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DEFINABLE COMPLETENESS

by Marta BUNGE, Mamumka JIBLADZE and Thomas STREICHER

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XL V-4 (2004)

RESUME. Le but de cet article est d’isoler une notion de compl6-
tude, dite définissable, pour les morphismes g6om6triques sur un
topos de base S telle que, si on aj oute la propriete d’etalement, on
obtient la notion d’6talement complet de Bunge-Funk qui est, a la
fois, la contrepartie g6om6trique de la notion de distribution de
Lawvere sur un topos, aussi bien qu’une generalisation de la notion
topologique de Fox. Pour cela, on utilise des m6thodes de fibration
pour analyser la factorisation, dite "comprehensive", d’un mor-
phisme g6om6trique ayant un topos localement connexe comme
source, en un morphisme pur suivi d’un 6talement complet, le tout
relatif à un topos de base S. On démontre qu’un morphisme géomé-
trique sur S (a source localement connexe) est définissablement
complet si et seulement si le facteur pur de sa factorisation compr6-
hensive est surj ective.

Introduction

The notions of spread and complete spread in topology are due to R. H.
Fox [4]. On account of their connection with Lawvere distributions [8]
in toposes it has become of interest to cast these notions within topos
theory. This has been done by Funk [5] for locales in a topos Y, and
by .Bunge-Funk [2] for geometric morphisms over :7.

In the case of morphisms of locales in a topos Y there is no loss of
generality when considering (complete) spreads Y --&#x3E; X in :7 either
in ignoring the fibrational aspect, or in using a particular site for X,
namely the canonical one associated with the frame O(X).

By contrast, in the case of geometric morphisms F -- 6 over
Y, when revisiting the (complete) spreads we find that the fibrational
theory associated with a geometric morphism (Moens [9], Streicher [10])
is advantageous, and that it is desirable to provide definitions not just
of a spread (already done in [2]), but also of completeness.

The complete spread geometric morphism associated with a distri-
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but ion ¡L is obtained by a topos pullback construction that we call the
display tnpns of u. The generating covering families for the topos pull-
back of a subtopos can easily be given an explicit description: in the

case of the display topos these families are described in [2], which here
we shall call p-covers. Our purpose is first, in §1 and §2, to effectively
describe the p-covers within the fibrational theory associated with a ge-
ometric morphism. The new description we find involves a certain right
adjoint from the distribution algebra associated with the distribution
[3] to the display category of the distribution.

Then beginning in §3 we use the fibrational description of p-covers
to identify the definable completeness condition. Our main result states
that a geometric morphism is definably complete iff the pure factor of
its "comprehensive factorization" is a surjection. We prove this result
by examining the comprehensive factorization in terms of a given site
for 6 over Y [2]. The necessity of the condition follows from a result in
Johnstone [7] (Theorem C3.3.14) that describes the pullback topology.
In the last section of the paper we prove that a geometric morphism is
a complete spread iff it is a spread and definably complete.

1 u-covers

Let 6 denote a Grothendieck topos over Set, with A H F : 6 ---&#x3E; Set.
A distribution on 6 in Lawvere’s sense is a functor u : E - Set that
preserves colimits. We may consider the display category of p, whose
objects are (E, x), where x E J.-l(E). A morphism (E, x) - (F, y) in
this category is a morphism m : E - F in 6 such that J-L(m)(x) == y.
There is a geometric morphism over 6 obtained by a topos pullback

that we call the complete spread geometric morphism associated with
p. Here C is a small site for 6 and Y is the restriction of the display
category to C: the forgetful functor U : Y -- C is a discrete opfibra-
tion (and a cosheaf) that gives the essential geometric morphism y of



245

presheaf toposes. The pullback topology in Y is generated by covering
families ([2], page 19)

where R is an epimorphic family in 6. This description of the pull-
back topology is valid for any functor Y ---&#x3E; C, but in the case of a
distribution we shall call these covering families p-covers.

We wish to describe the p-cover U* R in fibrational terms. Let

which is an object of Set. Let

which is an object of 6. We have a map s : C --&#x3E; p(P) such that
s(i, x) = x, making (P, s) a C-indexed family of objects of the display
category of p. There is a morphism (P, s) --&#x3E; (F, y) in the category of
families of the display category that is precisely the p-cover U*R.

