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A theory T is a small category with products and a model of T is a functorM : T →
Set which carries products in T to products of sets. Let model(T) be the category of
models; morphisms are natural transformations. Since the work of Lawvere [5], it is
well known that many algebraic categories (like the categories of groups, algebras,
Lie algebras, etc.) are such categories of models of a theory T.

In this paper we are interested in theories arising in topology. Let R be a ring
and let K(R) be the homotopy category consisting of products X = K(n1)×· · ·×
K(nr) of Eilenberg–Mac Lane spaces K(ni) = K(R, ni) with n1, . . . , nr ≥ 1
and r ≥ 0. Then products obviously exist in K(R) and hence K(R) is a theory
for which the category of models model(K(R)) is defined. What kind of algebraic
category is model(K(R))? We show for the field R = Z/pZ = Z/p:

THEOREM A. Let p be a prime. Then the category model(K(Z/p)) is equivalent
to the category of connected unstable algebras over the Steenrod algebra A(p).

For R = Z the algebraic category equivalent to model(K(Z)) is not known.
We observe that the theory K(R) has additional structure; namely it is an �-

theory as studied in [3]. In addition multiplication maps in K(R) give K(R) the
structure of an “�-algebra”.

THEOREM B. The Steenrod algebra A(p) has an unstable structure (B,D)which
determines algebraically the �-algebra K(Z/p).

In fact, we show that a “Hopf algebra A with unstable structure (B,D)” deter-
mines algebraically an�-algebra K(A,B,D) which for A = A(p) coincides with
the topological �-algebra K(Z/p).
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We have seen in [3] that the universal Toda bracket 〈K(Z/p)〉 is an element in
the third�-cohomology of the�-theory K(Z/p). Hence we obtain by Theorem B:

COROLLARY. The universal Toda bracket is an element

〈K(Z/p)〉 ∈ H 3
�(K(A(p), B,D)),

where the right-hand side is defined algebraically in terms of the Steenrod alge-
bra A(p).

The universal Toda bracket 〈K(Z/p)〉 contains all information on stable and un-
stable secondary cohomology operations mod p. In the book [2] we study algebraic
properties of the class 〈K(Z/p)〉. The main result of this paper is the fact that this
class is an element in the cohomology H 3

�(K(A(p), B,D)) which is completely
determined by the Steenrod algebra A(p).

1. Graded �-theories

A theory T with zero object ∗ is a small category with products A × B for which
the final object ∗ is also initial. Hence we have the zero map 0 : A→ ∗ → B. An
Abelian group object A in T is given by maps mA : A × A → A, nA : A → A

satisfying the usual identities. A map f : A→ B between Abelian group objects
is linear if f commutes with mA,mB and nA, nB .

For an object X in T let T(X) be the category with the same objects as in T and
with morphisms a : A→ B given by commutative diagrams in T where px is the
projection:

X

X × A

pX

a
X × B

pX

X × ∗.
1×0 1×0

Each map f : Y → X induces a functor T(f ) : T(X) → T(Y ) which is the
identity on objects and carries a : X×A→ X×B to T(f )(a) : Y ×A→ Y ×B
given by the coordinates pY and pBa(f × A). In particular 0 : Y → ∗ induces
the functor T = T(∗) → T(Y ) which preserves products. This functor carries an
Abelian group object in T to an Abelian group object in T(Y ).

Motivated by infinite loop spaces in topology (see Adams [1]) we introduce the
following algebraic concept which describes a special case of an �-theory studied
in [3]; see Example 1.2 below.

DEFINITION 1.1. A graded �-theory T is a theory with zero object ∗ with the
following properties. A product preserving functor

(1) � : T → T termed loop functor
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and a sequence of Abelian group objects K(n), n ∈ Z, are given with

(2) �K(n) = K(n− 1)

such that all objects X of T are finite products of objects in this sequence. The
product preserving functor � : T → T carries the structure maps of the Abelian
group object K(n) to the structure maps of the Abelian group object K(n − 1).
Hence for objects A,B in T the set [A,B] of morphisms A → B in T is an
Abelian group since the product B of Abelian group objects K(ni) is canonically
an Abelian group object in T. We denote the group structure in [A,B] by +. In
addition T is an �-theory; that is, a system of functors

(3) LX : T(X)→ T(X)

is given such that LX preserves finite products and carries each map to a linear
map. These functors are natural in the sense that for all f : Y → X the diagram of
functors

(4)

T(X)

T(f )

LX T(X)

T(f )

T(Y )
LY T(Y )

commutes. Moreover for X = ∗ the functor L∗ coincides with � in (1). This
completes the definition of a graded �-theory.

