

The Steenrod Algebra and Theories Associated to Hopf Algebras

HANS-JOACHIM BAUES¹ and MAMUKA JIBLADZE²

¹Max-Plank-Institut für Mathematik, Vivatsgasse 7, D-53111 Bon, Germany.
 e-mail: baues@mpim.bonn.mpg.de
 ²Department of Mathematics, University of Osnabrüch, Osnabrüch, Germany

Abstract. We show that the homotopy category of products of \mathbb{Z}/p -Eilenberg–Mac Lane spaces is an Ω -algebra which algebraically is determined by the Steenrod algebra considered as a Hopf algebra with unstable structure.

Mathematics Subject Classifications (2000): 55S05, 55S10, 55S20.

Key words: Steenrod algebra, algebraic theory, Hopf algebra.

A theory **T** is a small category with products and a model of **T** is a functor $M : \mathbf{T} \rightarrow \mathbf{Set}$ which carries products in **T** to products of sets. Let **model**(**T**) be the category of models; morphisms are natural transformations. Since the work of Lawvere [5], it is well known that many algebraic categories (like the categories of groups, algebras, Lie algebras, etc.) are such categories of models of a theory **T**.

In this paper we are interested in theories arising in topology. Let *R* be a ring and let $\mathbf{K}(R)$ be the homotopy category consisting of products $X = K(n_1) \times \cdots \times K(n_r)$ of Eilenberg–Mac Lane spaces $K(n_i) = K(R, n_i)$ with $n_1, \ldots, n_r \ge 1$ and $r \ge 0$. Then products obviously exist in $\mathbf{K}(R)$ and hence $\mathbf{K}(R)$ is a theory for which the category of models **model**($\mathbf{K}(R)$) is defined. What kind of algebraic category is **model**($\mathbf{K}(R)$)? We show for the field $R = \mathbb{Z}/p\mathbb{Z} = \mathbb{Z}/p$:

THEOREM A. Let *p* be a prime. Then the category **model**($\mathbf{K}(\mathbb{Z}/p)$) is equivalent to the category of connected unstable algebras over the Steenrod algebra $\mathcal{A}_{(p)}$.

For $R = \mathbb{Z}$ the algebraic category equivalent to **model**(**K**(*Z*)) is not known.

We observe that the theory $\mathbf{K}(R)$ has additional structure; namely it is an Ω -theory as studied in [3]. In addition multiplication maps in $\mathbf{K}(R)$ give $\mathbf{K}(R)$ the structure of an " Ω -algebra".

THEOREM B. The Steenrod algebra $A_{(p)}$ has an unstable structure (B, D) which determines algebraically the Ω -algebra $\mathbf{K}(\mathbb{Z}/p)$.

In fact, we show that a "Hopf algebra \mathcal{A} with unstable structure (B, D)" determines algebraically an Ω -algebra $\mathcal{K}(A, B, D)$ which for $\mathcal{A} = \mathcal{A}_{(p)}$ coincides with the topological Ω -algebra $\mathbf{K}(\mathbb{Z}/p)$.

We have seen in [3] that the universal Toda bracket $\langle \mathbf{K}(\mathbb{Z}/p) \rangle$ is an element in the third Ω -cohomology of the Ω -theory $\mathbf{K}(\mathbb{Z}/p)$. Hence we obtain by Theorem B:

COROLLARY. The universal Toda bracket is an element

 $\langle \mathbf{K}(\mathbb{Z}/p) \rangle \in H^3_{\Omega}(\mathcal{K}(\mathcal{A}_{(p)}, B, D)),$

where the right-hand side is defined algebraically in terms of the Steenrod algebra $\mathcal{A}_{(p)}$.

The universal Toda bracket $\langle \mathbf{K}(\mathbb{Z}/p) \rangle$ contains all information on stable and unstable secondary cohomology operations mod p. In the book [2] we study algebraic properties of the class $\langle \mathbf{K}(\mathbb{Z}/p) \rangle$. The main result of this paper is the fact that this class is an element in the cohomology $H^3_{\Omega}(\mathcal{K}(\mathcal{A}_{(p)}, B, D))$ which is completely determined by the Steenrod algebra $\mathcal{A}_{(p)}$.

1. Graded Ω -theories

A *theory* **T** with zero object * is a small category with products $A \times B$ for which the final object * is also initial. Hence we have the zero map $0 : A \to * \to B$. An Abelian group object A in **T** is given by maps $m_A : A \times A \to A$, $n_A : A \to A$ satisfying the usual identities. A map $f : A \to B$ between Abelian group objects is *linear* if f commutes with m_A, m_B and n_A, n_B .

For an object X in **T** let $\mathbf{T}(X)$ be the category with the same objects as in **T** and with morphisms $a : A \to B$ given by commutative diagrams in **T** where px is the projection:

Each map $f : Y \to X$ induces a functor $\mathbf{T}(f) : \mathbf{T}(X) \to \mathbf{T}(Y)$ which is the identity on objects and carries $a : X \times A \to X \times B$ to $\mathbf{T}(f)(a) : Y \times A \to Y \times B$ given by the coordinates p_Y and $p_B a(f \times A)$. In particular $0 : Y \to *$ induces the functor $\mathbf{T} = \mathbf{T}(*) \to \mathbf{T}(Y)$ which preserves products. This functor carries an Abelian group object in \mathbf{T} to an Abelian group object in $\mathbf{T}(Y)$.

Motivated by infinite loop spaces in topology (see Adams [1]) we introduce the following algebraic concept which describes a special case of an Ω -theory studied in [3]; see Example 1.2 below.

DEFINITION 1.1. A graded Ω -theory **T** is a theory with zero object * with the following properties. A product preserving functor

(1) $\Omega: \mathbf{T} \to \mathbf{T}$ termed *loop functor*

and a sequence of Abelian group objects K(n), $n \in \mathbb{Z}$, are given with

(2)
$$\Omega K(n) = K(n-1)$$

such that all objects X of **T** are finite products of objects in this sequence. The product preserving functor $\Omega : \mathbf{T} \to \mathbf{T}$ carries the structure maps of the Abelian group object K(n) to the structure maps of the Abelian group object K(n-1). Hence for objects A, B in **T** the set [A, B] of morphisms $A \to B$ in **T** is an Abelian group since the product B of Abelian group objects $K(n_i)$ is canonically an Abelian group object in **T**. We denote the group structure in [A, B] by +. In addition **T** is an Ω -theory; that is, a system of functors

(3)
$$L_X : \mathbf{T}(X) \to \mathbf{T}(X)$$

is given such that L_X preserves finite products and carries each map to a linear map. These functors are natural in the sense that for all $f : Y \to X$ the diagram of functors

$$\begin{array}{c|c} \mathbf{T}(X) \xrightarrow{L_X} \mathbf{T}(X) \\ (4) & \mathbf{T}(f) \\ \mathbf{T}(Y) \xrightarrow{L_Y} \mathbf{T}(Y) \end{array}$$

commutes. Moreover for X = * the functor L_* coincides with Ω in (1). This completes the definition of a graded Ω -theory.