These considerations can be described with diagrams. The epimor-
phic family R may be regarded as a collective epimorphism (below left)
where the fiber p-1 (i) = Ei, so that

Then C is the pullback (above center), where t-1(i) = Ei(Ei). The left
side of this pullback may not be an I-indexed family of objects of the
display category of p because the map t · r may not be an isomorphism.
We rectify this by forming the object P previously defined: it is the

pullback in 6, above right. Then p(P) --&#x3E; C has a canonical section s

making (P, s) a C-indexed family of objects of the display category of
J-L.
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2 The display category
We proceed to define in fibrational terms the display category of a
distribution, and the p-covers in the display category.

We work over what we call a base topos, always denoted Y. Through-
out, e : E --&#x3E; Y denotes a geometric morphism, e* -| e* . We usually
just say that 6’ is a topos over Y. Let 61e* denote the category of
objects D --&#x3E; e*A whose morphisms are pairs (k, a) such that

commutes.

Let p : E ---&#x3E; Y be a colimit preserving functor over Y. We define
a category Display, associated with p. An object of Display, is a pair
of morphisms

where s is a section of MD --&#x3E; A: t - 8 - lA and t = jjA(d). (Note that
EAuA (d) = uEA(d) = pD because we are assuming that /-t preserves
coproducts.) A morphism in Display, is a morphism (k, a) in E/e*
such that

commutes.

Proposition 2.1 The forgetful functor
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such that U(d, s) = d is a Cartesian functor of Y-fibrations. U has a
right adjoint (which is not Cartesian) and the Y-fibers of U are discrete
opfibrations.

Proof. An explicit description of the right adjoint is available. Given

D --&#x3E; e*A, let t : uD ---&#x3E; A denote J-lA(d). Form the following two
pullbacks. The right-hand kernel pair arises because p is a Cartesian
functor.

Then the right adjoint assigns to d the pair (z, s), where s : pD --&#x3E; J.LF
is the section given by the kernel pair. 0

Consider the distribution algebra [3] associated with a distribution p:
if p -i J-l*, then u* (QY) is a partially ordered object of 6 that we call the
distribution algebra associated with /i. We typically denote u*(QY) by
H. (H has other properties that do not immediately concern us here.)

We may compare H with Display, by pulling back the fibration of
H over f to E/e*, as in the following diagram of pullback categories.

An object of [H] is a pair (D, S) such that D is an object of E and
S &#x3E;--&#x3E; uD is a subobject. The functor a1 is the codomain fibration.

Objects of Hu are pairs (d, S) where D --d&#x3E; e*A is an object of E/e*
and S’ &#x3E;--&#x3E; uD is a subobject.
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Proposition 2.2 The. full inclusion of fibrations over S°

is Cartesian, and it has a right adjoint (which is not Cartesian), which
we shall call the D-coreflection.

Proof. The right adjoint assigns to a pair (D ---&#x3E;d e*A, S &#x3E;--&#x3E;r uD) the
pullback m

in 6, where t : J-lD --+ A is equal to ¡..LA (d). Then J-ls (m) is equipped
with a section s : S ---&#x3E; pF induced by r and the pullback above right. a

Definition 2.3 A morphism (k, a) in 61e* for which k is an epimor-
phism in f is called a collective epimorphism.

Suppose we are given a collective epimorphism

in E/e*, and an object (z, s) of Displayu. The D-coreflection of the
Cartesian lifting along the fibration Hu ---&#x3E; 61e* of (k, a) is formed
from the pullbacks
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in Y and E, where t : pD -- A is equal to MA(d). Then uC (m) is

equipped with a section s’ : C --&#x3E; pF induced by r and the pullback

in Y. (This square is a pullback because p is a Cartesian functor.)
There is a morphism (m, s’) ---&#x3E; (z, s) in Display,,, which is a counit of
the D-coreflection composed with the Cartesian lifting of (k, a).

Definition 2.4 The D-coreflection of the Cartesian lifting along

of a collective epimorphism in 61e* and a given object of Display, is
called a p-cover of the given object.