Let [X × A,B]X be the group of morphisms α : X × A → B for which the
composite morphism X = X × ∗

1×0
X ×A

α
B trivial. Then α determines

the map α = (pX, α) : X × A → Y × B in T(X) for which via the functor
LX in (3) the induced map LX(pX, α) = (pX,LXα) : X × �A → X × �B in
T(X) is defined. Hence α �→ LXα yields the homomorphism, termed partial loop
operation,

(5) L = LX : [X × A,B]X → [X ×�A,�B]X.
One can check that the following rules are satisfied. We consider the composite

Y × T (
fpY
a )
X ×A b

B .

Then we have the formula

(6) L

(
b

(
fpY
a

))
= L(b)

(
fpY
La

)
with f : Y → X, a ∈ [Y × T ,A]Y and b ∈ [X × A,B]X . The projection pA :
X ×A→ A is an element of [X × A,A]X with

(7) L(pA) = p�A, the projection X ×�A→ �A.
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Finally for b ∈ [X ×A,B]X the map LXb : X ×�A→ �B is linear in �A, that
is for α, β ∈ [Y,�A] we have

(8) (LXb)(f, α + β) = (LXb)(f, α)+ (LXb)(f, β).
In particular maps �f : �Y → �X are linear, that is, they are homomorphisms
of Abelian group objects. In general, maps Y → X in T need not be linear.

EXAMPLE 1.2. Recall that an infinite loop space X is a sequence of pointed
CW-spaces X(n), n ∈ Z, together with homotopy equivalences

�X(n) � X(n− 1), (∗)

where �X(n) is the path component of the base point in the loop space of X(n).
We use (∗) as an identification in the homotopy category (Top∗0)�. Now let T be
the full subcategory of (Top∗)� consisting of finite products X(n1)× · · · ×X(nk)
of spaces X(ni) given by the infinite loop space X. Since the track category T in
Top∗0 with T� = T is �-representable, we see by Baues and Jibladze [3] that T is
an�-theory and hence T is a graded �-theory with the properties in Definition 1.1.

Of course for each Abelian group Awe have the infinite loop space K(A) given
by Eilenberg–Mac Lane spaces K(A)(n) = K(A, n), n ∈ Z, with K(A)(n) = ∗
for n ≤ 0. Let K(A) be the associated graded �-theory consisting of products of
Eilenberg–Mac Lane spaces K(A, n), n ≥ 1.

Now let T be a graded�-theory as in Definition 1.1. Then we obtain the algebra
A of stable operations in T as follows. A stable operation of degree k ∈ Z is a
sequence of maps α,

α = (αn : K(n)→ K(n + k))n∈Z

with the property �αn = αn−1. Hence all αn are linear and therefore the set Ak of
all stable operations of degree k is an Abelian group. Moreover for k, r ∈ Z one
has by composition the multiplication

(1.3) µ : Ak ⊗Z Ar → Ak+r

carrying α⊗β to α◦β. Here µ is a homomorphism of Abelian groups which yields
an associative multiplication for the graded Abelian group A = (Ak)k∈Z.

The stable operations of degree 0 yield the ring A0 so that Ak is an A0-bimodule
and the multiplication µ of A is actually defined on the tensor product over A0

(1.4) µ : Ak ⊗A0 Ar → Ak+r .

In this sense A is a Z-graded algebra over A0.
For example if the graded �-theory T = K(Z/p) is given as in Example 1.2 by

Eilenberg–Mac Lane spaces K(Z/p, n), n ≥ 1, then A = A(p) is the Steenrod
algebra; see [7], with Ak = 0 for k < 0.
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2. �-algebras

Let R be a commutative ring. Then the graded �-theory K(R) given by product of
Eilenberg–Mac Lane spacesK(R, n) has canonically the structure of an�-algebra.
This is the reason why we introduce and study in this section the algebraic concept
of an �-algebra.

Let Mod∗(R) be the category of Z-graded R-modules X = (Xi)i∈Z with the
graded tensor product X ⊗ Y given by

(2.1) (X ⊗ Y )n =
⊕
i+j=n

Xi ⊗R Yj .

Here X is non-negative if Xi = 0 for i < 0. A non-negative graded R-module A
which has the structure of a monoid in (Mod∗(R),⊗) is termed a graded algebra.
Let R be the graded R-module concentrated in degree 0 which is R in that degree.
Then of course R is also a graded algebra; in fact, the initial object in the category
of graded algebras. A map ε : A → R between graded algebras is termed an
augmentation of A and A is a connected algebra if ε is an isomorphism in degree
0, A0 = R. The interchange map

(1) T : X ⊗ Y → Y ⊗X
is defined by T (x⊗y) = (−1)|x||y|y⊗x, where |x| is the degree of a homogeneous
x ∈ X, i.e. |x| = n if and only if x ∈ Xn. The graded algebra A is commutative if
the multiplication m : A⊗ A→ A satisfies mT = m. We also write

(2) m(x ⊗ y) = x · y.
The tensor product A ⊗R B of graded algebras A and B is canonically a graded
algebra with the multiplication

(3) (x ⊗ y)(x′ ⊗ y′) = (−1)|y||x
′|(x · x′)⊗ (y · y′),

where |y| is the degree of y ∈ B. One readily checks that A⊗B is commutative if
A and B are commutative.

