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CAHIERS DE TOPOLOGIE ET Volume XLVII-3 (2006)
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

QUILLEN COHOMOLOGY AND BAUES-WIRSCHING
COHOMOLOGY OF ALGEBRAIC THEORIES

by M. JIBLADZE and T. PIRASHVILI

RESUME. Les théories algébriques peuvent elles-mémes étre considé-
rées comme des sortes de structures algébriques, par conséquent il est
possible de considérer leur cohomologie au sens de Quillen. Dans cette
note, on montre que la cohomologie de Quillen d'une théorie algébrique
est isomorphe a sa cohomologie de Baues-Wirsching.

Introduction

The aim of this work is to construct cohomology groups of algebraic the-
ories. Our construction follows the general philosophy of Barr&Beck and
Quillen. As prescribed by it, the category of coefficients for cohomology of
a theory T is the category #(T) of internal abelian groups in the comma
category T T of theories over T. We show that Z(T) is an abelian
category with enough projective and injective objects, and we give two more
alternative descriptions of it. First, it is equivalent to the full subcategory
of the category of natural systems on T in sense of [6], namely, of the s. c.
cartesian natural systems (see Section 2); on the other hand, we construct an
explicit ringoid valued functor %4 and prove that # (T) is also equivalent to
the category of modules over %y.

After establishing these three alternative descriptions of the category
& (T) we accordingly give three different constructions of the cohomology
groups of T with coefficients in an object of #(T). The first construction

follows the Quillen approach and uses simplicial resolutions of T in Thoorsis

-163 -



JIBLADZE & PIRASHVILI - QUILLEN COHOMOLOGY AND BAUES-WIRSCHING COHOMOLOGY

by free theories. The second “Cartan-Eilenberg style” approach defines co-
homology groups as suitable Ext-groups in the category % (T). Finally, the
third approach utilizes the Baues-Wirsching cohomology of T considered as
a small category.

Our main result claims that these three approaclfes give essentially the
same result. In particular, we prove that the Baues-Wirsching cohomology
of a free theory with coefficients in a cartesian natural system is trivial in
dimensions > 1.

Finally, we must note that our constructions and results generalize the
work of the authors on this subject [10]. In that paper, coefficients for the
cohomology of theories were defined in much more restricted situation —
which however was of sufficient generality for the theories of modules over a
ring. The difference roughly corresponds to the difference between bifunc-
tors and Cartesian natural systems as coefficients for the Baues-Wirsching
cohomology.

1 Recollections

1.1 Cohomology of small categories
1.1.1 Basic definitions

Let C be a category. Then the category FC of factorizations in C is defined
as follows. Objects of FC are morphisms f : A — B in C and morphisms
(a,b) : f — gin FC are commutative diagrams

in the category C. A natural system on C is a functor D : FC — S to the
category of abelian groups. We write D(f) = Dy. Ifa: C - D, f: A— C
and g : D — B are morphisms in C, then the induced homomorphism
(1a,a)« : Dy — Dgy will be denoted by ¢ — a€, for ¢ € Dy, while
(a,1B)« : Dy — Dy, will be denoted by n — na, n € D,. We denote by
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C*(C; D) the following cochain complex:

C"(C; D) = 1T Day...any

(A()«a—lAl«——.ufa—"An) ec’

with the coboundary map given by

d(p)(a1,az, ..., nt1) = a19(ag, ..., Gpy1)+

+ Z(—l)if(al, ey QgBig 1, ey Q1) + (—1)"+1<P(<117 vy O )1
=1

According to [6] the cohomology H*(C; D) of C with coefficients in D is
defined as the homology of the cochain complex C*(C'; D).

A morphism of natural systems is just a natural transformation. For a
functor ¢ : C' — C, any natural system D on C gives a natural system
D o (Fq) on C’ which we will denote ¢*(D). There is a canonical functor
FC — C°° x C which assigns the pair (4, B) to f : A — B. This functor
allows one to consider any bifunctor D : C* x C — A as a natural
system. In what follows bifunctors are considered as natural sy t
this correspondence. Similarly, one has a projection C* x C —
yields the functor FC — C given by (a : A — B) — B. This allows us to
consider any functor on C as a natural system on C. In particular one can
talk about cohomology of a category C' with coefficients in bifunctors and in
functors as well. One easily sees that for a bifunctor D : C° xC — 97 the
group H°(C; D) coincides with the end of the bifunctor D (see [12]), which
consists of all families (z¢)ceobc, Where ¢ € Dy, for each C € Ob C,
satisfying the condition a(z4) = (zg)a foralla : A — B. In the case of a
functor F : C — 9 the group H(C; F) is isomorphic to the limit of the
functor F and the groups H*(C; F') are isomorphic to the higher limits (see

(6.
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1.1.2 Linear extensions and second cohomology of categories

We will need the definition of linear extensions of categories and their re-
lationship with the second cohomology following [6]. Let D be a natural
system on a small category C. A linear extension |,

0-D-ELC-0

of C' by D is a category E, a full functor p which is identity on objects, and,
moreover, for each morphism f : A — B in C, a transitive and effective
action of the abelian group D; on the subset p~'(f) C Homg(A4, B),

Dy xp M (f) = p7H(f); (@ f)—a+ ],
such that the following identity holds

(a+ f)(b+§) = fo+ag+ fa.

Here f and g are two composable arrows in C, f € p~(f), § € p~'(g) and

a € Dy, b € D,. Two linear extensions E and E’ are equivalent if there is
an isomorphism of categories € : E — E' with p'e = p and withe(a + f) =

a + ¢(f). For example, there is a trivial linear extension D x C — C with

Hompuc(4,B)= [[ Dy
f€Home (A,B)

and composition given by
ab = fb+ag

for any composable f and gin C andany a € Dy, b € D,. Itisprovedin[11,
1.6] that for any natural system D on a category C the trivial linear extension
D x C — C has the structure of an internal abelian group in the comma
category CAT/C of categories over C and moreover there is a one-to-one
correspondence between linear extensions of C by D and (D x C — C)-
torsors in CAT/C.
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Let Linext(C; D) be the set of equivalence classes of linear extensions
of C by D.

1.1.3. Theorem. ([6]) There is a natural bijection

4

Linext(C; D) ~ H*(C; D).