Let $[X \times A, B]_X$ be the group of morphisms $\alpha : X \times A \to B$ for which the composite morphism $X = X \times * \xrightarrow[1 \times 0]{} X \times A \xrightarrow[\alpha]{} B$ trivial. Then α determines the map $\alpha = (p_X, \alpha) : X \times A \to Y \times B$ in $\mathbf{T}(X)$ for which via the functor L_X in (3) the induced map $L_X(p_X, \alpha) = (p_X, L_X\alpha) : X \times \Omega A \to X \times \Omega B$ in $\mathbf{T}(X)$ is defined. Hence $\alpha \mapsto L_X \alpha$ yields the homomorphism, termed *partial loop operation*,

(5) $L = L_X : [X \times A, B]_X \to [X \times \Omega A, \Omega B]_X.$

One can check that the following rules are satisfied. We consider the composite

$$Y \times T \xrightarrow{\binom{fp_Y}{a}} X \times A \xrightarrow{b} B$$

Then we have the formula

(6)
$$L\left(b\left(\begin{array}{c}fp_Y\\a\end{array}\right)\right) = L(b)\left(\begin{array}{c}fp_Y\\La\end{array}\right)$$

with $f : Y \to X$, $a \in [Y \times T, A]_Y$ and $b \in [X \times A, B]_X$. The projection $p_A : X \times A \to A$ is an element of $[X \times A, A]_X$ with

(7) $L(p_A) = p_{\Omega A}$, the projection $X \times \Omega A \to \Omega A$.

Finally for $b \in [X \times A, B]_X$ the map $L_X b : X \times \Omega A \to \Omega B$ is *linear* in ΩA , that is for $\alpha, \beta \in [Y, \Omega A]$ we have

(8)
$$(L_X b)(f, \alpha + \beta) = (L_X b)(f, \alpha) + (L_X b)(f, \beta).$$

In particular maps $\Omega f : \Omega Y \to \Omega X$ are *linear*, that is, they are homomorphisms of Abelian group objects. In general, maps $Y \to X$ in **T** need not be linear.

EXAMPLE 1.2. Recall that an *infinite loop space* X is a sequence of pointed CW-spaces $X(n), n \in \mathbb{Z}$, together with homotopy equivalences

$$\Omega X(n) \simeq X(n-1), \tag{(*)}$$

where $\Omega X(n)$ is the path component of the base point in the loop space of X(n). We use (*) as an identification in the homotopy category $(\mathbf{Top}_0^*)_{\simeq}$. Now let **T** be the full subcategory of $(\mathbf{Top}^*)_{\simeq}$ consisting of finite products $X(n_1) \times \cdots \times X(n_k)$ of spaces $X(n_i)$ given by the infinite loop space X. Since the track category \mathcal{T} in \mathbf{Top}_0^* with $\mathcal{T}_{\simeq} = \mathbf{T}$ is Ω -representable, we see by Baues and Jibladze [3] that **T** is an Ω -theory and hence **T** is a graded Ω -theory with the properties in Definition 1.1.

Of course for each Abelian group A we have the infinite loop space K(A) given by *Eilenberg–Mac Lane spaces* $K(A)(n) = K(A, n), n \in \mathbb{Z}$, with K(A)(n) = *for $n \leq 0$. Let $\mathbf{K}(A)$ be the associated graded Ω -theory consisting of products of Eilenberg–Mac Lane spaces $K(A, n), n \geq 1$.

Now let **T** be a graded Ω -theory as in Definition 1.1. Then we obtain the *algebra* \mathcal{A} of stable operations in **T** as follows. A stable operation of degree $k \in \mathbb{Z}$ is a sequence of maps α ,

$$\alpha = (\alpha_n : K(n) \to K(n+k))_{n \in \mathbb{Z}}$$

with the property $\Omega \alpha_n = \alpha_{n-1}$. Hence all α_n are linear and therefore the set \mathcal{A}_k of all stable operations of degree *k* is an Abelian group. Moreover for *k*, $r \in \mathbb{Z}$ one has by composition the multiplication

$$(1.3) \quad \mu: \mathcal{A}_k \otimes_{\mathbb{Z}} \mathcal{A}_r \to \mathcal{A}_{k+r}$$

carrying $\alpha \otimes \beta$ to $\alpha \circ \beta$. Here μ is a homomorphism of Abelian groups which yields an associative multiplication for the graded Abelian group $\mathcal{A} = (\mathcal{A}_k)_{k \in \mathbb{Z}}$.

The stable operations of degree 0 yield the ring A_0 so that A_k is an A_0 -bimodule and the multiplication μ of A is actually defined on the tensor product over A_0

(1.4)
$$\mu : \mathcal{A}_k \otimes_{\mathcal{A}_0} \mathcal{A}_r \to \mathcal{A}_{k+r}.$$

In this sense A is a Z-graded algebra over A_0 .

For example if the graded Ω -theory $\mathbf{T} = \mathbf{K}(\mathbb{Z}/p)$ is given as in Example 1.2 by Eilenberg–Mac Lane spaces $K(\mathbb{Z}/p, n), n \ge 1$, then $\mathcal{A} = \mathcal{A}(p)$ is the *Steenrod algebra*; see [7], with $\mathcal{A}_k = 0$ for k < 0.

2. Ω-algebras

Let *R* be a commutative ring. Then the graded Ω -theory **K**(*R*) given by product of Eilenberg–Mac Lane spaces *K*(*R*, *n*) has canonically the structure of an Ω -algebra. This is the reason why we introduce and study in this section the algebraic concept of an Ω -algebra.

Let $Mod_*(R)$ be the category of Z-graded R-modules $X = (X_i)_{i \in \mathbb{Z}}$ with the graded tensor product $X \otimes Y$ given by

(2.1)
$$(X \otimes Y)_n = \bigoplus_{i+j=n} X_i \otimes_R Y_j.$$

Here X is non-negative if $X_i = 0$ for i < 0. A non-negative graded *R*-module A which has the structure of a monoid in (**Mod**_{*}(*R*), \otimes) is termed a *graded algebra*. Let *R* be the graded *R*-module concentrated in degree 0 which is *R* in that degree. Then of course *R* is also a graded algebra; in fact, the initial object in the category of graded algebras. A map $\varepsilon : A \to R$ between graded algebras is termed an *augmentation* of *A* and *A* is a *connected* algebra if ε is an isomorphism in degree 0, $A^0 = R$. The *interchange map*

(1) $T: X \otimes Y \to Y \otimes X$

is defined by $T(x \otimes y) = (-1)^{|x||y|} y \otimes x$, where |x| is the degree of a homogeneous $x \in X$, i.e. |x| = n if and only if $x \in X_n$. The graded algebra A is *commutative* if the multiplication $m : A \otimes A \to A$ satisfies mT = m. We also write

(2)
$$m(x \otimes y) = x \cdot y$$
.