We recall that a generating family for a geometric morphism F ---&#x3E; E
is a morphism G ---&#x3E;g 1/;* D with the property that every Y ---&#x3E;x 1/;* E can
be put in a diagram of the following form, where the right hand square
is a pullback.

A geometric morphism V) is said to be bounded if it has a generating
family.

Suppose that G ---&#x3E;g e* B is a generating family for f over Y. Let

C denote the full subcategory of E/e* on objects D ---&#x3E;d e*A for which
there is a pullback 
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in 6. It follows that C is equivalent to a small (or internal or repre-
sentable) 9-fibration: C is said to be essentially small. Every object
of S/e* can be covered by a collective epimorphism with domain in C.

Let Y and X denote the full subcategories of Display,,, respectively
Hu, on the objects (d, s), respectively (d, S), such that d is an object
of C. It follows that Y and X are also essentially small. The forgetful
functor Y ----&#x3E; C forms part of the category pullbacks.

Since U is an Y-Cartesian functor whose fibers are discrete opfibrations
(Prop. 2.1), the left vertical Y -- C is a discrete opfibration when
considered as a functor internal to Y. X ---&#x3E; C is an internal fibration.

Lemma 2.5 We have the following.

1. The D- coreflection restricts to a right adjoint X ----&#x3E; Y. In par-
ticular, a p-cover associated with a collective epimorphzsm of C
lies in Y.

2. A J1-cover of an object of Y may be refined by a u-cover associated
with a collective epimorphism in C.

Proof. 1. The D-coreflection is defined by a pullback in g along a
morphism e* A --&#x3E; e* B. Such a pullback of an object of C is again an
object of C. Therefore, the D-coreflection of an object of X is an object
of Y .

2. The domain of the collective epimorphism associated with the
given p-cover may be covered by another collective epimorphism whose
domain is an object of C. The composite of the two collective epimor-
phisms therefore lies in C because C is full. The p-cover associated
with the composite refines the one with which we started. 0
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The complete spread Q : fV -- 6 associated with p is the topos
pullback

induced by the functors Y --&#x3E; X --&#x3E; C. The topos is locally
connected (yj H y*), and we recover p as y! · Y*. Hence, u* = Y* - y*.
Remark 2.6 Y is localic, and 9 may be considered as Shc(X), for
the locale X in 6 whose frame is 6’(X) = Y*(Qy). This frame may be
described as a sheaf on C: if C is an object of C, then

O(X)(C) = { subobjects of y*(C) that are closed for u-covers } ,
where y*(C)(C’, s’) = C(C’, C). There is a canonical order preserving
map 

in e, where T : y* (QY) &#x3E;--&#x3E; 01Y classifies y*(TY) in Y (T is a subobject
as y is subopen). We may describe Y* (r) explicitly. For any object C,
a subobject S - pC defines a subobject T &#x3E;--&#x3E; y*(C) that is closed for
p-covers:

One of our goals is to describe in 6 the covering families {ha  h} in
H that give Y as Shc(H).

The following result is due to Peter Johnstone, called C3.3.14 in the
Elephant. (Our proof of Theorem 8.3 depends on this result.)
Theorem 2.7 The pullback topology along a geometric morphism -y : 
31’ ---&#x3E; X of a topology J in X is given by the upclosure of the image-
object K in the diagram:



252

where X classifies 1’* T .

We have a presheaf J on C such that

J(d) = {sieves on d engendered by a collective epimorphism in C} ,

where D ---&#x3E;d e*A is an object of C. Then J is a topology in P(C) whose
sheaf subtopos is 6: (C, J) is a site for 4. Define a presheaf K on Y
such that

K(d, s) = { sieves on (d, s) engendered by a p-cover associated with
a collective epimorphism in C }.

We have the following.

Proposition 2.8 The above presheaf K is isorraorphic to the object also
denoted K in 2.7 for the geometric morphism y in (3). The topology in
Y giving the complete spread topos Y is therefore equal to the upclosure
of K.

Proof. By virtue of the D-coreflection (Lemma 2.5) we may equiva-
lently describe the above presheaf K as

K(d, s) = { sieves on (d, s) engendered by the Cartesian lifting to Hu
of

a collective epimorphism in C }.