1.2 Finite product theories
1.2.1 Basic definitions

A finite product theory (simply theory for us) is a small category with fi-
nite products. A morphism of theories is a functor preserving finite prod-
ucts. With these morphisms, theories form a category Fheoris. Let € be
a category with finite products. A model of a theory T in the category
%, also termed a &-valued model of T, or an T-model in €, is a functor
T — & preserving finite products. Models of T in ¥ form a category
T(%¥), with natural transformations as morphisms. Models in the category
& of sets will be called simply models, and the category T( gw) will
be also denoted by T-mod. It is known that the category T-mod is com-
plete and cocomplete for any theory T. Moreover the inclusion T-mod —
Funct(T, gm) preserves all limits and has a left adjoint, and the Yoneda
embedding T°°? — Funct(T, gw) factors through it, i. e. there is a full em-
bedding F' : T°? — T-mod. Models in the image of F' are called finitely .
generated free models, so that T is equivalent to the opposite of the category
of such models. It is easy to see that the functor F' preserves coproducts, i. e.
F(X xY) is a coproduct of F(X) and F(Y) in the category of models. A
morphism of theories f : T — T’ induces a functor

f*: T-mod — T-mod,

where f*(M) = Mo f. Clearly this functor preserves all limits. Since more-
over the categories of models have small generating subcategories (those of
free models), by Freyd’s Special Adjoint Functor Theorem the functor f*
has a left adjoint

fi : T-mod — T'-mod.
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One can see that the square

Tor — > T-mod

| |5

J{
T'®° —> T'-mod
commutes. See [2] for details.

1.2.2 Single sorted theories

Let S? < & be the full subcategory of & with the objects n =
{1,...,n} for n > 0. Since the category S°P has finite coproducts, the cate-
gory S, opposite of the category S°P is a theory, which is called the theory of
sets. To distinguish objects of S and S°P we redenote objects of Sby X° = 1,
X'=X,X? X3,---. Forany 1 < i < n wedenote by z; : X" — X the
morphism of S corresponding to the map {1} — n, which takes 1 to 3.
It is clear that m is a coproduct of n copies of {1} in S°P. It follows that
Z1,...,Zn : X™ — X is a product diagram in S. One observes that S(%¥) is
equivalent to ¥ for any category with finite products €. In particular S-mod
is equivalent to the category &

A single sorted theory is a theory morphism S — T which is identity
on objects. The full subcategory of S/% with single sorted theories as
objects will be denoted by 9%,. Thus objects of single sorted theories are
just natural numbers, which are denoted by X° = 1, X! = X, X2 X3,....
There are projections z, ..., Z, from X" to X. If M is a model of a single
sorted theory T, then M (X) is called the underlying set of M. It is then
equipped with operations uys : M(X)* — M(X) for each element u of
Homp(X™, X), satisfying identities prescribed by category structure of T.
By this reason, elements of Homy(X", X') will be called n-ary operations
of T. Thus for any single sorted theory T, the category T-mod is a variety
of universal algebras. Conversely, for any variety V, the opposite of the
category of the algebras freely generated by the sets n = {1,...,n},n > 0,
is a single sorted theory, whose category of models is equivalent to V.
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1.2.3 Multisorted theories

Let I be a set and consider the category S°°/I of maps n — [ for various
sets n = {1,...,n}. Morphisms in S°*/I fromn — [tom — I are
commutative diagrams of sets ,

4
I
One easily sees that this category has finite coproducts; for example, coprod-
uctof f; :my — Tand fo : ny — Iis (f2) :ny Umny — I. in fact, the set
of objects of S°?/I can be identified with the free monoid generated by the
set ] in such a way that a word i;...7,, represent the coproduct of the objects
iw:1—>1I,v=1,..,n. Soany f : n — I is the coproduct of the objects
fAQ):1—>1,.., f(n):1 — IinS/I. We let Fam; be the opposite of
the category S°?/I. Then Fam; is a theory called the theory of I-indexed
families. To distinguish objects of Fam; and S°°/] we denote the object
of Fam; corresponding to a map f : n — I by X;. Hence an object of

Famy has the form X;, x ... x X;_ for a unique n-tuple (1, ...,4,) € I". It
is straightforward to check that the functor

Fam; (%) — ¢’ *)

which assigns to a model M : Fam; — % the family M(X;);c; is an
equivalence.
For a set I, an I-sorted theory is a theory morphism Fam; — T which

is identity on objects. The full subcategory of Fam; /% with [-sorted

theories as objects will be denoted by 77
Although I-sorted theories appear to be of very special kind, one has

1.2.4. Proposition. For any theory T there is a set I and an I-sorted theory
Fam; — T such that the category T is equivalent to T.

Proof. Let I be the set Ob(T) of objects of T. We then are forced to take
for the set of objects of T the free monoid ) -, Ob(T)" on I. There is an
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obvious map from this monoid to the set of objects of T, IT : Ob(T) —
Ob(T) which assigns to an n-tuple (X3, ..., X;,) of objects of T its product
X1 %X ... x X, in T. We then simply define

Homs (X1, ..., Xu), (Ya, oy Yin)) = Homg(II(X1, .., Xp), (Y4, ..., Vi)

This clearly defines the category T with the same objects as Famoyr) and
a functor T — T which is full and faithful and surjective on objects, i. e.
it is an equivalence. Moreover by (*) above, models of Famgy ) in a cat-
egory with finite products & are families (Cx ) xcob(t) Of objects of €, so
the tautological family (X)xcob(t) gives a finite product preserving func-
tor Famopry — T. It is then obvious that this functor lifts to a functor

Famopr) — T which is identity on objects. : d

A model of an I-sorted theory Fam; — T is just a T-model. For
such a model T — ¥ in a category ¥ its underlying family is the object
of ¢! corresponding to the composite Fam; — T — %. When safe, we
will denote images of morphisms w : X;, X ... X X;, — X, of T under a
model T — % by w again. Thus intuitively, models M of an I-sorted the-
ory Fam; — T in categories with finite products € are I-tuples of objects
(Cier, Ci = M(X;), equipped with additional structure, namely various
operations of the form

w:Cy X ...xC;, — C;

corresponding to morphisms w : X;, X... X X;, — X, inT. These operations
must further satisfy various identities expressing the fact that M is a product
preserving functor. In detail, this amounts to the following:

o the morphisms corresponding to the projections m; : X;, x ... x X;, —
Xiy s v T @ Xy X .o X X;, — X;, must be product projections
themselves;

e for morphisms w : X;, x ... x X;, — X;,w': Xill X o x Xy — X
andwl : X.,/l X ... X X’f‘n — X’il y ooy Wp o lel X ... X X"m — Xin inT

-170 -



JIBLADZE & PIRASHVILI -~ QUILLEN COHOMOLOGY AND BAUES-WIRSCHING COHOMOLOGY

with w(wy, ..., wn) = W', the diagram

Ci, X

/ V

/ . X C,r

must commute.