The tensor product $A \otimes_R B$ of graded algebras A and B is canonically a graded algebra with the multiplication

$$(3) \quad (x \otimes y)(x' \otimes y') = (-1)^{|y||x'|}(x \cdot x') \otimes (y \cdot y'),$$

where |y| is the degree of $y \in B$. One readily checks that $A \otimes B$ is commutative if *A* and *B* are commutative.

Let Alg_0 be the category of connected commutative graded algebras over R. This is a category in which R is the initial and the final object (zero object). Moreover the sum in the category Alg_0 is given by the tensor product with the inclusions

(4)
$$\begin{cases} A = A \otimes R \xrightarrow{1 \otimes !} A \otimes B, \\ B = R \otimes B \xrightarrow{! \otimes 1} A \otimes B. \end{cases}$$

Here $!: R \to A$ is the unit. Let

(5) $\tilde{A} = \operatorname{kernel}(\varepsilon : A \to R)$

be the *augmentation ideal* of A, i.e. the kernel of the augmentation ε .

We introduce the algebraic concept of an Ω -algebra over *R* as follows.

DEFINITION 2.2. Let **T** be a graded Ω -theory as in (1.1) with

(1)
$$K(n) = *$$
 for $n \le 0$.

Assume a ring homomorphism $R \to \mathcal{A}(\mathbf{T})_0$ is given, where $\mathcal{A}(\mathbf{T})_0$ is the ring of degree 0 stable operations of **T**. Then we have for any object X in **T** the graded *R*-module $\tilde{H}^*(X)$ with

(2)
$$H^n(X) = [X, K(n)]$$
 for $n \in \mathbb{Z}$.

Clearly by (1) we have $\tilde{H}^n(X) = 0$ for $n \le 0$ and we have a canonical element $[n] \in \tilde{H}^*(K(n))$ given by the identity of K(n). We define the graded *R*-module $H^*(X)$ by the direct sum

(3)
$$H^*(X) = R \otimes H^*(X)$$
,

where *R* is concentrated in degree 0. Then **T** is an Ω -algebra (over *R*) if multiplication maps

(4)
$$\mu = \mu_{i,j} : K(i) \times K(j) \rightarrow K(i+j)$$

are given for $i, j \ge 1$ which induce an *R*-linear map

(5)
$$\begin{cases} \mu_* : H^*(X) \otimes_R H^*(X) \to H^*(X) & \text{by} \\ \mu_*(\xi \otimes \eta) = \mu_{i,j}(\xi, \eta) \end{cases}$$

for $\xi \in \tilde{H}^i(X)$, $\eta \in \tilde{H}^j(X)$ such that $(H^*(X), \mu)$ is a connected commutative graded algebra (hence an object in Alg_0) with $R \to H^*(X) \to R$ given by the inclusion and projection respectively. The trivial map $K(i) \to * \to K(j)$ represents the zero element in $H^j(K(i))$ and the composite

$$K(i) \xrightarrow{([i],0)} K(i) \times K(j) \xrightarrow{\mu} K(i+j)$$

is trivial, where [*i*] is the identity of K(i), since $\mu([i], 0) = [i] \cdot 0 = 0$. Hence with the notation in Definition 1.1(3) we have

$$\mu_{i,j} \in [K(i) \times K(j), K(i+j)]_{K(i)}$$

so that the partial loop operation L is defined on $\mu_{i,j}$. In addition let

(6)
$$L\mu_{i,j} = \begin{cases} \mu_{i,j-1} & \text{for } j > 1\\ 0 & \text{for } j = 1 \end{cases}$$

This completes the definition of an Ω -algebra (over *R*).

In an Ω -algebra **T** over *R* we have for objects $X, Y \in \mathbf{T}$ the canonical map in \mathbf{Alg}_0

(2.3)
$$\tau: H^*(X) \otimes_R H^*(Y) \to H^*(X \times Y)$$

which carries $\xi \otimes \eta$ to the product $(p_X^*\xi) \cdot (p_Y^*\eta)$, where $p_X : X \times Y \to X$ and $p_Y : X \times Y \to Y$ are the projections. We say that the Ω -algebra **T** over *R* has the *Künneth property* if this τ is an isomorphism for all objects *X*, *Y*.

LEMMA 2.4. For any Ω -algebra over R the induced map

$$\mu_{i,i}^*: H^*K(i+j) \to H^*(K(i) \times K(j))$$

carries [i + j] *to* $\tau([i] \otimes [j])$ *.*

Proof. In fact $\mu_{i,j}^*[i+j]$ is represented by $\mu_{i,j} : K(i) \times K(i) \to K(i+j)$ and $\tau([i] \otimes [j])$ by definition is represented by the composite

$$K(i) \times K(j) \xrightarrow{(p_1, p_2)} K(i) \times K(j) \xrightarrow{\mu} K(i+j),$$

where p_1 and p_2 are the projections, so that (p_1, p_2) is the identity.

EXAMPLE 2.5. Let *R* be a commutative ring and let R_{ab} be the underlying Abelian group of *R*. Then the graded Ω -theory **K**(*R*) associated to the Eilenberg–Mac Lane spaces $K(n) = K(R_{ab}, n)$ (see Example 1.2) is an Ω -algebra with multiplication maps (i, j > 1)

$$\mu_{i,j}: K(i) \times K(j) \xrightarrow{q} K(i) \wedge K(j) \xrightarrow{\tilde{\mu}} K(i+j).$$

Here q is the quotient map for the smash product $X \wedge Y = X \times Y/X \vee Y$ and $\tilde{\mu}$ is up to homotopy the unique map for which the following diagram of homotopy groups commutes with n = i + j.

Here m_R is the multiplication map of the ring *R*.

We call $\mathbf{K}(R)$ the *Eilenberg–Mac Lane* Ω *-algebra* of the commutative ring R. It is well known that $\mathbf{K}(R)$ has the Künneth property if R is a finite field. This is an obvious consequence of the Künneth theorem.

Now let **T** be an Ω -algebra over *R* which has the Künneth property. Then H^* in Definition 2.2 yields a contravariant functor

(2.6) $H^*: \mathbf{T} \to \mathbf{Alg}_0$

which is faithful and carries products to coproducts. Hence the opposite category \mathbf{T}^{op} can be considered to be asubcategory of \mathbf{Alg}_0 . This leads to the following concept of Ω -sequence of algebras with $H(n) = H^*(K(n))$.