Let Alg0 be the category of connected commutative graded algebras over R.
This is a category in which R is the initial and the final object (zero object).
Moreover the sum in the category Alg0 is given by the tensor product with the
inclusions

(4)

{
A = A⊗ R 1⊗!−→ A⊗ B,
B = R ⊗ B !⊗1−→ A⊗ B.

Here ! : R→ A is the unit. Let

(5) Ã = kernel(ε : A→ R)

be the augmentation ideal of A, i.e. the kernel of the augmentation ε.
We introduce the algebraic concept of an �-algebra over R as follows.
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DEFINITION 2.2. Let T be a graded �-theory as in (1.1) with

(1) K(n) = ∗ for n ≤ 0.

Assume a ring homomorphism R → A(T)0 is given, where A(T)0 is the ring of
degree 0 stable operations of T. Then we have for any object X in T the graded
R-module H̃ ∗(X) with

(2) H̃ n(X) = [X,K(n)] for n ∈ Z.

Clearly by (1) we have H̃ n(X) = 0 for n ≤ 0 and we have a canonical element
[n] ∈ H̃ ∗(K(n)) given by the identity of K(n). We define the graded R-module
H ∗(X) by the direct sum

(3) H ∗(X) = R ⊗ H̃ ∗(X),

where R is concentrated in degree 0. Then T is an �-algebra (over R) if multipli-
cation maps

(4) µ = µi,j : K(i)×K(j)→ K(i + j)
are given for i, j ≥ 1 which induce an R-linear map

(5)

{
µ∗ : H ∗(X)⊗R H ∗(X)→ H ∗(X) by
µ∗(ξ ⊗ η) = µi,j (ξ, η)

for ξ ∈ H̃ i(X), η ∈ H̃ j (X) such that (H ∗(X), µ) is a connected commutative
graded algebra (hence an object in Alg0) with R → H ∗(X) → R given by
the inclusion and projection respectively. The trivial map K(i) → ∗ → K(j)

represents the zero element in Hj(K(i)) and the composite

K(i)
([i],0)−−−→ K(i)×K(j) µ−→ K(i + j)

is trivial, where [i] is the identity ofK(i), since µ([i], 0) = [i] ·0 = 0. Hence with
the notation in Definition 1.1(3) we have

µi,j ∈ [K(i)×K(j),K(i + j)]K(i),
so that the partial loop operation L is defined on µi,j . In addition let

(6) Lµi,j =
{
µi,j−1 for j > 1,
0 for j = 1.

This completes the definition of an �-algebra (over R).

In an �-algebra T over R we have for objects X,Y ∈ T the canonical map in
Alg0

(2.3) τ : H ∗(X)⊗R H ∗(Y )→ H ∗(X × Y )
which carries ξ ⊗ η to the product (p∗Xξ) · (p∗Y η), where pX : X × Y → X and
pY : X × Y → Y are the projections. We say that the �-algebra T over R has the
Künneth property if this τ is an isomorphism for all objects X,Y .
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LEMMA 2.4. For any �-algebra over R the induced map

µ∗i,j : H ∗K(i + j)→ H ∗(K(i)×K(j))
carries [i + j ] to τ([i] ⊗ [j ]).

Proof. In fact µ∗i,j [i + j ] is represented by µi,j : K(i)×K(i)→ K(i + j) and
τ([i] ⊗ [j ]) by definition is represented by the composite

K(i)×K(j) (p1,p2)
K(i)×K(j) µ

K(i + j),
where p1 and p2 are the projections, so that (p1, p2) is the identity. ✷
EXAMPLE 2.5. Let R be a commutative ring and let Rab be the underlying
Abelian group of R. Then the graded �-theory K(R) associated to the Eilenberg–
Mac Lane spaces K(n) = K(Rab, n) (see Example 1.2) is an �-algebra with
multiplication maps (i, j > 1)

µi,j : K(i)×K(j) q
K(i) ∧K(j) µ̃

K(i + j).
Here q is the quotient map for the smash product X ∧ Y = X × Y/X ∨ Y and µ̃
is up to homotopy the unique map for which the following diagram of homotopy
groups commutes with n = i + j .

πn(K(i) ∧K(j)) µ̃∗
πnK(i + j)

Rab ⊗Z Rab
mR

Rab.

Here mR is the multiplication map of the ring R.

We call K(R) the Eilenberg–Mac Lane �-algebra of the commutative ring R.
It is well known that K(R) has the Künneth property if R is a finite field. This is
an obvious consequence of the Künneth theorem.