The “substrate” underlying the structure of an /-sorted theory is a family
of sets of the form (S, .. in).i)(is,...in)eIn et forn = 0,1, ..., namely, the sets
Homz(X;, % ... x X; , X;). We thus have a forgetful functor

v T -] &

n2>0

It is proved in [7] that this functor admits a left adjoint /'. Theories in the
image of this left adjoint are free theories. It is more or less obvious that the
adjunction counits FUT — T are all full functors, so that in particular one
has

1.2.5. Proposition. For any theory T there exists a morphism F — T from
a free theory to T which is a full functor.

mx1
Moreover, since every componentwise surjective map in Hn>0 gu
admits a section, it follows

1.2.6. Proposition. Let P : T — F be a morphism in 9%, which is a full
functor. If F is a free theory, then P has a section, i. e. there is a morphism

S:F——)']I'in%withPS=1.
O

1.3 Ringoids and modules over them

Let us here recall some well known facts about ringoids and modules over
them. A good reference on this subject is [13].
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A ringoid is a category enriched in abelian groups. It is thus a small cat-
egory Z together with the structure of abelian group on its Hom-sets in such
a way that composition is biadditive. Morphisms of ringoids are enriched
functors, i. e. functors preserving the abelian group structures. These are
also called additive functors. The category of ringoids will be denoted by

Let Z be aringoid. We denote by Z-mod the category of all covariant
additive functors from Z to .97, and by mod-Z the category of all con-
travariant additive functors from 2 to . %Z. Objects from Z-mod are called
left modules over %, while those from mod-Z are called right modules.

For any small category I, we let Z[I be the ringoid with the same objects
as I, while for any objects i and j the group of homomorphisms from ¢ to j
in Z[I] is the free abelian group generated by Hom, (¢, 7):

Homgy) (4, j) = Z[Hom, (3, 5)),
whereas the composition law is induced by

Z[Hom;(i, )] ® Z[Homy(j, k)]
& Z[Homy (i, j) x Homy(j, k)] — Z[Homy(3, k)).

Then clearly one has Z[{I]-mod =~ A
For any ringoid Z and an object ¢ € % we define h, : Z — S and
he : BP — A by
h.(z) = Homg(c, z)

and
h°(z) = Homg(z, c).
Then one has natural isomorphisms

Homﬂ.mod(hc’ M) = M(C)

and
Hompmog-2(h®, N) = N(c).
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Therefore, the family of objects (hc)ccob(#) (resp. (h®)ccob(#)) forms a
family of small projective generators in Z-mod (resp. in mod-%). The
functor h, is called the standard free left -module concentrated at c.

Let f : #Z — & be a morphism of ringoids. Composition with f induces
a functor ¢

f* . #-mod — Z-mod.

It is well known that f* has right and left adjoint functors f, and fi respec-
tively (the so-called right and left Kan extensions).

There is a generalization to ringoids of the fact that to any ring R corre-
sponds the theory My, of (left) R-modules, which obviously is the category
opposite to that of free finitely generated left R-modules and their homo-
morphisms. Note that equivalently we may take for Mg the category of free
finitely generated right R-modules.

In fact there is a functor M : 9% sgoidd — Floris. It assigns to a ringoid
Z the theory Mg of Z-modules. Mg is the additive category freely gener-
ated by %, i. e. it is an additive category equipped with a homomorphism
of ringoids I : # — Mg which has the following universal property: for
any additive category &, precomposition with I induces an equivalence of
categories

AddMg, &) = Homg, (%, ).

There exists an explicit description of Mg as the category of matrices over
Z: Mg can be chosen to be an Ob(Z)-sorted theory, so that its objects are
finite families of objects of %, pictured as a;®...®a,,, for any ay, ..., a, € %,
n > 0. Moreover Homy, (a1 @ ... @ a5, b1 @ ... @ by,) is defined as

Homg(aj, bi),

i=1,...,m
Jj=1,...,n

with composition defined via matrix multiplication, (fog)y = ; Ji9;x for
fij 1 b5 = ¢y gj  ak — ;.

1.3.1 Enveloping ringoids

There is a functor in the opposite direction, from theories to ringoids.
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1.3.2. Proposition. For any I-sorted theory T there exists a ringoid U(T),
depending functorially on T, such that Ab(T-mod) is equivalent to the
category of U(T)-modules.

Proof. The key observation here is that in the presence of an abelian group
structure any operation like w : X7 X ... x X, — X must be an abelian group
homomorphism, hence have the form w(z, ..., ) = wi(z1) + ... + wn(zy)
for some unary operations w; : X; — X.

Let the set of objects of U(T) be I, and present morphisms of U(T) by
generators and relations as follows. Foreachw : X;, x ... x X;, — X;inT
we pick n generators 8, (w) : X;, — Xi, ..., On(w) : X;, — X;. And for each
such w and any wp : Xl,l X.. X X,/m — Xil, ey Wh ! X,/l X ... X X"‘n - Xin
we impose the relations

n

O (W1, .., wn)) = Y B(w) 0 Bu(wy)

v=1

for u = 1, ..., m. Furthermore we impose the relations
Ou(y) = v,

with § the Kronecker symbol, meaning the zero morphism for 1 # v and
the identity morphism for p = v. Here, z,, : X;, x ... x X;, — X, are the
projections, p,v =1, ..., n.

Thus a U(T)-module is a collection of abelian groups (A;);c; and homo-
morphisms 9, (w) : 4;, — Ai, w € Homp(X;, X ... x X; , X;),v=1,..,n
satisfying the above relations. Then from any such module we obtain an
object of Ab(T-mod) by defining

for w as above and (ay, ...,a,) € A;; X ... X A;,. Conversely, if (A;)ies is
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given the structure of an object from Ab(T-mod), then we define

Oy (w)a =w(0,...,0,q,0,...,0).
v-th'position

It is easy to see that these procedures determine mutually inverse equiv-
alences between the category of U(T)-modules and Ab(T-mod). a

2 Cartesian natural systems

2.1 The notion

Let T be a theory and let D be a natural system on T. We will say that the
natural system D is cartesian (or compatible with products — cf. [5]) if
for any product diagram p; : X; X ... X X, — X, £ = 1,...,n and any
morphism f : X — X; X ... X X,, the homomorphism

Df — Dplf X .. X Dpﬂf
given by a — (pia, ..., pna) is an isomorphism. Obviously D is cartesian if
and only if it satisfies the above condition withn =0 and n = 2, i. e.
e Dy, = 0 for the unique morphism !x : X — 1 to the terminal object;
e Dj — Dy 5 X Dp,y is an isomorphism forany f : X — X; x X.

One observes that if a bifunctor D : T% x T — 7 preserves products in
the second variable, then the natural system induced by D is cartesian. We
denote by % (T) the category of cartesian natural systems on T.

2.2 Motivation and properties
The following fact goes back to [10].

2.2.1. Lemma. Let
0-D->ELTS0
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be a linear extension of a theory T by a natural system D. Then D is carte-
sian iff E is a theory and P is a theory morphism.