DEFINITION 2.7. An Ω -sequence of algebras (over *R*) consists of a sequence H(n) with $n \in \mathbb{Z}$ and the structure (χ, Ω, μ) with the following properties.

The object H(n) is an Abelian cogroup object in Alg_0 with the structure maps in Alg_0

(1) $\begin{cases} +: H(n) \to H(n) \otimes H(n), \\ -: H(n) \to H(n) \end{cases}$

and H(n) = R for $n \le 0$. This shows that $\operatorname{Hom}_{\operatorname{Alg}_0}(H(n), X)$ is an Abelian group with addition induced by + in (1) where X is an object in Alg_0 . For $n, m \ge 0$ the structure χ is a homomorphism of Abelian groups

(2)
$$\chi = \chi_n^m : H^m(n) \to \operatorname{Hom}_{\operatorname{Alg}_0}(H(m), H(n))$$

and we write $\chi(\alpha) = \bar{\alpha}$. There is an element $[n] \in \tilde{H}^n(n)$ with

(a) [n] = 1_{H(n)} (identity),
(b) α([m]) = α,
(c) β(α) = β ∘ α for α ∈ H̃^m(n), β ∈ H̃ⁿ(k),
(d) r[n] : H(n) → H(n) is linear (i.e. a morphism of cogroups) for r ∈ R.

(a) $r[n] : \Pi(n) \to \Pi(n)$ is linear (i.e. a morphism of cogroups) for $r \in \mathbb{R}$.

Now (d) together with (1) implies that for each object X in Alg_0 the set $Hom_{Alg_0}(H(n), X)$ is an *R*-module. See (2.8) below. Next the structure

(3)
$$\Omega = \Omega_n : H(n) \to H(n-1)$$

is a degree (-1) homomorphism of graded *R*-modules satisfying

- (a) $\Omega[n] = [n-1],$
- (b) $\Omega(\bar{\beta}(\alpha)) = \overline{\Omega\beta}(\Omega\alpha),$
- (c) $\Omega(\xi\eta) = 0$ for $\xi, \eta \in \tilde{H}(n)$ where $\xi\eta$ is the product in the algebra H(n),
- (d) $\overline{\Omega\beta}$: $H(n-1) \rightarrow H(k-1)$ is linear.

Finally for $i, j \ge 1$ the structure

(4) $\mu = \mu^{i,j} : H(i+j) \to H(i) \otimes H(j)$

is a morphism in Alg₀ satisfying

- (a) $\mu^{i,j}([i+j]) = [i] \otimes [j],$
- (b) $T\mu^{i,j} = (-1)^{ij}\mu^{j,i}$ (see (2.1)(1)),
- (c) $(\mu^{i,j} \otimes 1)\mu^{i+j,t} = (1 \otimes \mu^{j,t})\mu^{i,j+t}$,
- (d) $(\bar{\alpha_1}, \bar{\alpha}_2)\mu^{i,j} = \overline{\alpha_1 \cdot \alpha_2}$ for $\alpha_1 \in H^i(k), \alpha_2 \in H^j(k)$.

Moreover $\mu^{i,j}$ is linear in H(j), that is, for all X in Alg_0 and $\alpha : H(i) \to X$, $\beta_1, \beta_2 : H(j) \to X$ we have

(e) $(\alpha, \beta_1 + \beta_2)\mu^{i,j} = (\alpha, \beta_1)\mu^{i,j} + (\alpha, \beta_2)\mu^{i,j}$, (f) $(1 \otimes \overline{r[j]})\mu^{i,j} = \mu^{i,j}\overline{r[i+j]}$ for $r \in R$.

Next we introduce for $X = H(i) \otimes H(j)$ the homomorphism of *R*-modules

 $\chi: \tilde{X}^m \to \operatorname{Hom}_{\operatorname{Alg}_0}(H(m), X)$

which carries $\xi \otimes \eta$ with $\xi \in \tilde{H}^a(i)$ and $\eta \in \tilde{H}^b(j)$, a + b = m, to the composite

$$\chi(\xi \otimes \eta) : H(m) \xrightarrow{\mu} H(a) \otimes H(b) \xrightarrow{\xi \otimes \bar{\eta}} H(i) \otimes H(j).$$

This homomorphism is well defined by (e) and (f). Moreover χ satisfies for $\alpha \in \tilde{H}^m(i+j)$ the equation

(g)
$$\mu \circ \bar{\alpha} = \chi(\mu \alpha) : H(m) \to H(i) \otimes H(j)$$
, where $\mu = \mu^{i,j}$.

This completes the definition of an Ω -sequence of algebras.

The condition (2)(b) shows that χ is injective so that [n] is uniquely determined. We define an *R*-module structure of Hom_{Alg₀}(H(m), X) by the Abelian group structure in (2) and by defining for $r \in R$ and $\alpha : H(m) \to X$ the element $r \cdot \alpha$ via the composite

(2.8) $r \cdot \alpha = \alpha \circ \overline{r[m]}.$

Then we have for $r, s \in R$

$$(r+s)\alpha = \alpha \circ \overline{(r+s)[m]}$$

$$= \alpha \circ (\overline{r[m]} + \overline{s[m]}) \text{ see } (2)$$

$$= \alpha \circ (\overline{r[m]}, \overline{s[m]})(+)$$

$$= (\alpha \overline{r[m]}, \alpha \overline{s[m]})(+)$$

$$= \alpha \overline{r[m]}, \alpha \overline{s[m]}$$

$$= r\alpha + s\alpha,$$

$$r(\alpha + \beta) = (\alpha + \beta)\overline{r[m]}$$

$$= (\alpha, \beta)(+)\overline{r[m]}$$

$$= (\alpha, \beta)(+)\overline{r[m]}$$

$$= (\alpha, \beta)(\overline{r[m]} \otimes \overline{r[m]})(+) \text{ see } (2)(d)$$

$$= (\alpha \overline{r[m]}, \beta \overline{r[m]})(+)$$

$$= \alpha \overline{r[m]} + \beta \overline{r[m]}$$

$$= r\alpha + r\beta.$$

The homomorphism χ in (2) is actually an injective homomorphism of *R*-modules since we have for $\alpha \in \tilde{H}^m(n)$

$$(1) \begin{array}{rcl} r \cdot \bar{\alpha} &=& \bar{\alpha} \circ \overline{r[m]} \\ &=& \overline{\bar{\alpha}(r[m])} \\ (1) &=& \overline{r\bar{\alpha}([m])} \\ &=& \overline{r\alpha}. \end{array}$$

The condition (4)(c) shows that μ yields a canonical map

(2)
$$\mu = \mu^{n_1, \dots, n_\nu} : H(n_1 + \dots + n_\nu) \to H(n_1) \otimes \dots \otimes H(n_\nu)$$

for $n_i \ge 1$ and $\nu \ge 1$. For example $\mu^{i,j,t} = (\mu^{i,j} \otimes 1)\mu^{i+j,t}$. For $\nu = 1$ let μ be the identity.