This presheaf is the K in 2.7 for the topos pullback (3). 0

3 The category CAT, of Y-families
We work in what we shall call the category of ’l/J-families associated
with a geometric morphism over a base topos Y.

Usually we assume that the domain topos F is locdlly connected, in
the sense that there is a left adjoint fi U f* over Y. A 0-family (or
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just family) is a pair (D --&#x3E;d e*A, X - Y*D), which we usually depict
as a diagram

. in F. A morphism of such families is a triple of morphisms X --&#x3E; Y
in F, D ---&#x3E; E in 6, and A - B in Y making the obvious squares
commute. We denote the category of Q-families by CAT1/;.

C.llT 1/; is the total category of an Y-fibration CAT, --&#x3E; Y. Briefly,
if P1/; : gIV)* ---&#x3E; E denotes the fibration corresponding to the geo-
metric morphism Y, then CAT, arises from an 6-fibration FAM(PY)
by change of base along e*. This is described in the following diagram
of category pullbacks.

If E is locally connected, then the top horizontal CATY ---&#x3E; F/Y*
has a full and faithful left adjoint.

We mention specially the functor CAT, ---&#x3E; E/e*, depicted verti-
cally in (5), which associates with an object (4) the object d. This

functor is a fibration. It has a right adjoint that associates with an

object d the object Y*D ---&#x3E;1 ’ljJ* D ---&#x3E; f *A.
We also have a functor, not depicted in (5),

that forgets Y* D in an object (4). This functor has a full and faithful
right adjoint that associates with X - f*.l4 the object X --&#x3E; Y*e*A =
f * A. Thus, F / f * is a full reflective subcategory of CATY.
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4 Families of components: FC1jJ
We recall some basic notions from topos theory that we need [1, 6, 7].
Let F --&#x3E; Y denote a geometric morphism, with f * -| f*.

Definition 4.1 A morphism X --&#x3E;m Y in F is said to be definable if it
can be put in a pullback square as follows.

A definable subobject is a monomorphism that is definable.

Proposition 4.2 We have the following.

1. Definable morphisms are pullback stable.

2. A definable subobject is defined by a monomorphism in :7.

3. The inverse image functor of a geometric rraorphism preserves
definable morphisms.

4. If f is locally connected (f! -1 f *), then rra is definable iff the
adjunction square

is a pullback.

5. In a locally connected topos, definable morphisms compose, and if
n - m and n are definable morphisms, then so is m (by the above).

Let 0 : F ---&#x3E; E denote a geometric morphism over a base topos
:7.
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Definition 4.3 A family X --&#x3E; Y*D ---&#x3E;Y*d f *A is a definable family if

X ---&#x3E; Y*D is a definable subobject. Let FD1jJ denote the full subcate-
gory of CAT, on the definable families.

FDY --&#x3E; E/e* is a fibration with a right adjoint. The inclusion functor
FDY ---&#x3E; CAT, is Cartesian over E/e* because definable morphisms are
pullback stable.

Definition 4.4 When 9 is locally connected, we may consider what
we shall call a f amily of components : this is a definable family with the
property that the transpose f!X ---&#x3E; A under f! -1 f * is an isomorphism.
Let FC1/; denote the full subcategory of FDp on these families, for F
locally connected.

Informally speaking, a family of components has the property that
there is exactly one component of X in every fiber d-1 (a). For instance,
if A = 1, then X &#x3E;--&#x3E; Y*D ---&#x3E;Y*d f*A is a family of components just when
X is connected.

Remark 4.5 A family X ---&#x3E;m Y* D ---&#x3E;Y*d f * A is a family of components
iff m is a definable morphism and the transpose f!X --&#x3E; A is an isomor-
phism. Indeed, if m is definable and the transpose is an isomorphism,
then m is a subobject as it is a pullback of the (split) monomorphism
f* f!(m).

Proposition 4.6 The inclusion FCY --&#x3E; FDY is Y- Cartesian. More-

over, FCY is coreflective in FDY (but this right adjoint is not Carte-
sian) : the coreflection is formed by first considering the following pull-
back in 6 and then lifting back to 9 under Y* . Let i denote the trans-
pose under f! -I f * of a definable family t, below right.
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The left vertical X &#x3E;--&#x3E; ’ljJ* F - f*f!X is then the coreflection, which
we call the FC-coreflection . 71 denotes the unit of f! -1 f * .