Proof. Take a product diagram p; : X; X ... x X, — X;,i = 1,...,n, and
choose arbitrarily p; in E with P(5;) = p;. This then gives a commutative
diagram

Homg (X, X, X... x Xn) ~— 2P 110mg(X, X)X ... x Home (X, X»)

7| |7

Homrp (X, X; ... x X,) = Homg(X, X;) x ... x Homg(X, X,)

which shows that [E has and P preserves finite products iff all the maps
P7Y(f) = P (p1f) X ... x P7}(paf),

givenby f — (§1f, ..., pnf) are bijective.
On the other hand the above maps are equivariant with respect to the
group homomorphisms

Df - Dp1f X ..o X Dpﬂf
and the actions given by the linear extension structure. Our proposition then

follows from the following easy lemma. O

2.2.2. Lemma. Suppose given a group homomorphism f : G; — G, and
an f-equivariant map ¥ : X1 — X, between sets X, with transitive and
effective G;-actions. Then z is bijective iff f is an isomorphism.

Proof. Seee. g. [10, Lemma 3.5] O

2.2.3. Theorem. For any I-sorted theory T there is an equivalence of cate-
gories

I

2: Z(T) S Ab(IZ4/T)
of the category F (T) and the category of internal abelian groups in % /T.
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Proof. It is easy to see from 1.1.2 above that for any natural system D on T,
the trivial linear extension D T — T of T by D is an internal abelian group
in categories over T. If D is moreover cartesian, then by 2.2.1 D x T is actu-
ally a theory and the projection is a morphism of theories. Furthermore the
group structure functors + : DXTxyDXT —» DXT,— : DXT — DxT
and 0 : T — D x T over T are evidently morphisms of theories, i. e. pre-
serve product projections, so that one obtains an internal abelian group Z(D)
in 7#7/T. The aforementioned correspondence between natural systems
and internal abelian groups is in fact functorial and it is equally easy to see
that under it morphisms of cartesian natural systems are carried to product
preserving functors.

Conversely, given an internal abelian group structure on an object p :
E — T of 9%;/T, put D(p); = p~'(f) for a morphism f in T and define
for any composable £, g the actions D(p), — D(p) s, D(p); — D(p)s4 by

fa=0(f)g,
fg=fo(g

for any p f =71 pg = g, where 0 : T — E is the functor defining zero
of the internal abelian group structure. This clearly defines a natural system
D(p) on T. It is easy to see that D(p) is cartesian if (and only if) p is a
morphism of theories, i. e. preserves products. Moreover any morphism of
theories f : E — E’ over T clearly defines a natural transformation of the
corresponding natural systems.

We have thus defined functors in both directions between % (T) and
Ab(7%,/T). It is straightforward to check that the composite .Z(T) —
Z(T) is identity. To show that the other composite is isomorphic to the
identity of Ab(7%;/T), note that for an internal abelian group (p : E —
T,0: T - E,—:E — E,+ : E xgE — E) in.9%/T functoriality of
+: E xp E — E implies

fg = (0(f) + £)(G + 0(g)) = 0(f)§ + f0(9)

for any composable f, g in T and any f € p~'f, § € p~'g. It follows that E
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is isomorphic to D(p) x T over T. O
2.2.4. Remark. The above theorem can be also deduced from general results
of [4, 1.5 and 4.11]. We omit the details.

The terminal object of T, /T is obviously the identity functor 1y : T —
T. The global sections functor

I = Homgz q(1r,.) : Ab(TZ/T) — A

composed with the above equivalence #(T) — Ab(.9%;/T) yields the
functor
Der(T;.) : F(T) — .

It is easy to identify the functor Der(T; -) explicitly. Given a Cartesian
natural system D on T, the abelian group Der(T; D) is by definition the
group of global sections of the projection D x T — T. It is then straightfor-
ward to calculate that this amounts to

2.2.5. Proposition. For any theory T and any Cartesian natural system
D € % (T) there is an isomorphism

VX %Y, Y% Z
d(Ww) = d(W)w + w'd(w)

Der(T;D)=Jde ][] D.
w€Homt(X,Y)

Proof. A section T — D x T must assign to each morphismw : X — Y

from T a morphism (d(w),w) € Hompxt(X,Y'); preservation of compo-

sition amounts precisely to the above equality. The latter also implies that

d(identity) = 0, so identities are preserved too. O
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3 Enveloping ringoids and modules over ringoid
valued functors

3.1 Enveloping ringoids
3.1.1 The Grothendieck construction

Our next goal is to prove that the category % (T) is an abelian category with
enough projectives and injectives. To do that, we are going to generalize the
notion of module over a ringoid to that of one over a ringoid valued functor
on a small category. We will then realize #(T) as the category of modules
over certain ringoid valued functor.

Suppose given a functor F' : I — CAT from a small category I to the
category of categories, denoted (¢ : ¢ — j) — (F, : F; — F;). Then
the Grothendieck construction [; F' of F is defined as the lax colimit of F'.
Explicitly, it is a category with objects of the form (i, X), with ¢ € Ob(I)
and X € Ob(F;); morphisms (i,X) — (¢, X’) are defined to be pairs
(o, f), withp : 4 — 4" and f : F,,(X) — X'. Identity morphism for (%, X)
is (id;,idx), and composition of (¢’ : &' — ", f' : Fy(X') — X") with
(¢, f) as above is defined to be the pair (¢'p, f'F,(f)). There is a canonical
functor Pr : [; F — I given by projection onto the first coordinate, i. e.
sending (2, X) to 7 and (¢, f) to .

3.1.2 Comma category as models

As an application of previous discussion we prove that the comma category
of a category of models of a theory is still a category of models for a theory.

3.1.3. Proposition. For an I-sorted theory T and any model M in T-mod,
the category [r M is a (][;c; M;)-sorted theory and moreover the comma
category T-mod/M is equivalent to the category of models ([ M) -mod.

Proof. Any object N of T-mod equipped with a morphism f : N — M
can be considered as a collection of sets

(N = f7'(z) C N(4))

z€] ] scon(ry M(A)
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and maps Ny, X... X Ny, = Ny(z,,..z,), forall (z1, ..., z,) € M(X;)x...x
M(X;)andw : X;, x ... x X;, — X; in T, fitting into certain commutative
diagrams. -
T

Then regarding M as an object of % | and defining N(z) = Npr(p;)e X
oo X Np(pa)er for z € M(X;, x ... x X;, ), we can consider the above data as
afunctor N : [; M — &rs, which sends the objectz € M(X;, x ... x X;,)
of the latter category to the product of the objects N(X; ), v = 1, ...,n. Now
the proof follows from the subsequent lemma. O

3.14. Lemma. A functor M : T — s preserves finite products if and
only if the category [y M has finite products and the canonical functor P :
Jt M — T, sending m € M(X) to X, preserves them.