LEMMA 2.9. Each Ω -algebra **T** (over *R*) with the Künneth property yields the associated Ω -sequence of algebras (over *R*) by defining

$$\begin{split} H(n) &= H^*K(n),\\ \chi(\alpha) &= \alpha^*,\\ \Omega(\alpha) \text{ defined by the loop functor } \Omega,\\ \mu^{i,j} &= \tau^{-1}(\mu_{i,j})^*, \text{ see } (2.3). \end{split}$$

One readily checks that the properties in Definition 2.7 are satisfied. On the other hand we get

THEOREM 2.10. Each Ω -sequence H of algebras (over R) yields an associated Ω -algebra \mathbf{T}_H (over R) which satisfies the Künneth property. This yields a 1-1correspondence between isomorphism classes of Ω -algebras with Künneth property and Ω -sequences of algebras respectively. The inverse of this correspondence is given by Lemma 2.9.

Proof. Let an Ω -sequence of algebras be given as in Definition 2.7. We construct the associated Ω -algebra $\mathbf{T} = \mathbf{T}_H$ as follows. We first define a subcategory with coproducts

(1) $\mathbf{T}_0 \subset \mathbf{Alg}_0$

and **T** as a category with products is the opposite category of \mathbf{T}_0 , that is $\mathbf{T} = \mathbf{T}_0^{\text{op}}$. Of course \mathbf{T}_0 corresponds to the image category of the functor (2.6). Objects in \mathbf{T}_0 are tensor products

(2)
$$X = H(n_1) \otimes \cdots \otimes H(n_{\nu})$$

with $n_i \ge 0$ and $\nu \ge 0$. We define for $m \ge 0$ the homomorphism of *R*-modules

(3) $\chi : \tilde{X}^m \to \operatorname{Hom}_{\operatorname{Alg}_0}(H(m), X)$

which carries $\alpha_1 \otimes \cdots \otimes \alpha_{\nu} \in \tilde{X}^m$ with $\alpha_i \in \tilde{H}^{m_i}(n_i)$ to the composite

 $H(m) \xrightarrow{\mu} H(m_1) \otimes \cdots \otimes H(m_{\nu}) \xrightarrow{\bar{\alpha}_1 \otimes \cdots \otimes \bar{\alpha}_{\nu}} X.$

For $\alpha \in \tilde{X}$ we write $\chi(\alpha) = \bar{\alpha}$. Now we define the morphisms $Y \to X$ in \mathbf{T}_0 with $Y = H(k_1) \otimes \cdots \otimes H(k_t)$ to be the maps

(4) $(\bar{\beta}_1, \ldots, \bar{\beta}_t) : Y \to X \in \mathbf{T}_0$

with $\bar{\beta}_i : H(k_i) \to X$ given by an element $\beta_i \in \tilde{X}^{k_i}$ via χ above. Here we use the coproduct property of the tensor product in Alg₀. Using Definition 2.7(4)(g) we see by an induction argument based on the other properties in Definition 2.7(4) that \mathbf{T}_0 is a well defined subcategory of Alg₀. Of course the category \mathbf{T}_0 has coproducts.

Next we set $\Omega H(n) = H(n-1)$ and

(5)
$$\Omega X = H(n_1 - 1) \otimes \cdots \otimes H(n_\nu - 1).$$

Using Ω in Definition 2.7(3) we define the degree (-1) homomorphism of graded *R*-modules

(6) $\Omega: \widetilde{X} \to \widetilde{\Omega X}$

as follows. Take $\alpha_1 \otimes \cdots \otimes \alpha_{\nu} \in \tilde{X}$ with $\alpha_i \in H^{m_i}(n_i)$. Then we set

 $\Omega(\alpha_1\otimes\cdots\otimes\alpha_\nu)=\Omega\alpha_i$

if $\alpha_j \in R$ for $j \neq i, j = 1, ..., \nu$, and we set $\Omega(\alpha_1 \otimes \cdots \otimes \alpha_{\nu}) = 0$ otherwise. We now define a functor

(7) $\Omega: \mathbf{T}_0 \to \mathbf{T}_0$

by (5) and by

$$\Omega(\beta_1,\ldots,\beta_t)=(\Omega\beta_1,\ldots,\Omega\beta_t),$$

where we use (4) and (6) and (3). The functor Ω in (7) defines a functor $\Omega : \mathbf{T} \to \mathbf{T}$ by $\Omega(f)^{\text{op}} = (\Omega f)^{\text{op}}$ and this is a functor as in Definition 1.1(1). Next we consider the partial loop operation L in **T** which is obtained by the function

(8)
$$L : [B, X \otimes A]_X \to [\Omega B, X \otimes \Omega B]_X,$$

where [,] denotes the group of morphisms in \mathbf{T}_0 and X, A, B are objects in \mathbf{T}_0 . Here L is compatible with the coproduct structure in B by Definition 1.1(5) so that it suffices to define L for B = H(m). In this case we have

(9)
$$[H(m), X \otimes A]_X \xrightarrow{\kappa} \operatorname{kernel}(p_X : (X \otimes A)^m \to \tilde{X}^m),$$

v

where $X \otimes A$ is the augmentation ideal of $X \otimes A$. Hence we get

~

(10)
$$[H(m), X \otimes A]_X = A^m \oplus (X \otimes A)^m$$
.

For $x \in \tilde{A}^m$ let $L(x) = \Omega x \in \widetilde{\Omega A}^{m-1}$ be given by (6) and for $x \otimes a \in \tilde{X} \otimes \tilde{A}$ let $L(x \otimes a) = x \otimes \Omega a \in \tilde{X} \otimes \widetilde{\Omega A}$. This defines via (10) the function (8). Now it is easy to check that (**T**, Ω , L) is a graded Ω -theory in the sense of Definition 1.1. Finally let $\mu_{i,j}$ in **T** be the dual of $\mu^{i,j}$ in **T**₀ given by $\mu^{i,j}$ in Definition 2.7(4). Then one can check that **T**_H = (**T**, μ) is an Ω -algebra over *R*.

3. Ω-algebras over a Hopf Algebra

It is well known that the Steenrod algebra $\mathcal{A}_{(2)}$ is a Hopf algebra and that the cohomology ring $H^*(X; \mathbb{Z}/2)$ is an "algebra over the Hopf algebra $\mathcal{A}_{(2)}$ ". This implies a certain structure for the Eilenberg–Mac Lane Ω -algebra $\mathbf{K}(\mathbb{Z}/2)$ which we study in this section. This leads to a complete algebraic characterization of the Ω -algebra $\mathbf{K}(\mathbb{Z}/2)$ by use of a classical result of Serre [6] in the next section.

