001 16

A3 + A2

0

001010 16
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Table E8s Strictly odd nilpotent orbits in E8

With half-Abelian 1 Without half-Abelian 1

Name Diagram dim 1 Name Diagram

dim 1 (largest
dimension of an
Abelian subspace)

A1

0

0000001 56 2A1

0

1000000 64 (22)

3A1

0

0000010 54 4A1

1

0000000 56 (21)

A2 + 3A1

0

0100000 42 A2 + 2A1

0

0000100 48 (16)

A3 + A1

0

0000101 34 A2 + A1

0

1000001 44 (17)

A3 + A2 + A1

0

0010000 30 2A2 + 2A1

0

0001000 40 (16)

A4 + A2 + A1

0

0100100 24 2A2 + A1

0

1000010 36 (16)

E7(a5)

0

0010100 18 A3 + 2A1

0

0100001 36 (15)

A6 + A1

0

1010100 16 A3 + A2

0

1000100 32 (13)

A7

0

1010110 14 D4(a1) + A1

1

0000010 32 (12)

2A3

0

1001000 28 (13)

A4 + 2A1

0

0010001 28 (12)

A4 + A1

0

1000101 26 (10)

A4 + A3

0

0010010 24 (10)

A5 + A1

0

1010001 22 (9)

D5(a1) + A2

0

0100101 22 (8)

D6(a2)

1

0100010 20 (9)

E6(a3) + A1

0

1001010 20 (8)

D7(a2)

0

1010101 16 (7)

Table F4o (Non-strictly)
odd nilpotent orbits in F4, all
with half-Abelian g1

Name Diagram Strictly odd piece
B2 12 00 C3 (2, 14)

C3 21 10 B3 (3, 22)
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Table E6o (Non-strictly)
odd nilpotent orbits in E6, all
with half-Abelian g1

Name Diagram Strictly odd piece

A3

2

10001 A5

A5

1

21012 D4 (3, 22, 1)

D5(a1)

2

11011 A5

Table E7o (Non-strictly) odd nilpotent orbits in E7

With half-Abelian 1 Without half-Abelian 1

Name Diagram Strictly odd piece Name Diagram Strictly odd piece

A3

0

200010 D6 (22, 18) D4 + A1

1

210001 D6 (3, 24, 1)

D5(a1)

0

201010 D6 (32, 22, 12) A5 + A1

0

101012 E6 (2A2 + A1)

A5

0

101020 D5 (3, 22, 13)

D6(a2)

1

010102 E6 (A3 + A1)

D5 + A1

1

210110 D6 (42, 3, 1)

D6(a1)

1

210102 D5 (32, 22)

D6

1

210122 D4 (3, 22, 1)

Table E8o (Non-strictly) odd nilpotent orbits in E8

With half-Abelian 1 Without half-Abelian 1
Name Diagram Strictly odd piece Name Diagram Strictly odd piece

A3

0

11000002 E7 (A1) D4 + A1

1

0000012 E7 (4A1)

D5(a1) + A1

0

0010002 E7 (A2 + 2A1) D5(a1)

0

1000102 E7 (A2 + A1)

A5

0

2000101 D7 (3, 22, 17) D5 + A1

0

1001012 E7 (A3 + 2A1)

D6(a1)

1

0100012 E7 (D4(a1) + A1) E6(a1) + A1

0

1010102 E7 (A4 + A1)

E7(a4)

0

0010102 E7 (A3 + A2) D6

1

2100012 D6 (3, 24, 1)

E7(a3)

0

2010102 D6 (32, 22, 12) E6 + A1

0

1010122 E6 (2A2 + A1)

D7

1

2101101 D7 (5, 42, 1)

E7(a2)

1

0101022 E6 (A3 + A1)

E7(a1)

1

2101022 D5 (32, 22)

E7

1

2101222 D4 (3, 22, 1)
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