Proof. Let us first recall that functors of the form P : [ M — T for any
functor M : T — & are characterized by a property called discrete opfi-
bration:

forany x € [fM and any ¢ : Pz — a, there is a unique
¥z — y with Py = .

Using this property it is easy to prove that a pullback of a product preserving
discrete fibration between categories with products along a product preserv-
ing functor is again a product preserving functor between categories with

products. ,
The “only if” part then follows because of the following pullback dia-

gram in the category of categories

f’Jl‘M'_"—) gm.

-

in which &, denotes the category of pointed sets and U the forgetful func-
tor: since the latter is a discrete opfibration and preserves products, it follows
that f; M will have and P : [ M — T preserve them too.

For the “if” part, we again use the discrete fibration property to prove
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a) M(1) has single element: the particular case of the above discrete
opfibration condition with Px = a = 1 implies that for any z €

P~1(1) one has (:c e, m) = <:c =, 1), since P(id;) = P(!;) = id;.

b) M(a; X as) Mm, M), Ma, x Ma, is bijective: this follows from

another two particular cases of the discrete opfibration condition —
with = z; X z, for some z; € P~ '(a;) and ¢ = m;, i = 1,2;
indeed these cases give that there are unique 1); starting out of = with
P(1;) = m;, hence z is a unique element of M(a; X ay) satisfying
M?T,‘(l‘) = T, 1= 1, 2.

O

3.1.5. Corollary. For any model M of a theory T, there exists a ringoid
% (M), the enveloping ringoid of M, depending functorially on M, such
that the category Ab(T-mod/M) is equivalent to the category of % (M)-
modules.

Proof. Of course this is just a particular case of 1.3.2 in view of 3.1.3. Let
us, however, give explicit presentation of % (M) = U(fp M) in this case,
assuming for simplicity that T is an I-sorted theory. The set of objects of
% (M) is then [[,.; M(X;), and the morphisms are generated by ones of
the form 9, (w)(ci, ..., n) : ¢ — w(cy, ..., ¢n), for each w € Homp(X;, x
X X, Xo), (e1yey0n) € M(X;)) X .. x M(X;,) and v € {1,...,n}.
The defining relations are indexed by data w € Homy(X;, X ... X X, Xi),
wi € HomT(Xi/I X .. X X«itm,Xil), veey Wy, € HOIII']['(Xi'l X ... X X'i’maXin),
(c1) . Cm) € M(Xip) X ... x M(Xy,), and pu € {1, ..., m} and have the form

Op(w(wi, ...y wn))(C1, -+, Cm)

=Y 8,(W)(@1(C1, 1, m)s s (€1, e €m)) © B(wy) (€1, oy Cm)

and
0u(2,) 1y ey cn) = | e BV
p\Lv 1yeeey - 0’ 1 7& .
Once again, functoriality is obvious from this presentation. g
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Occasionally we will write % (M) to make explicit dependence on T.
This construction is known under various names in the literature — see e. g.
[3]or[16].

3.2 Derivations

Given a theory T, its model M € T-mod, and an object p : A — M of the
category Ab(T-mod/M) ~ %;(M)-mod, we will denote by Der(M; A)
the abelian group of all sections of A — M, i. e. the set of all morphisms
s : M — A of T-models with ps = 1. Elements of Der(M; A) will be
called derivations of M in A. Der(M; A) is contravariantly functorial in M,
in the following sense. For a morphism f : M’ — M of models we get the
induced homomorphism f* : Der(M; A) — Der(M’; f*A), where f*A de-
notes the pullback of p : A — M along f. Equivalently, one might interpret
Der(M’; f*A) as the abelian group of all T-model morphisms M’ — A over
M, i. e. fitting in the commutative diagram

A

yan
S
M~ M

~
—
~—

Clearly also Der(M; A) is covariantly functorial in A and so defines a func-
tor Der(M; ) on % (M)-mod. We then have

3.2.1. Proposition. The functor Der(M; ) is representable. That is, there
exists an Uy (M)-module Q) with a natural isomorphism

Der(M; A) = Homa ) (24, A)
for all A. Moreover 0}, depends functorially on M. When M is a finitely
generated free T-model, then Q) is a projective object of % (M )-mod.

Proof. Following the equivalence from 3.1.5, we see that for an % (M)-
module A the corresponding object of Ab(T-mod/M) is the T-model given
by Xi = [l,emx.) A(z), with the T-model structure assigning to a mor-
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phismw : X;, x ... x X, — X, the operation
w: H A(zq) | x ... x H Alz,) | — H A(z)
:C1€M(Xil) Tn€EM(Xi,) TeM(X;)

given by

alv E 8 xla axn)

Der(M;A)c [ Al=)

i€l

Then

consists of those families (d(z) € A(z )weLI M(x;) Which respect all these
operations. That is, Der(M; A) cons1sts of assignments, to each z € M (X;),
of an element d(z) € A(z), in such a way that forany w : X;, x ... x X;, —
X; and any z, € M(X;,),v =1,...,n, one has

n

AW (@1, Tn)) = Y 0y(W) (1, -, Tn)d()- *)

v=1

Because of this expression it is natural to call such assignments derivations.

We then present 2}, by generators and relations as a % (M )-module as
follows: it has generators d(z) € Q3,(z) for each z € M(X;) and each
i € I and the defining relations are (*) above. It is then clear that 0},
carries a generic derivation d, so that one has a natural isomorphism

Homy (ar) (4, A) Z, Der(M; A)

given by f — fd. That Q}, is functorial in M is also clear from the con-
struction.

Now suppose M is a finitely generated free model F(X), i. e. there
isan X € T with M = Homr(X,.). Then it is straightforward to check
using Yoneda lemma that for an object of Ab(T-mod/M) corresponding to
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a % (M)-module A we will have Der(F(X); A) = A(idx). It follows that
Homa (r(x)) (VU x)» A) is an exact functor of 4, i. e. Qjy, is projective. In
fact of course this actually means that le( x) = hidx- O

3.3 Ringoid valued functors

Let us consider now a small category I and a covariant functor

%:Iﬁ%@é

It is easy to see that the category [; Z is a ringoid in a canonical way.
We will say that M is a left Z-module if the following data are given:

i) aleft Z;-module M; for each object i € I;

ii) a homomorphism M, : M; — %Z; M, of Z;-modules for each arrow
a:i— jofl.

Moreover it is required that for any composable morphisms « and 3 one has
Mos = Mo Mp.

If M is a left Z-module, ¢ is an object of I, and z is an object of the
ringoid Z;, then we denote by M(; ;) the value M;(z) of M; on z. Having
this in mind it is clear that a left Z-module is nothing else but a functor
M:[X — A such that each composition M o §; : %; —u%,i el,is
an additive functor. The category of all left Z-modules will be denoted by
Z-mod.