Now let T be an �-algebra over R which has the Künneth property. Then H ∗
in Definition 2.2 yields a contravariant functor

(2.6) H ∗ : T → Alg0

which is faithful and carries products to coproducts. Hence the opposite category
Top can be considered to be asubcategory of Alg0. This leads to the following
concept of �-sequence of algebras with H(n) = H ∗(K(n)).

DEFINITION 2.7. An �-sequence of algebras (over R) consists of a sequence
H(n) with n ∈ Z and the structure (χ,�,µ) with the following properties.
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The object H(n) is an Abelian cogroup object in Alg0 with the structure maps
in Alg0

(1)

{+ : H(n)→ H(n)⊗H(n),
− : H(n)→ H(n)

and H(n) = R for n ≤ 0. This shows that HomAlg0
(H(n),X) is an Abelian group

with addition induced by + in (1) where X is an object in Alg0. For n,m ≥ 0 the
structure χ is a homomorphism of Abelian groups

(2) χ = χmn : H̃m(n)→ HomAlg0
(H(m),H(n))

and we write χ(α) = ᾱ. There is an element [n] ∈ H̃ n(n) with

(a) [n] = 1H(n) (identity),
(b) ᾱ([m]) = α,

(c) β̄(α) = β̄ ◦ ᾱ for α ∈ H̃m(n), β ∈ H̃ n(k),
(d) r[n] : H(n)→ H(n) is linear (i.e. a morphism of cogroups) for r ∈ R.

Now (d) together with (1) implies that for each object X in Alg0 the set
HomAlg0

(H(n),X) is an R-module. See (2.8) below. Next the structure

(3) � = �n : H̃ (n)→ H̃ (n− 1)

is a degree (−1) homomorphism of graded R-modules satisfying

(a) �[n] = [n− 1],
(b) �(β̄(α)) = �β(�α),
(c) �(ξη) = 0 for ξ, η ∈ H̃ (n) where ξη is the product in the algebra H(n),
(d) �β : H(n− 1)→ H(k − 1) is linear.

Finally for i, j ≥ 1 the structure

(4) µ = µi,j : H(i + j)→ H(i)⊗H(j)
is a morphism in Alg0 satisfying

(a) µi,j ([i + j ]) = [i] ⊗ [j ],
(b) T µi,j = (−1)ijµj,i (see (2.1)(1)),
(c) (µi,j ⊗ 1)µi+j,t = (1⊗ µj,t )µi,j+t ,
(d) (ᾱ1, ᾱ2)µ

i,j = α1 · α2 for α1 ∈ Hi(k), α2 ∈ Hj(k).

Moreover µi,j is linear in H(j), that is, for all X in Alg0 and α : H(i) → X,
β1, β2 : H(j)→ X we have

(e) (α, β1 + β2)µ
i,j = (α, β1)µ

i,j + (α, β2)µ
i,j ,

(f) (1⊗ r[j ])µi,j = µi,j r[i + j ] for r ∈ R.
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Next we introduce for X = H(i)⊗H(j) the homomorphism of R- modules

χ : X̃m→ HomAlg0
(H(m),X)

which carries ξ ⊗ η with ξ ∈ H̃ a(i) and η ∈ H̃ b(j), a + b = m, to the composite

χ(ξ ⊗ η) : H(m) µ
H(a)⊗H(b) ξ̄⊗η̄

H (i)⊗H(j).
This homomorphism is well defined by (e) and (f). Moreover χ satisfies for α ∈
H̃m(i + j) the equation

(g) µ ◦ ᾱ = χ(µα) : H(m)→ H(i)⊗H(j), where µ = µi,j .
This completes the definition of an �-sequence of algebras.

The condition (2)(b) shows that χ is injective so that [n] is uniquely determined.
We define an R-module structure of HomAlg0

(H(m),X) by the Abelian group
structure in (2) and by defining for r ∈ R and α : H(m)→ X the element r · α via
the composite

(2.8) r · α = α ◦ r[m].
Then we have for r, s ∈ R

(r + s)α = α ◦ (r + s)[m]
= α ◦ (r[m] + s[m]) see (2)

= α ◦ (r[m], s[m])(+)
= (αr[m], αs[m])(+)
= αr[m], αs[m]
= rα + sα,

r(α + β) = (α + β)r[m]
= (α, β)(+)r[m]
= (α, β)(r[m] ⊗ r[m])(+) see (2)(d)

= (αr[m], βr[m])(+)
= αr[m] + βr[m]
= rα + rβ.

The homomorphism χ in (2) is actually an injective homomorphism of R-modules
since we have for α ∈ H̃m(n)

r · ᾱ = ᾱ ◦ r[m]
= ᾱ(r[m])

(1) = rᾱ([m])
= rα.
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The condition (4)(c) shows that µ yields a canonical map

(2) µ = µn1,...,nν : H(n1 + · · · + nν)→ H(n1)⊗ · · · ⊗H(nν)
for ni ≥ 1 and ν ≥ 1. For example µi,j,t = (µi,j ⊗ 1)µi+j,t . For ν = 1 let µ be the
identity.