Let *R* be a commutative ring. Recall that the tensor product $A \otimes B$ of graded algebras over *R* is a graded algebra. We say that an augmented graded algebra A together with an algebra map

 $(3.1) \quad \psi: \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$

is a *Hopf algebra* if the compositions

$$\mathcal{A} \xrightarrow{\psi} \mathcal{A} \otimes \mathcal{A} \xrightarrow{1 \otimes \varepsilon} \mathcal{A} \otimes R \cong \mathcal{A}$$

and

$$\mathcal{A} \xrightarrow{\psi} \mathcal{A} \otimes \mathcal{A} \xrightarrow{\varepsilon \otimes 1} R \otimes \mathcal{A} \cong \mathcal{A}$$

are both the identity. The Hopf algebra is *coassociative*, resp. *cocommutative*, if $(\psi \otimes 1)\psi = (1 \otimes \psi)\psi$, resp. $T\psi = \psi$.

Now let M be a left A-module, where A is a Hopf algebra and assume that M is a connected graded commutative algebra (over R) with multiplication

 $(3.2) \quad m: M \otimes M \to M.$

Here $M \otimes M$ is an $A \otimes A$ -module and hence via (3.1) an A-module. We say that M is an (connected graded commutative) *algebra over the Hopf algebra* A if m is a homomorphism of A-modules.

Let $\operatorname{Alg}_0(\mathcal{A})$ be the category of such algebras over the Hopf algebra \mathcal{A} . Morphisms are maps in Alg_0 which are also homomorphisms of \mathcal{A} -modules. The ring R is an \mathcal{A} -module via $\varepsilon : \mathcal{A} \to R$ and hence an object in $\operatorname{Alg}_0(\mathcal{A})$ which is the zero object of $\operatorname{Alg}_0(\mathcal{A})$.

DEFINITION 3.3. An Ω -algebra **T** over the Hopf algebra \mathcal{A} is an Ω -algebra (over *R*) as in Definition 2.2 together with a map between algebras over *R*

(1)
$$\mathcal{A} \to \mathcal{A}(\mathbf{T})$$

with the following properties. Here $\mathcal{A}(\mathbf{T})$ is the algebra of stable operations of \mathbf{T} and (1) extends the algebra map $R \to \mathcal{A}(\mathbf{T})_0$ in Definition 2.2, see (1.4).

Each object X in **T** yields the graded algebra $H^*(X)$ as in Definition 2.2 which via (1) is a left A-module. In fact A acts on $\tilde{H}^*(X)$ by composition and on R by the augmentation ε . Now we assume that $H^*(X)$ in addition is an algebra over the Hopf algebra A so that

(2)
$$\mu_*: H^*(X) \otimes H^*(X) \to H^*(X)$$

in Definition 2.2(5) is a homomorphism of A-modules. This completes the definition.

If the Künneth property holds in **T** we can characterize an Ω -algebra over a Hopf algebra \mathcal{A} by the following data:

DEFINITION 3.4. An Ω -sequence of algebras over the Hopf algebra \mathcal{A} is an Ω -sequence of algebras as in Definition 2.7 with the following additional properties. Each H(n) is an algebra over the Hopf algebra \mathcal{A} in $Alg_0(\mathcal{A})$. Moreover for each $\alpha \in \mathcal{A}_k$ the map

 $H(n) \rightarrow H(n+k), \quad x \mapsto \alpha x$

is linear with respect to the Abelian cogroup structure Definition 2.7(1). This generalizes Definition 2.7(1)(d). Moreover χ in Definition 2.7(2) carries elements α to morphisms $\bar{\alpha}$ in Alg₀(A), that is $\bar{\alpha}$ is a homomorphism of A-modules. Also Ω and $\mu^{i,j}$ are homomorphisms of A-modules; see Definition 2.7(3) and Definition 2.7(4). This completes the definition.

As in Lemma 2.9 we see that each Ω -algebra **T** over the Hopf algebra \mathcal{A} for which **T** has the Künneth property yields canonically a sequence as in Definition 3.4. In fact this yields the following specification of Theorem 2.10.

THEOREM 3.5. There is a 1-1-correspondence between isomorphism classes of Ω -algebras over the Hopf algebra A which satisfy Künneth property, and isomorphism classes of Ω -sequences of algebras over the Hopf algebra A.

4. The Eilenberg–Mac Lane Ω -algebra K($\mathbb{Z}/2$)

Recall that the Eilenberg–Mac Lane Ω -algebra $\mathbf{K}(\mathbb{Z}/2)$ is the full subcategory of the homotopy category of pointed spaces consisting of products of Eilenberg–Mac Lane spaces

(4.1) $K(n) = K(\mathbb{Z}/2, n), \quad n \ge 1.$

It is clear that $\mathbf{K}(\mathbb{Z}/2)$ is a graded Ω -theory (see Section 1) and also an Ω -algebra with the Künneth property (see Section 2).

PROPOSITION 4.2. $\mathbf{K}(\mathbb{Z}/2)$ is an Ω -algebra over the Steenrod algebra $\mathcal{A}_{(2)}$ in the sense of Definition 3.3.

This follows readily from the fact that the cohomology ring $H^*(X; \mathbb{Z}/2)$ of a space is an algebra over the Hopf algebra $\mathcal{A}_{(2)}$, see [7]. Hence by Theorem 3.5 the Ω -algebra $\mathbf{K}(\mathbb{Z}/2)$ is completely determined by the associated Ω -sequence of algebras over the Hopf algebra $\mathcal{A}_{(2)}$

(4.3) $H(n) = H^*(K(\mathbb{Z}/2, n); \mathbb{Z}/2).$

These algebras are computed by Serre [6] as follows; compare [7], II, Section 5.

EXAMPLE 4.4. The Steenrod algebra $\mathcal{A}_{(2)}$ has an unstable structure (B, D) given as follows. The structure *B* consists of a sequence of left ideals $(n \ge 0)$

(1)
$$\cdots \subset B(n+1) \subset B(n) \subset \cdots \subset B(0) \subset A_{(2)}$$

in the algebra $\mathcal{A}_{(2)}$. Here $B(0) = \text{kernel}(\varepsilon)$ is the augmentation ideal and B(n) as a $\mathbb{Z}/2$ -vector space is spanned by all admissible monomials of excess greater than *n*; see [7], II.5. An $\mathcal{A}_{(2)}$ -module *X* is termed *unstable* if $B(n)X^n = 0$ for $n \ge 0$ or equivalently if for $x \in X$ one has

(2)
$$i > |x|$$
 implies $\operatorname{Sq}^{i}(x) = 0$.