3.3.1. Example. As an example, we can take any small subcategory I of the
category of commutative rings and let & be the inclusion I — % Thus
O is a ring valued functor, hence can be regarded as a functor with values
in ringoids with a single object. For any ring S € I the absolute Kihler
differentials €25 is a module over S. Since Q% functorially depends on S
we obtain that * € #-mod. Another example comes from topology. Let
I be a small subcategory of the category of topological spaces. Then for
any ring R, the ordinary (singular) cohomology of spaces with coefficients
in R defines a ring valued functor H*(_; R), and for any R-module M the
functor H*(_; M) is a module over H*(_; R) in the above sense. Similarly
X + Z[mX] is a ring valued functor defined on any small subcategory of
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the category of pointed topological spaces, while X +— ;X is a module
over it, for any 7 > 2.

An alternative description of the category %Z-mod is possible, showing
that it is equivalent to the category of modules over a single ringoid. Given
afunctor Z : I — %M as above, we define its total ringoid Z(I) in
the following way: the set Ob(Z/[I]) of objects of the ringoid Z[I] is the
disjoint union ] [;cqp(r) Ob(Z:) — or else again the set of pairs (4, z), just
as for [ %Z. Morphisms of the ringoid Z|[I] are given by

Homgr)((3, z), @ Homg, (Za(z), y)-

Composition homomorphisms are given by

P Homg, (%a(z),9) | ® | €D Homa, (%5(y), 2)
e By

@ Homg] (z),y) ® Home, (Zs(y), 2)

@a,ﬂ gﬁ®1
—_—

GB Hom, (Zs%a(z), Zpy) ® Homa, (Z5(y), 2)

i—‘-"-)jik

@ Homg, (#s%u(z @ Homg, (%,(z), 2),

z—%]—ﬁk

€B

and the identity of z € Ob(Z;) is the element of P, <, Homg, (%.(z), z)
given by the identity of z in %;, situated in the id;-th summand. It is straight-
forward to check that this construction indeed yields a ringoid. One then has

3.3.2. Proposition. For any ringoid-valued functor Z : I — %d the
category of left Z-modules is equivalent to Z|I)-mod.

Proof. An Z|[I]-module M is a family of abelian groups (M z))ze[], ob(#,)
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and a family of abelian group homomorphisms

Mi,z 24y
D Homg, (Za(x), y) —=%2 Hom o (M), Mis))
i)

for z € Ob(%:), y € Ob(%;), satisfying certain conditions. Just by uni-
versality of sums then, specifying the above homomorphisms M; ) (;,) is
equivalent to specifying families

(Homg,- (Za(2),y) == Hom o (Mi), M(j,y)))

acHom; & ((4,z),(5,y)) '

It is then straightforward to check that the conditions on the M z) ) to
form an Z[I]-module give precisely the conditions on the M, to form an
Z-module. O

It is thus clear that Z-mod is an abelian category with enough projec-
tive and injective objects. Let us give the explicit description of the pro-
jective generators and injective cogenerators corresponding to the standard
ones from Z|(I).

Take ¢ € Ob(I) and let z be an object of the ringoid %;. Then, in
accord with the above 3.3.2, associated to the standard free %Z[I]-module
concentrated at (i, z) there is a léft Z2-module h, given by

(b%), () = €D Homg, (Za(2), ).

i—>j

In other words (hffx) ; is the direct sum of standard free &;-modules:

(%), = P baa
i
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It follows that for any %;-module X one has isomorphisms

Homgj((hff;)],X) = H X('%a(x))

1]
Thus for any #Z-module M one has a natural isomorphism

Homg(hZ , M) = M;(z).

1,29

Let now & be an object of I and let A be an Z,-module. We denote by
k.(A) the Z-module, whose value at i is given by

(kA) = [] %A
i—k

The a-component of (k. A); has an %Z;-module structure given by restriction
of scalars along the ringoid homomorphism %, : Z; — %. Hence (k.A);
is an %Z;-module and now it is clear that k£, A is an Z-module. Moreover the
functor k., : Z-mod — Z#-mod is right adjoint to the evaluation functor
evi : Z-mod — Zj-mod, which is given by evy(M) = M. In particular,
if A is an injective Z,-module then k. A is an injective Z-module. Hence
the family (k. Q). is a family of injective cogenerators for the category of
Z-modules. Here k runs over the set of objects of I, and then @) over the set
of injective cogenerators of the category of % -modules.

3.4 The equivalence

Our main example of a ringoid valued functor stems from 3.1.5. To any
theory T one can assign a ringoid valued functor %4 on T considered as
a small category, by sending an object X of T to the enveloping ringoid
WU (F(X)) of the corresponding free T-model F(X).

For any objects A, B of %-mod there is a natural system Fomay (A, B)
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on T given by

Homar (A, B), 1, = Homau(r(vy) (Ay, F(f)"Bx),

where the ringoid morphism F(f) : Z(F(Y)) — Zx(F (X)) is induced by
F(f): F(Y) - F(X),i.e. by (g — gf) : Homg(Y,.) - Homg(X,_).
Let us find out when is this natural system cartesian. For this it will be
convenient to rewrite the above in the following way:

%ﬂ% (A, B)X-LY = HOIII%T(F(X))(F(f)!Ay, Bx)

Indeed as we saw in 1.2.1 all the functors F'(f)* have left adjoints. The
above conditions then show that this natural system is cartesian if and only
if

L Homq/(p(x))(F(!X)!Al, Bx) = 0 for all X;

e the canonical morphism

Hom%(F(X))(F(f)!Axlxxz, BX)
— Homg (r(xy) (F (P11 Ax, © F(p2f)1Ax,, Bx)

is an isomorphism for any f : X — X; x Xj.
In particular Hormay (A, B) is cartesian for all B if and only if A satisfies
[ ] Al = 0;

e F(pi)hAx, ® F(p2)1Ax, — Ax, xx, is an isomorphism for any X,
Xo.

It is natural to call such an A a cartesian %r-module.
We next discuss our main example 2! of such an %z-module, obtained
from 3.2.1.
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3.4.1. Example. Any %-module B determines a natural system 2% (_; B)
on T in the following way: for a morphism f : X — Y of T, put

D% (; B); = Der(F(Y); f*(Bx))-

Here px : Bx — F(X) is the object of Ab(T-mod/F(X)) corresponding
to B(X) under the equivalence % (F(X))-mod ~ Ab(T-mod/F(X)).
That this is indeed a natural system, follows from the functorial properties
of Der. Moreover this natural system is cartesian. Indeed, T-models of the
form F(X) are the representable ones, F(X)(Y) = Homy(X,Y). Then
considering the diagram (1) we see that Der(F(Y); f*(Bx)) can be identi-
fied with the set of all elements b € Bx(Y) with px(b) = f € F(X)(Y) =
Homy(X,Y). Then given f; : X — X;,i =1,...,n, one has

..... F(X, X0); (f1y s fn)*(Bx))
~ {be Bx(X1 x ... x X) | px( ) = (fiy- fo)}
~ {(b1, ..., b )eBX(Xl) % . X Bx(Xn) | px(b)) = fii=1,..,n}
~ (5 B)p, X .. X @w(-; B)t.