Proof. FC1jJ is Y-Cartesian in FD1/; because the transpose under f! -1

f * of a pullback square is a pullback. The coreflection of a definable
family is again definable because evidently the morphism p, and hence
Y*p, is definable (Prop. 4.2). 0

5 The display category of Y
Let o : F ---&#x3E; E have locally connected domain. Let DisplayY denote
Displayf!Y*, as defined in §2. For instance, an object of DisplayY is a
pair of morphisms

where s is a section of the transpose ,
t · s = 1 A . Similarly, we have H1jJ.

For the reader’s convenience we again describe the p-cover of an
object (z, s) of Display, associated with a collective epimorphism

in fle* . We form the pullbacks

in :7 and S, where t : f!Y*D ---&#x3E; A is the transpose of Y*d. Then m is
paired with a section s’ : C ---&#x3E; f!Y* F induced by r and the transpose
pullback
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in Y. We have a morphism (m, s’) - (z, s) that is the p-cover asso-
ciated with (x, a).

Proposition 5.1 There are functors V and V’

defined as follows. V(d, s) is the following pullback.

(Really V (d, s) is the top row 1 is th e

definable subobject of 1jJ* D with characteristic morphism Y*D - f*QY
transposed from the characteristic morphism of S - f!Y*D.

V(d, s) is a family of components, and both V and V’ are equiva-
lences. In particular, FCY ---&#x3E;E/e* is Y-Cartesian with a riglat ad-
joint, and its fibers are discrete opfibrations (Prop. 2.1).

Proof. In diagram (6) the composite morphism Y*d-m is equal to the
left vertical since the bottom horizontal is the identity on f *A. Thus
the transpose of V(d, s) under fj H f * is an isomorphism because it is
equal to the left vertical of the transpose pullback.

It follows easily that V is an equivalence. Y’ is also obviously an equiva-
lence and it is not difficult to check that the V, V’-diagram commutes. o
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The FC-coreflection and D-corefiection are thus identified under the

V, V’ equivalence.

6 Definable completeness
Let 0 : F ---&#x3E; E be a geometric morphism over So. We shall some-

times denote a typical object Y ---&#x3E;Y*E --&#x3E;Y*x f*B of CAT1/1 just by Y.

Definition 6.1 A V)-cover of Y is a commutative diagram in F of the
following form.

If the top square in a 0-cover is a pullback, then we say that the V)-cover
is Cartesian: we call it the Cartesian 7jJ-cover of Y associated with the
morphism (h, a) of E/e*.

Remark 6.2 When 9 is locally connected we have the following.

1. The counit of the FC-coreflection is a Y-cover.

2. If the codomain object of a 0-cover is a family of components,
then the morphism A ---&#x3E;a B from :7 must be an epimorphism.
This follows by transposing under f! -| f * the Y-cover to :7.

The domain object of a Cartesian 1/J-cover of a family of components
must be a definable family, although it may not be a family of com-
ponents. However, we may always consider the FC-coreflection of the
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domain object. The FC-coreflection produces the following diagram.

The upper right and lower left squares are pullbacks. The outer square
is a morphism in FCY.

Proposition 6.3 A morphism in FC1/; corresponds under the equiva-
lence L’ to a p-cover iff it is the FC-core fl ection of the Cartesian V)-
cover of a family of components Y &#x3E;--&#x3E; Y*E ---&#x3E; f*B associated with a
collective epimorphism (k, a) of 6’/e*.

Proof. Use Proposition 5.1 and the description of p-covers in §5. o

Remark 6.4 Thus, we may speak of p-covers in FC1/;. A p-cover in
FC1/; is a diagram of the following kind, where (k, a) is a collective

epimorphism.

A p-cover in FCY is a 0-cover.