LEMMA 2.9. Each �-algebra T (over R) with the Künneth property yields the
associated �-sequence of algebras (over R) by defining

H(n) = H ∗K(n),
χ(α) = α∗,
�(α) defined by the loop functor �,
µi,j = τ−1(µi,j )

∗, see (2.3).

One readily checks that the properties in Definition 2.7 are satisfied.
On the other hand we get

THEOREM 2.10. Each �-sequence H of algebras (over R) yields an associated
�-algebra TH (over R) which satisfies the Künneth property. This yields a 1-1-
correspondence between isomorphism classes of �-algebras with Künneth prop-
erty and �-sequences of algebras respectively. The inverse of this correspondence
is given by Lemma 2.9.

Proof. Let an�-sequence of algebras be given as in Definition 2.7. We construct
the associated �-algebra T = TH as follows. We first define a subcategory with
coproducts

(1) T0 ⊂ Alg0

and T as a category with products is the opposite category of T0, that is T = Top
0 .

Of course T0 corresponds to the image category of the functor (2.6). Objects in T0

are tensor products

(2) X = H(n1)⊗ · · · ⊗H(nν)
with ni ≥ 0 and ν ≥ 0. We define for m ≥ 0 the homomorphism of R-modules

(3) χ : X̃m→ HomAlg0
(H(m),X)

which carries α1 ⊗ · · · ⊗ αν ∈ X̃m with αi ∈ H̃mi (ni) to the composite

H(m)
µ→ H(m1)⊗ · · · ⊗H(mν) ᾱ1⊗···⊗ᾱν−−−−−−−−→ X.

For α ∈ X̃ we write χ(α) = ᾱ. Now we define the morphisms Y → X in T0 with
Y = H(k1)⊗ · · · ⊗H(kt) to be the maps

(4) (β̄1, . . . , β̄t ) : Y → X ∈ T0
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with β̄i : H(ki)→ X given by an element βi ∈ X̃ki via χ above. Here we use the
coproduct property of the tensor product in Alg0. Using Definition 2.7(4)(g) we see
by an induction argument based on the other properties in Definition 2.7(4) that T0

is a well defined subcategory of Alg0. Of course the category T0 has coproducts.
Next we set �H(n) = H(n− 1) and

(5) �X = H(n1 − 1)⊗ · · · ⊗H(nν − 1).

Using � in Definition 2.7(3) we define the degree (−1) homomorphism of graded
R-modules

(6) � : X̃→ �̃X

as follows. Take α1 ⊗ · · · ⊗ αν ∈ X̃ with αi ∈ Hmi(ni). Then we set

�(α1 ⊗ · · · ⊗ αν) = �αi
if αj ∈ R for j �= i, j = 1, . . . , ν, and we set �(α1 ⊗ · · · ⊗ αν) = 0 otherwise.
We now define a functor

(7) � : T0 → T0

by (5) and by

�(β̄1, . . . , β̄t ) = (�β1, . . . , �βt ),

where we use (4) and (6) and (3). The functor � in (7) defines a functor � : T → T
by�(f )op = (�f )op and this is a functor as in Definition 1.1(1). Next we consider
the partial loop operation L in T which is obtained by the function

(8) L : [B,X ⊗ A]X → [�B,X ⊗�B]X,
where [ , ] denotes the group of morphisms in T0 and X,A,B are objects in T0.
Here L is compatible with the coproduct structure in B by Definition 1.1(5) so that
it suffices to define L for B = H(m). In this case we have

(9) [H(m),X ⊗A]X χ

kernel(pX : (X ⊗̃A)m→ X̃m) ,

where X ⊗̃A is the augmentation ideal of X ⊗ A. Hence we get

(10) [H(m),X ⊗ A]X = Ãm ⊕ (X̃ ⊗ Ã)m.
For x ∈ Ãm let L(x) = �x ∈ �̃Am−1

be given by (6) and for x ⊗ a ∈ X̃ ⊗ Ã
let L(x ⊗ a) = x ⊗ �a ∈ X̃ ⊗ �̃A. This defines via (10) the function (8). Now it
is easy to check that (T,�,L) is a graded �-theory in the sense of Definition 1.1.
Finally let µi,j in T be the dual of µi,j in T0 given by µi,j in Definition 2.7(4).
Then one can check that TH = (T, µ) is an �-algebra over R. ✷
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3. �-algebras over a Hopf Algebra

It is well known that the Steenrod algebra A(2) is a Hopf algebra and that the
cohomology ring H ∗(X;Z/2) is an “algebra over the Hopf algebra A(2)”. This
implies a certain structure for the Eilenberg–Mac Lane �-algebra K(Z/2) which
we study in this section. This leads to a complete algebraic characterization of the
�-algebra K(Z/2) by use of a classical result of Serre [6] in the next section.