Moreover for each unstable $\mathcal{A}_{(2)}$ -module X the structure D consists of an ideal

$$(3) \quad D_X \subset T(X)$$

where T(X) is the tensor algebra of X. Here D_X is the ideal generated by the elements $(x, y \in X)$

$$\begin{cases} x \otimes y - (-1)^{|x||y|} y \otimes x, \\ Sq^n(x) - x \otimes x \qquad \text{for } |x| = n \ge 0. \end{cases}$$

Compare [7], II.5.3. Accordingly an algebra H over the Steenrod algebra $A_{(2)}$ is termed *unstable* if (2) holds and if for $x \in H$

(4) i = |x| implies $\operatorname{Sq}^{i}(x) = x \cdot x$.

Here (2) and (4) correspond to axioms for the squaring operations Sq^i in [7], Section 1.

The unstable structure (B, D) of $\mathcal{A}_{(2)}$ has additional properties as described in the next definition.

DEFINITION 4.5. Let *R* be a commutative ring and let *A* be a Hopf algebra over *R*. We say that *A* is an *unstable Hopf algebra* if a structure (B, D) is given with the following properties. The structure *B* consists of a sequence of left ideals $(n \ge 0)$

(1)
$$\cdots \subset B(n+1) \subset B(n) \subset \cdots \subset B(0) \subset \tilde{A}$$
,

where \tilde{A} is the augmentation ideal of A. We say that a (non-negatively) graded A-module X is B-unstable if

(2)
$$B(n) \cdot X^n = 0$$
 for $n \ge 0$.

Moreover the structure *B* has the property that for *B*-unstable modules *X*, *Y* the tensor product $X \otimes Y$ with the *A*-module structure given by $A \to A \otimes A$ is again a *B*-unstable *A*-module. This shows that the tensor algebra T(X) which is the direct sum of tensor powers $X^{\otimes n} = X \otimes \cdots \otimes X$, $n \ge 0$, is an algebra over the Hopf algebra *A* and T(X) is *B*-unstable as an *A*-module.

For each *B*-unstable module *X* the structure *D* yields an ideal

$$(3) \quad D_X \subset T(X),$$

where D_X is an A-submodule and $x \otimes y - (-1)^{|x||y|} y \otimes x \in D_X$ for $x, y \in X$. Let H be an augmented graded commutative algebra over the Hopf algebra A. Then we say that H is (B, D)-unstable if \tilde{H} is a B-unstable module and if the canonical algebra map $T(\tilde{H}) \to H$ extending the inclusion $\tilde{H} \to H$ carries D_H to 0. The structure D_X in (3) is natural in X and D has the property that for (B, D)-unstable algebras H, H' also the tensor product $H \otimes H'$ is (B, D)-unstable. In particular we obtain for a B-unstable module X the (B, D)-unstable algebra generated by X

$$(4) \quad U(X) = T(X)/D_X$$

We define for a *B*-unstable module *X* the *B*-unstable modules X/\sim and X/\approx by

$$\begin{array}{l} X/\sim = \mathrm{image}(X \to U(X)), \\ X/\approx = \mathrm{image}(X \to \tilde{U}(X) \to \tilde{U}(X)/\tilde{U}(X) \cdot \tilde{U}(X)) = \tilde{U}(X)/\tilde{U}(X) \cdot \tilde{U}(X). \end{array}$$

We in particular have the *B*-unstable modules (A/B(n))[n] generated by a single element [n] in degree *n*. Then (B, D) has the property that there is a map of *A*-modules $(n \ge 1)$

(5)
$$\Omega: (\mathcal{A}/B(n))[n]/\approx \longrightarrow (\mathcal{A}/B(n-1))[n-1]/\sim$$

which caries [n] to $\Omega[n] = [n - 1]$. Since the left-hand side is generated by [n] as an A-module, we set that $\tilde{\Omega}$ is uniquely determined. This completes the definition.

For an unstable Hopf algebra (A, B, D) we obtain the full subcategory

(4.6)
$$\operatorname{Alg}_0(\mathcal{A}, B, D) \subset \operatorname{Alg}_0(\mathcal{A})$$

consisting of connected (B, D)-unstable algebras. This subcategory is closed under tensor products and hence has sums. Moreover the object $(n \ge 1)$

(1)
$$H(n) = U((\mathcal{A}/B(n))[n])$$

has the following freeness property. For each object H in $Alg_0(A, B, D)$ and element $x \in H^n$ there is a unique morphism in $Alg_0(A, B, D)$

(2)
$$\bar{x}: H(n) \to H$$

which carries [n] to x. Here H(n) is termed the *completely free* (B, D)-unstable algebra generated by [n].

The result of Serre [6] on H(n) in (4.1) now can be stated as follows; compare [7].

PROPOSITION 4.7. *The Steenrod algebra* $A_{(2)}$ *with the structure* (B, D) *in Example 4.4 is an unstable Hopf algebra and*

 $H^*(K(\mathbb{Z}/2, n); \mathbb{Z}/2) = H(n)$

is the completely free (B, D)-unstable algebra generated by [n].

We are now able to determine algebraically the Eilenberg–Mac Lane Ω -algebra $\mathbf{K}(\mathbb{Z}/2)$ in (4.1). For this we need the following result.

PROPOSITION 4.8. Let (A, B, D) be an unstable Hopf algebra. Then one gets an Ω -sequence of algebras over the Hopf algebra A by the completely free algebras H(n), $n \ge 1$, in (4.6)(1). For this let

$$\begin{aligned} &+: H(n) \rightarrow H(n) \otimes H(n), \\ &-: H(n) \rightarrow H(n) \end{aligned}$$

~

be the maps in $Alg_0(A, B, D)$ which carry [n] to $[n] \otimes 1 + 1 \otimes [n]$ and -[n] respectively. Moreover let

$$\chi: H^m(n) \to \operatorname{Hom}_{\operatorname{Alg}_0}(H(m), H(n))$$

be the function which carries x to \bar{x} as in (4.6)(2). Let Ω be the composite

$$\Omega: \tilde{H}(n) \longrightarrow (\mathcal{A}/B(n))[n]/\approx \xrightarrow{\Omega} (\mathcal{A}/B(n-1))[n-1]/\approx$$
$$\longrightarrow \tilde{H}(n-1)$$

where $\tilde{\Omega}$ is defined in Definition 4.5(5). Finally let

 $\mu^{i,j}: H(i+j) \to H(i) \otimes H(j)$

be the map in $Alg_0(A, B, D)$ which carries [i + j] to $[i] \otimes [j]$.

Proof. One readily checks that the properties of an unstable Hopf algebra in Definition 4.5 imply that the data in the theorem satisfy all properties in Definitions 2.7 and 3.4. \Box

Hence we get by use of Theorem 3.5 the next result.