Definition 6.5 Let 0 : F ---&#x3E; E have locally connected domain. We
say Y is definably complete if in FCY every Y-cover can be refined by a



260

p-cover. The prism diagram

depicts such a refinement, where the front face of the prism is a typical
Y-cover, and the refining back right face is a p-cover, associated with
a collective epimorphism (k, a) in E/e* . We have not depicted the
Y-fibering data in the above prism.

We allow for reindexing over Q: 9 is definably complete if there
is a : B’ --&#x3E; B in Y such that a* of the given ’-cover is refined by a
p-cover over B’.

7 Comprehensive factorization revisited
In order to state and prove Theorem 8.3 we must revisit the comprehen-
sive factorization of a geometric morphism, but now from a fibrational
point of view. This section is directly related to §2.

Suppose that the codomain topos E of F --&#x3E;Y E is bounded, and
let C denote the essentially small full subcategory of 61e* determined
by a generating family for 6, as in §2. Let Y denote the category
pullback.
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The right vertical is E-Cartesian whose fibers are discrete opfibrations
(Prop. 5.1). Therefore, the left vertical is a discrete opfibration internal
to Y.

We rephrase Lemma 2.5.

Lemma 7.1 We have the following.

1. If D - e*A is an object of C, then the FC-corefiection of a defin-
able family X &#x3E;--&#x3E; Y*D --&#x3E; f *A is an object of Y. In particular, a
p-cover associated with a collective epirraorptaism of C lies irz Y.

2. A lt-cover of a family of components in Y may be refined by a
u-cover associated with a collective epimorpizism in C.

The comprehensive factorization of o may then be defined by the
following topos pullback diagram (over Y).

The discrete opfibration Y --&#x3E; C induces the essential geometric mor-
phism -y. The geometric morphism p comes from the functor composite

that sends an object X &#x3E;--&#x3E; Y* D ---&#x3E;Y*d f* A of Y to the composite X - f * A.
This Y-Cartesian functor is flat, so that it corresponds to the inverse
image functor of a geometric morphism p.

It is known that the above factorization of o is essentially unique
and does not depend on the generating family chosen for the codomain
topos 6.

We recall the following definition.
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Definition 7.2 The above factorization of 0 (for which 9 is locally
connected and is bounded) is called its comprehensive factorization:
the first factor u- is called its pure factor, and the second its complete
spread factor. A geometric morphism is said to be a complete spread if
its pure factor is an equivalence.

8 Main theorem

We have V) : F ---&#x3E; E over Y such that F is locally connected and
6 is bounded. As always, C denotes the full subfibration of Pe for a
generating family for 6 over Y. We have a presheaf J on C such that

J(d) = {sieves on d engendered by a collective epimorphism in C} ,

where D ---&#x3E;d e*A is an object of C. Then J is a topology in P(C) whose
sheaf subtopos is 6: (C, J) is a site for 6.

Define a presheaf J on Y such that

J(Y) = {sieves on Y engendered by a 0-cover in Y} ,

where Y’ denotes a typical object of Y. Then J is subpresheaf of Q in
P(Y).

Proposition 8.1 J is a topology in P(Y): its topos of sheaves is the
subtopos of P(Y) given by the image of p in diagram (7).

Remark 8.2 As in §2, w-e have a presheaf K &#x3E;--&#x3E; J on Y such that

K(Y) = { sieves on Y engendered by a p-cover associated with
a collective epimorphism in C }. 

By Proposition 2.8, this K is isomorphic to the K in Johnstone’s
C3.3.14 (herein Theorem 2.7) for the geometric morphism y in (7).
Hence, if the pure factor T of 0 is a surjection, then J equals the up-
closure of K.

Our main result is the following counterpart of Proposition 9.2.
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Theorem 8.3 Let o : F ---&#x3E; E have locally connected domain and
bounded codomain. Then Y is definably complete iff the pure factor of
the comprehensive factorization of 1/J is a surjection.

Proof. Suppose that V) is definably complete. Consider the compre-
hensive factorization in terms of a chosen Y - C. Let S denote a

J-sieve on a family of components in Y: S is engendered by a 0-cover
in Y. By definable completeness we may refine this Q-cover by a p-
cover, whose domain object is of course a family of components. The
collective epimorphism associated with this p-cover may not be in C;
however, we may apply Lemma 7.1, 2, and therefore refine the first

p-cover by a p-cover whose associated collective epimorphism lies in
C. Hence, we may find a K-sieve that is contained in ,S’, which shows
that J is contained in the upclosure of K. Therefore J is contained
in (hence equal to) the topology generated by K. Thus, the image
topos of p coincides with 1!/. In other words, the pure factor of 0 is a
surjection.