Let R be a commutative ring. Recall that the tensor product A ⊗ B of graded
algebras over R is a graded algebra. We say that an augmented graded algebra A
together with an algebra map

(3.1) ψ : A→ A⊗A

is a Hopf algebra if the compositions

A
ψ

A⊗A
1⊗ε

A⊗ R ∼= A

and

A
ψ

A⊗A
ε⊗1

R ⊗A ∼= A

are both the identity. The Hopf algebra is coassociative, resp. cocommutative, if
(ψ ⊗ 1)ψ = (1⊗ ψ)ψ , resp. T ψ = ψ .

Now let M be a left A-module, where A is a Hopf algebra and assume that M
is a connected graded commutative algebra (over R) with multiplication

(3.2) m : M ⊗M → M.

Here M ⊗M is an A⊗A-module and hence via (3.1) an A-module. We say that
M is an (connected graded commutative) algebra over the Hopf algebra A if m is
a homomorphism of A-modules.

Let Alg0(A) be the category of such algebras over the Hopf algebra A. Mor-
phisms are maps in Alg0 which are also homomorphisms of A-modules. The ring
R is an A-module via ε : A → R and hence an object in Alg0(A) which is the
zero object of Alg0(A).

DEFINITION 3.3. An �-algebra T over the Hopf algebra A is an �-algebra
(over R) as in Definition 2.2 together with a map between algebras over R

(1) A → A(T)

with the following properties. Here A(T) is the algebra of stable operations of T
and (1) extends the algebra map R→ A(T)0 in Definition 2.2, see (1.4).

Each object X in T yields the graded algebra H ∗(X) as in Definition 2.2 which
via (1) is a left A-module. In fact A acts on H̃ ∗(X) by composition and on R by
the augmentation ε. Now we assume that H ∗(X) in addition is an algebra over the
Hopf algebra A so that

(2) µ∗ : H ∗(X)⊗H ∗(X)→ H ∗(X)
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in Definition 2.2(5) is a homomorphism of A-modules. This completes the defini-
tion.

If the Künneth property holds in T we can characterize an �-algebra over a
Hopf algebra A by the following data:

DEFINITION 3.4. An �-sequence of algebras over the Hopf algebra A is an �-
sequence of algebras as in Definition 2.7 with the following additional properties.
Each H(n) is an algebra over the Hopf algebra A in Alg0(A). Moreover for each
α ∈ Ak the map

H(n)→ H(n+ k), x �→ αx

is linear with respect to the Abelian cogroup structure Definition 2.7(1). This gen-
eralizes Definition 2.7(1)(d). Moreover χ in Definition 2.7(2) carries elements α
to morphisms ᾱ in Alg0(A), that is ᾱ is a homomorphism of A-modules. Also
� and µi,j are homomorphisms of A-modules; see Definition 2.7(3) and Defini-
tion 2.7(4). This completes the definition.

As in Lemma 2.9 we see that each �-algebra T over the Hopf algebra A for
which T has the Künneth property yields canonically a sequence as in Defini-
tion 3.4. In fact this yields the following specification of Theorem 2.10.

THEOREM 3.5. There is a 1-1-correspondence between isomorphism classes of
�-algebras over the Hopf algebra A which satisfy Künneth property, and isomor-
phism classes of �-sequences of algebras over the Hopf algebra A.

4. The Eilenberg–Mac Lane �-algebra K(Z/2)

Recall that the Eilenberg–Mac Lane �-algebra K(Z/2) is the full subcategory of
the homotopy category of pointed spaces consisting of products of Eilenberg–Mac
Lane spaces

(4.1) K(n) = K(Z/2, n), n ≥ 1.

It is clear that K(Z/2) is a graded �-theory (see Section 1) and also an �-algebra
with the Künneth property (see Section 2).

PROPOSITION 4.2. K(Z/2) is an �-algebra over the Steenrod algebra A(2) in
the sense of Definition 3.3.

This follows readily from the fact that the cohomology ring H ∗(X;Z/2) of a
space is an algebra over the Hopf algebra A(2), see [7]. Hence by Theorem 3.5
the �-algebra K(Z/2) is completely determined by the associated �-sequence of
algebras over the Hopf algebra A(2)

(4.3) H(n) = H ∗(K(Z/2, n);Z/2).
These algebras are computed by Serre [6] as follows; compare [7], II, Section 5.
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EXAMPLE 4.4. The Steenrod algebra A(2) has an unstable structure (B,D)
given as follows. The structure B consists of a sequence of left ideals (n ≥ 0)

(1) · · · ⊂ B(n+ 1) ⊂ B(n) ⊂ · · · ⊂ B(0) ⊂ A(2)

in the algebra A(2). Here B(0) = kernel(ε) is the augmentation ideal and B(n) as
a Z/2-vector space is spanned by all admissible monomials of excess greater than
n; see [7], II.5. An A(2)-module X is termed unstable if B(n)Xn = 0 for n ≥ 0 or
equivalently if for x ∈ X one has

(2) i > |x| implies Sqi (x) = 0.