But it is immediate from 3.2.1 that there is an %r-module Q' such that
the natural system 2% (_; B) is actually isomorphic to Aoreq () B)-
Namely, 2! is just given by X — QF x,. It is then a cartesian %7-module
in the above sense, i. €. one has

hd Q}'(1) =0;
o F(p1) x,) P F(p2)Q F(X y = QF(X xX,) 18 an isomorphism for
any Xj, )é
3.4.2. Theorem. There is an equivalence of categories

¢ : F(T) - % -mod;

in particular, % (T) is an abelian category with enough projectives and in-
jectives. Moreover the quasi-inverse of this equivalence assigns to an object

-189 -



JIBLADZE & PIRASHVILI - QUILLEN COHOMOLOGY AND BAUES-WIRSCHING COHOMOLOGY

A of %-mod the cartesian natural system Sk (; A) = Fomay Q1 A)
from 3.4.1.

Proof. As always, we can assume here that T is an /-sorted theory. Then
for a cartesian natural system D on T, to define (D) we must first name
for each X € Ob(T) a YU (F(X))-module ®(D)x. The set of objects of
Ur(F(X)) is [1;c; F(X)(Xi) (see 3.1.5), i. e. [[,.; Homp(X, X;). We
then deﬁne values of ®(D)x on these objects by

®(D)x(X = X;) = Ds.

Next action of morphisms of %¢(F(X)) is uniquely determined by requir-
ing, for (z1,...,2,) : X = X;, x .. x X, andw : X;, X ... x X, — X,
commutativity of the diagrams :

o
,,,,, 2n) < Dy, X ... X Dy,

/ 8y (w)(z1 ) \

ey
Dz .z i D,,,

where the isomorphism is the inverse of the canonical map that is required
by cartesianness of D, and ¢, is the v-th embedding into @ = x of abelian
groups. ’

We also have to define action on ®(D) of morphisms f : X — Y in T,
which must be %4 (F(Y'))-module morphisms ®(D)y — F(f)*(®(D)x),
where the functor F'(f)* : %¢(F(X))-mod — %;(F(Y))-mod is the re-
striction of scalars along the ringoid morphism %4 (F(Y)) — % (F (X))
induced by the morphism of T-models F(f) : F(Y) — F(X). Now
F(f)*(®(D)x) is easily seen to be given by (y : ¥ — X;) — Dyy, so
what we must choose is a suitably compatible family of abelian group ho-
momorphisms

(I’(D)f(y _y_) X,) . Dy d Dyf,
and these we declare to be the action of _f on D. It is then straightforward
that all of the above indeed gives a functor ¢ : #(T) — %r-mod.

Next note that, as we have seen in 3.2.1, one has Der(F(X); A) =
A(idx) for any % (F(X))-module A, so in particular forany f : X — Y
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in T we have by 3.4.1

D (;®(D))s = Der(F(Y); F(f)*(®(D)x))

7

= F(f)*(®(D)x)(idy) = Dia, s = Dy.

Conversely, given a Zg-module A, by definition

(D (5 A)x(X 5 X)) = Dl (5 A); = Der(F(X;); F(z)*(Ax))
= F(z)*(Ax)(idx,) = Ax(z).

(Of course one should also check these on morphisms, but this is straightfor-
ward t00). . g

3.4.3. Corollary. A natural system on a theory T is cartesian if and only if
it is isomorphic to one of the form

Foma (1, B)

for some %r-module B.

: O
As another corollary we obtain a generalization of [11, 2.4].

3.4.4. Corollary. For any additive theory T (i. e. a theory which is additive
as a category) the functor

T-mod™ — Z(T)
which assigns to a functor

T : T°° — T-mod
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the cartesian natural system T on T given by

TX",W = Homt.moa (F(Y), T(X))

is an equivalence of categories.

Proof. Following the proof of 3.4.2 in this case, we see that any cartesian
natural system D on T can be given by

D_;, = Der(F(Y);{*(Bx))

where B is some %r-module and Bx — F(X) is the object of the category
Ab(T-mod/F(X)) corresponding to B(X) under the equivalence

U (F(X))-mod ~ Ab(T-mod/F(X)).

But since the category T-mod is additive (even abelian), there is a canonical
equivalence of categories

Ab(T-mod/M) ~ T-mod

for any T-model M. Composing these two equivalences we obtain that there
is a functor 7' : T°? — T-mod such that for each object X of T the above
internal abelian group in T-mod/F(X) represented by Bx — F(X) is
naturally isomorphic to the constant one given by the direct sum projection
F(X)® T(X) — F(X). Moreover this isomorphism gives compatible
isomorphisms

Der(F(Y); f*(Bx))  Hom(F(Y), T(X))
forany f: X =Y. O

3.4.5. Example. As an example of essentially non-additive situation, let us
take the case when T is the theory of groups Gr. The corresponding coef-
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ficient systems according to [10] were functors from the category of finitely
generated free groups to the category of abelian groups.

The category & (Gr) is equivalent to a larger category whose objects are
assignments M of an F-module M to each finitely generated free group F',
in a way which is functorial in F. Then coefficients in the sense of [10]
correspond to those objects M for which the F-module structure on Mp is
trivial for all F'.

The enveloping ringoid %g.(G), for any group G, has the set of objects
equal to G. From the relations given in 3.1.5 it is clear that all morphisms of
g+ (Q) are liniear combinations of composites of the ones of the form

0u(2122)(91,92) : 9 — G192, ¥ =1,2,

for g;,go € G. Moreover these relations imply that 8,(z172)(g1, g2) are
isomorphisms, with the inverses given by

A1 (z122) (1, 92) ™" = 1 (T172) (9192, 95 1)

and
02 (z122) (g1, 92) ™F = Ba(w122) (91", 9192)-

Indeed the relations from 3.1.5 easily imply that forany 1 < v < n an
operation w of the form

projection

Xil X ..o X Xi" Xi1 X ..o X X,’ X X," X ... X Xin - Xi

v-1 v+1

in any theory T one has for any model M of T and any n-tuple (cy, ..., c,) €
M(Xil) X ... X M(in)

Oy (w)(ety oyen) =0: ¢y = w(cy, .oy Cn);
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taking this into account readily gives

idg, = 81(21)(919297 ")
= 01(z122)(9192, 95 )01 (2122) (91, 92)
+ O (2122) (9192, 95 1) D1 (25 1) (91, 92)
= O1(2122) (9192, 95 )01 (z122) (91, 92)

and

idg,g, = 01(21)(9192, 93 ") = (217275 ") (9192, 95 ")
= 01(21%2)(91, 92)01 (2172) (9192, 95 ) + Do (122)P1 (25 ' ) (9192, 95 1)
= 01(7122) (g1, 92)01 (£122) (9192, 95 1),

and similarly for the inverse of 05(x122) (g1, g2)-

We thus see that all objects of %g,(G) are isomorphic to each other, so
that Zg-(G) is equivalent to the ringoid with single object whose endomor-
phism ring is that of the unit of G in %g,(G). It is easy to show that this
ring is isomorphic to the group ring Z[G] of G. Indeed this is also clear
already from the statement of 3.1.5 since it is well known that the category
Alb( % /G) is equivalent to the category of Z[G]-modules for any group
G.