COROLLARY 4.9. Each unstable Hopf algebra $(\mathcal{A}, \mathcal{B}, D)$ yields canonically an Ω -algebra $\mathcal{K}(\mathcal{A}, \mathcal{B}, D)$ over the Hopf algebra \mathcal{A} for which the associated Ω -sequence is given by H(n) in Proposition 4.8.

Moreover we get:

THEOREM 4.10. The Eilenberg–Mac Lane Ω -algebra $\mathbf{K}(\mathbb{Z}/2)$ over $A_{(2)}$ of products of Eilenberg–Mac Lane spaces $K(\mathbb{Z}/2, n)$, $n \geq 0$, is isomorphic to the Ω -algebra $\mathcal{K}(\mathcal{A}_{(2)}, B, D)$ over $A_{(2)}$ given as in Corollary 4.9 by the Steenrod algebra $A_{(2)}$ with the unstable structure (B, D) in Example 4.4.

Proof. Using Proposition 4.7 we see that the Ω -sequences for $\mathbf{K}(\mathbb{Z}/2)$ and $\mathbf{K}(\mathcal{A}_{(2)}, B, D)$ are isomorphic.

A similar result is available for the Eilenberg–Mac Lane Ω -algebra $\mathbf{K}(\mathbb{Z}/p)$, where *p* is a prime. For this we need the computation of Cartan [4] of $H^*(K(\mathbb{Z}/p, n); \mathbb{Z}/p)$ in terms of the Steenrod algebra $\mathcal{A}_{(p)}$.

For an unstable Hopf algebra we get by Corollary 4.9 the Ω -algebra $\mathcal{K}(\mathcal{A}, B, D)$ for which the Ω -cohomology

 $H^*_{\Omega}(\mathcal{K}(\mathcal{A}, B, D))$

is defined; see [3]. If $\mathcal{A} = \mathcal{A}_{(2)}$ is the Steenrod algebra then we know that the track category associated to $\mathbf{K}(\mathbb{Z}/2)$ is classified by the *universal Toda bracket*

$$\langle \mathbf{K}(\mathbb{Z}/2) \rangle \in H^3_{\Omega}(\mathcal{K}(\mathcal{A}_{(2)}, B, D)).$$

Here the right-hand side has a completely algebraic description in terms of $\mathcal{A}_{(2)}$. The Toda bracket $\langle \mathbf{K}(\mathbb{Z}/2) \rangle$ however, is not understood algebraically. It is the purpose of this paper to prepare the ground for the computation of this class.

5. Models of $K(\mathbb{Z}/2)$

Recall that a *theory with products* is a small category **T** with a final object * and with products denoted by $A \times B$. A *model* of **T** is a product preserving functor $M : \mathbf{T} \rightarrow \mathbf{Set}$ which carries * to a point. Let **model**(**T**) be the category of such models. Morphisms are natural transformations.

For each commutative ring R we introduced the Eilenberg–Mac Lane Ω -algebra $\mathbf{K}(R)$ which is the full subcategory of the homotopy category of pointed spaces consisting of products of Eilenberg–Mac Lane spaces K(R, n), $n \ge 1$. Hence in particular $\mathbf{K}(R)$ is a theory with products and we obtain the category **model**($\mathbf{K}(R)$) of models of $\mathbf{K}(R)$.

The Steenrod algebra $\mathcal{A}_{(2)}$ is an unstable Hopf algebra with the unstable structure (B, D) in Example 4.4 such that the category $\operatorname{Alg}_0(\mathcal{A}_{(2)}, B, D)$ is the category of connected commutative graded algebras H over the Hopf algebra $\mathcal{A}_{(2)}$ for which

$$\operatorname{Sq}^{i}(x) = \begin{cases} 0, & i > |x|, \\ x \cdot x, & i = |x|. \end{cases}$$

THEOREM 5.1. There is an equivalence of categories

 $\operatorname{model}(\mathbf{K}(\mathbb{Z}/2)) = \operatorname{Alg}_0(\mathcal{A}_{(2)}, B, D).$

Proof. By Theorem 4.10 we know that $\mathbf{K}(\mathbb{Z}/2)$ coincides with $\mathcal{K}(\mathcal{A}_{(2)}, B, D)$ and it is easy to see that models of $\mathcal{K}(\mathcal{A}_{(2)}, B, D)$ coincide with objects in $\operatorname{Alg}_0(\mathcal{A}_{(2)}, B, D)$.

The theorem shows that models of $\mathbf{K}(\mathbb{Z}/2)$ have a surprisingly simple description by use of the Steenrod algebra $\mathcal{A}_{(2)}$. In general a similar result for models of

 $\mathbf{K}(R)$ where R is a commutative ring is not known. For $R = \mathbb{Z}/p$ with p an odd prime we get the following result.

For an odd prime p we have the Steenrod algebra $\mathcal{A}_{(p)}$ (over \mathbb{Z}/p) generated by the Bockstein operator β of degree 1 and the reduced powers P^i of degree 2i(p-1), $i \ge 0$, with $P^0 = 1$. Moreover $\mathcal{A}_{(p)}$ is a (coassociative and cocommutative) Hopf algebra with an unstable structure (B, D) such that the category $Alg_0(\mathcal{A}_{(p)}, B, D)$ consists of augmented commutative graded algebras H over the Hopf algebra $\mathcal{A}_{(p)}$ with

$$\beta(x \cdot y) = (\beta x) \cdot y + (-1)^{|x|} x \cdot (\beta y),$$

$$P^{i}(x) = \begin{cases} 0, & 2i > |x|, \\ x^{p}, & 2i = |x| \end{cases}$$

for $x, y \in H$. Similarly as in Theorem 5.1 we get

THEOREM 5.2. For an odd prime p there is an equivalence of categories

 $\mathbf{model}(\mathbf{K}(\mathbb{Z}/p)) = \mathbf{Alg}_0(\mathcal{A}_{(p)}, B, D).$

References

- 1. Adams, J. F.: Infinite Loop Spaces, Annals of Math. Studies 90, Princeton, 1978.
- 2. Baues, H.-J.: The algebra of secondary cohomology operations, Preprint, 2001.
- 3. Baues, H.-J. and Jibladze, M.: Suspension and loop objects in theories and cohomology, Preprint.
- 4. Cartan, H.: Sur les groupes d'Eilenberg–Mac Lane. II, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 704–707.
- 5. Lawvere, F. W.: Functorial semantics of algebraic theories, *Proc. Nat. Acad. Sci. U.S.A.* **50** (1963), 869–873.
- Serre, J.-P.: Cohomologie modulo 2 des complexes d'Eilenberg–Mac Lane, Comment. Math. Helv. 27 (1953), 198–232.
- Steenrod, N. E. and Epstein, D. B. A.: *Cohomology Operations*, Annals of Math. Studies 50, Princeton, 1962.