Moreover for each unstable A(2)-module X the structure D consists of an ideal

(3) DX ⊂ T (X)
where T (X) is the tensor algebra of X. Here DX is the ideal generated by the
elements (x, y ∈ X){

x ⊗ y − (−1)|x||y|y ⊗ x,
Sqn(x)− x ⊗ x for |x| = n ≥ 0.

Compare [7], II.5.3. Accordingly an algebra H over the Steenrod algebra A(2) is
termed unstable if (2) holds and if for x ∈ H
(4) i = |x| implies Sqi (x) = x · x.
Here (2) and (4) correspond to axioms for the squaring operations Sqi in [7],
Section 1.

The unstable structure (B,D) of A(2) has additional properties as described in
the next definition.

DEFINITION 4.5. Let R be a commutative ring and let A be a Hopf algebra over
R. We say that A is an unstable Hopf algebra if a structure (B,D) is given with the
following properties. The structure B consists of a sequence of left ideals (n ≥ 0)

(1) · · · ⊂ B(n+ 1) ⊂ B(n) ⊂ · · · ⊂ B(0) ⊂ Ã,
where Ã is the augmentation ideal of A. We say that a (non-negatively) graded
A-module X is B-unstable if

(2) B(n) ·Xn = 0 for n ≥ 0.

Moreover the structure B has the property that for B-unstable modules X,Y the
tensor product X ⊗ Y with the A-module structure given by A → A ⊗ A is
again a B-unstable A-module. This shows that the tensor algebra T (X) which is
the direct sum of tensor powers X⊗n = X ⊗ · · · ⊗X, n ≥ 0, is an algebra over the
Hopf algebra A and T (X) is B-unstable as an A-module.
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For each B-unstable module X the structure D yields an ideal

(3) DX ⊂ T (X),
where DX is an A-submodule and x⊗ y − (−1)|x||y|y ⊗ x ∈ DX for x, y ∈ X. Let
H be an augmented graded commutative algebra over the Hopf algebra A. Then
we say that H is (B,D)-unstable if H̃ is a B-unstable module and if the canonical
algebra map T (H̃ ) → H extending the inclusion H̃ → H carries DH to 0. The
structure DX in (3) is natural in X and D has the property that for (B,D)-unstable
algebras H , H ′ also the tensor product H ⊗ H ′ is (B,D)-unstable. In particular
we obtain for a B-unstable module X the (B,D)-unstable algebra generated by X

(4) U(X) = T (X)/DX.
We define for a B-unstable moduleX the B-unstable modules X/∼ andX/≈ by

X/∼ = image(X→ Ũ (X)),
X/≈ = image(X→ Ũ (X)→ Ũ (X)/Ũ(X) · Ũ(X)) = Ũ (X)/Ũ(X) · Ũ(X).

We in particular have the B-unstable modules (A/B(n))[n] generated by a sin-
gle element [n] in degree n. Then (B,D) has the property that there is a map of
A-modules (n ≥ 1)

(5) �̃ : (A/B(n))[n]/≈ −→ (A/B(n− 1))[n− 1]/∼
which caries [n] to �[n] = [n − 1]. Since the left-hand side is generated by [n] as
an A-module, we set that �̃ is uniquely determined. This completes the definition.

For an unstable Hopf algebra (A, B,D) we obtain the full subcategory

(4.6) Alg0(A, B,D) ⊂ Alg0(A)

consisting of connected (B,D)-unstable algebras. This subcategory is closed under
tensor products and hence has sums. Moreover the object (n ≥ 1)

(1) H(n) = U((A/B(n))[n])
has the following freeness property. For each object H in Alg0(A, B,D) and
element x ∈ Hn there is a unique morphism in Alg0(A,B,D)

(2) x̄ : H(n)→ H

which carries [n] to x. Here H(n) is termed the completely free (B,D)-unstable
algebra generated by [n].

The result of Serre [6] on H(n) in (4.1) now can be stated as follows; com-
pare [7].

PROPOSITION 4.7. The Steenrod algebra A(2) with the structure (B,D) in Ex-
ample 4.4 is an unstable Hopf algebra and

H ∗(K(Z/2, n);Z/2) = H(n)
is the completely free (B,D)-unstable algebra generated by [n].
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We are now able to determine algebraically the Eilenberg–Mac Lane �-algebra
K(Z/2) in (4.1). For this we need the following result.