Conversely, suppose that the pure factor of V) is a surjection. Sup-
pose we are given a 0-cover in FC1/;. We may choose the generating C
such that the collective epimorphism associated with the given V)-cover
lies in C. By definition of the Y associated with this C, the 1/J-cover lies
in Y. By Remark 8.2, for this C and Y, J equals the upclosure of K.
Thus, the sieve engendered by the given Y-cover contains a K-sieve.
This K-sieve is engendered by a p-cover associated with a collective
epimorphism in C. This p-cover therefore refines the given ?j)-cover.
This shows that V) is definably complete. 0

Remark 8.4 Only the argument for necessity of the completeness con-
dition (second paragraph above) depends on Johnstone’s C3.3.14.

Example 8.5 We note some simple examples.

1. Pure surjections may be readily found. Any connected geometric
morphism is a pure surjection. A simple example from topology
of a pure surjection is a projection from a punctured plane to the
real line.

2. It may strike the reader that definable completeness is like a com-
pactness condition in the sense that an arbitrary cover can be
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refined by a cover from a preferred class. This is indeed so, but

definable completeness is broader than compactness since any lo-
cally connected topos F ---&#x3E; Y is definably complete. This can
be seen directly from the definition of definably complete, but
observe that the pure factor is the connected, hence surjective,
geometric morphism 9 ----&#x3E;Y/f!(1). This example is neither a
spread nor pure.

3. The identity geometric morphism E ---&#x3E; E on any locally con-
nected topos is a complete spread. Hence, it is definably complete.

9 Spreads revisited
Our purpose in this section is to prove Theorem 9.3. A spread is de-
fined in [2] as a geometric morphism that has a definable family that
generates at 1. It turns out that this is not equivalent to the following
stronger notion.

Definition 9.1 A geometric morphism Y : F ---&#x3E; E over :7 is said
to be a spread if 9 has a definable generating family.

Proposition 9.2 Suppose that F ---&#x3E;Y E has locally connected domain
and bounded codorrzazn. Then the following are equivalent:

1. ø is a spread.

2. For any generating family chosen for g, every object of 91f * can
be covered by an object in the image of the functor (8).

3. The pure factor T Of 0 is an inclusion.

Proof. Assume that 9 is a spread. We refer to diagram (7). As

always, C and Y denote the essentially small categories associated with
a generating family for 6. An object X --&#x3E; f*A = ’lj;* e* A may be put
in a diagram
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where P --&#x3E; Y*E is definable. Now cover E --&#x3E; e*A by an object of C,
and consider the pullback below right.

We have thus covered X --&#x3E; f* A by Q ---&#x3E; 0* F ---&#x3E; f*B, where Q --&#x3E;Y* F
is definable, and F --&#x3E; e*B is an object of C. But then the FC-coreflection
of Q is an object of Y that covers X --&#x3E; f*A. (Even if Q --&#x3E; Y*F is
not a subobject, by Remark 4.5 its FC-coreflection is a family of com-
ponents.)

If every object of F/f* can be covered by an object in the image
of the functor (8), then p is an inclusion, so that T is also.

Finally, suppose that T and hence p is an inclusion. The essential
geometric morphism associated with a discrete opfibration, in this case
ry, is a spread. The composite of an inclusion followed by a spread is a
spread, so that y. p is a spread. Then Y is a spread because any left
factor of a spread is a spread. O

Theorem 8.3 and Proposition 9.2 give us the following.

Theorem 9.3 A geometrzc morphism with locally connected dorrzain
and bounded codomain is a complete spread (Def. 7.2) iff it is definable
complete and a spread (Defs. 6.5 and 9.1).

Proof. A geometric morphism is a complete spread iff its pure factor
is an equivalence iff the pure factor is an inclusion and a surjection iff
the geometric morphism is a spread and definably complete. 0
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