PROPOSITION 4.8. Let (A, B,D) be an unstable Hopf algebra. Then one gets an
�-sequence of algebras over the Hopf algebra A by the completely free algebras
H(n), n ≥ 1, in (4.6)(1). For this let

+ : H(n) → H(n)⊗H(n),
− : H(n) → H(n)

be the maps in Alg0(A, B,D) which carry [n] to [n] ⊗ 1 + 1 ⊗ [n] and −[n]
respectively. Moreover let

χ : H̃m(n)→ HomAlg0
(H(m),H(n))

be the function which carries x to x̄ as in (4.6)(2). Let � be the composite

� : H̃ (n) (A/B(n))[n]/≈ �̃
(A/B(n− 1))[n− 1]/≈

H̃ (n− 1)

where �̃ is defined in Definition 4.5(5). Finally let

µi,j : H(i + j)→ H(i)⊗H(j)
be the map in Alg0(A, B,D) which carries [i + j ] to [i] ⊗ [j ].

Proof. One readily checks that the properties of an unstable Hopf algebra in Def-
inition 4.5 imply that the data in the theorem satisfy all properties in Definitions 2.7
and 3.4. ✷

Hence we get by use of Theorem 3.5 the next result.

COROLLARY 4.9. Each unstable Hopf algebra (A, B,D) yields canonically
an �-algebra K(A, B,D) over the Hopf algebra A for which the associated
�-sequence is given by H(n) in Proposition 4.8.

Moreover we get:

THEOREM 4.10. The Eilenberg–Mac Lane�-algebra K(Z/2) over A(2) of prod-
ucts of Eilenberg–Mac Lane spaces K(Z/2, n), n ≥ 0, is isomorphic to the �-
algebra K(A(2), B,D) over A(2) given as in Corollary 4.9 by the Steenrod algebra
A(2) with the unstable structure (B,D) in Example 4.4.

Proof. Using Proposition 4.7 we see that the �-sequences for K(Z/2) and
K(A(2), B,D) are isomorphic. ✷
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A similar result is available for the Eilenberg–Mac Lane �-algebra K(Z/p),
where p is a prime. For this we need the computation of Cartan [4] of H ∗(K(Z/p,
n);Z/p) in terms of the Steenrod algebra A(p).

For an unstable Hopf algebra we get by Corollary 4.9 the�-algebra K(A, B,D)
for which the �-cohomology

H ∗
�(K(A, B,D))

is defined; see [3]. If A = A(2) is the Steenrod algebra then we know that the track
category associated to K(Z/2) is classified by the universal Toda bracket

〈K(Z/2)〉 ∈ H 3
�(K(A(2), B,D)).

Here the right-hand side has a completely algebraic description in terms of A(2).
The Toda bracket 〈K(Z/2)〉 however, is not understood algebraically. It is the
purpose of this paper to prepare the ground for the computation of this class.

5. Models of K(Z/2)

Recall that a theory with products is a small category T with a final object ∗ and
with products denoted by A × B. A model of T is a product preserving functor
M : T → Set which carries ∗ to a point. Let model(T) be the category of such
models. Morphisms are natural transformations.

For each commutative ring R we introduced the Eilenberg–Mac Lane�-algebra
K(R) which is the full subcategory of the homotopy category of pointed spaces
consisting of products of Eilenberg–Mac Lane spaces K(R, n), n ≥ 1. Hence in
particular K(R) is a theory with products and we obtain the category model(K(R))
of models of K(R).

The Steenrod algebra A(2) is an unstable Hopf algebra with the unstable struc-
ture (B,D) in Example 4.4 such that the category Alg0(A(2), B,D) is the category
of connected commutative graded algebras H over the Hopf algebra A(2) for which

Sqi (x) =
{

0, i > |x|,
x · x, i = |x|.

THEOREM 5.1. There is an equivalence of categories

model(K(Z/2)) = Alg0(A(2), B,D).

Proof. By Theorem 4.10 we know that K(Z/2) coincides with K(A(2), B,D)

and it is easy to see that models of K(A(2), B,D) coincide with objects in
Alg0(A(2), B,D). ✷

The theorem shows that models of K(Z/2) have a surprisingly simple descrip-
tion by use of the Steenrod algebra A(2). In general a similar result for models of
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K(R) where R is a commutative ring is not known. For R = Z/p with p an odd
prime we get the following result.

For an odd prime p we have the Steenrod algebra A(p) (over Z/p) generated by
the Bockstein operator β of degree 1 and the reduced powers Pi of degree 2i(p−1),
i ≥ 0, with P0 = 1. Moreover A(p) is a (coassociative and cocommutative) Hopf
algebra with an unstable structure (B,D) such that the category Alg0(A(p), B,D)

consists of augmented commutative graded algebras H over the Hopf algebra A(p)

with

β(x · y) = (βx) · y + (−1)|x|x · (βy),
Pi(x) =

{
0, 2i > |x|,
xp, 2i = |x|

for x, y ∈ H . Similarly as in Theorem 5.1 we get

THEOREM 5.2. For an odd prime p there is an equivalence of categories

model(K(Z/p)) = Alg0(A(p), B,D).
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