Moreover it is easy to see that under this equivalence the functor Der
corresponds to taking derivations of G with values in G-modules, hence
the g (G)-module Q}, described in 3.2.1 corresponds to the Z[G] mod-
ule equal to its augmentation ideal. It follows that the %,-module Q' as-
signs to the group F' the %g,(F)-module uniquely determined by the fact
that its value on the unit object is the augmentation ideal of the group ring
Z[F), with actions of morphisms of %g,(F') prescribed by the structure of
F-submodule of Z[F).

3.4.6. Example. Let us give another example in which the notation ! has
its “usual” meaning. For a commutative ring k, let Ay be the theory of com-
mutative k-algebras. Finitely generated free k-algebras are the polynomial
algebras k[z1, ..., z,], so as a category Ay is equivalent to the full subcate-

-194 -



JIBLADZE & PIRASHVILI — QUILLEN COHOMOLOGY AND BAUES-WIRSCHING COHOMOLOGY

gory of the category of affine k-schemes whose objects are the affine spaces
A} =Spec(k[z1, ..., Zn))-

Similarly to the above example, it is easy to see that for any k-algebra
A the ringoid %, (A) with the set of objects A is equivalent to the ringoid
with a single object whose endomorphism ring is A. Moreover this equiv-
alence indentifies the functor Der with usual k-derivations of A with values
in A-modules, so the % (A)-module 2 corresponds to the classical mod-
ule 2, of Kahler differentials. It follows that the values Q'(A}) of the
Uy, -module Q! are determined by assigning to the zero object 0 € A of
the ringoid %, (A}) the module Oy, 1 = K[z1, ..., To] (d21, ..., dTn),
with the action of morphisms determined by the free module structure on the
latter.

4 The local-global spectral sequence

The aim of this section is to construct our main technical tool — a spectral
sequence computing the Ext groups in the category of modules over a ringoid
valued functor, using some local data.

4.1 Construction

Let I be a small category and let Z : I — %«4 be a ringoid valued
functor on I. As we have seen in 3.3.2, the category Z-mod is an abelian
category with enough projective and injective objects. One can generalize
the construction in 3.4.1 and define for any %Z-modules M and N the natural

systems Hame (M, N) and %;(M, N) on I by
Hena(M,N),x, = Homg, (M, N;)

and
Eoca(M,N) x, = Ext}, (M;, Ny)

respectively, where the actions of %; on N; are given via restriction of scalars
along %, : % — ;. We call the natural systems Homg(M,N) and
%;(M , N) local Hom and local Ext groups. One observes that in the
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case when Z is a constant functor, these natural systems actually come from
bifunctors. The following theorem, which is the main result of this section,
was proved for the particular case of such constant & with values in rings in
[10].

4.1.1. Theorem (the local-to-global spectral sequence). Let I be a small

category andlet # : I — %@4 be a functor to the category of ringoids.
For any Z-modules M and N there exists a spectral sequence with

qu = HP(I; gd;(Ma N)) = Eti@Tr‘ilod(Mi N)

4.1.2. Corollary. Let I be a small category and let M, N be Z-modules,

where
Z:I— %«%

is a functor. Then one has a five-term exact sequence

0 — H'(I; Homa(M,N)) — Exthy oqa(M, N)
— HY(I; &ep(M, N)) — HXI; Hong(M, N)) — Exty,.q(M, N).

Moreover, ifgl. dim %Z; < 1 for each object i, then one has an exact sequence

0 — HY(I; Homag(M,N)) —
.. o H'(I; Hoong(M, N)) — Ext% (M, N)
— B NI; (M, N)) — H™I, Hong (M, N)) — ...

4.1.3. Corollary. Suppose M; is a projective Z;-module for each i € Ob(I).
Then there is an isomorphism

H*(I; Homa(M, N)) 2 Extl moa(M, N).
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4.2 Proof of Theorem 4.1.1

We fix a left Z-module N. We claim that for any left Z-module X one has
an isomorphism:

HYI; Hong(X, N)) = Homg.moa(X, N).

Indeed, by the definition of cohomology H°(I; %Q(X , N)) is isomor-
phic to the kernel

Ker H Hom‘%-mod(Xi» Nz) - H Homﬂ,-mod(Xi, N])
i€0b(I) i .

Thus HO(I; Homz(X, N)) consists of families (f; : X; — N;) of R;-
homomorphisms, such that for any o : ¢ — j the diagram

Xz“'fL’M

-, I

ij

—_— .

<.
LX)

commutes, and the claim is proved. One observes that the diagram

Nat

(I)
%‘SZ(-)N w%-)

Z-mod® 74

Homg.mod (V)

commutes and the Theorem is a consequence of the Grothendieck spectral
sequence for composite functors. Of course in order to apply the Grothen-
dieck theorem we first have to show that H™(I; For (M, N)) = 0 as soon
asn > 0 and M is projective. To this end we can assume without loss of
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generality that M = hZ%_, for some i € I and z € Z%,;. In this case

1,T?

Homa(M,N) o, = [] N(d, Bpa(2))

i—*c

and therefore we can use the following Lemma to finish the proof. ]

4.2.1. Lemma. Let us fix i € I and x € Ob(%;). For any functor N :
[ Z — S consider the natural system D on I given by

D o, =[] N(d, Zpal)).

.
i—>c

Then
H°(I; D) = N(i,z).

and
H"(I; D) = 0forn > 0.

Proof. One easily checks that
C*(I; D) = C*(i/I;T),

where /1 is the comma category under the object i and T : i/I — S is
given by
T (i % c) = N(c, Zo(z)).

Hence the cohomology of I with coefficients in D coincides with the coho-
mology of the category ¢/I with coefficients in the functor 7.

Now cohomology groups of a category with coefficients in functors are
isomorphic to the right derived functors of the inverse limit on that category.
Since 1; is the initial object in the category ¢/, inverse limit of a functor on
it is given by the value of this functor on 1;. So the inverse limit is exact and
its right derived functors vanish. This gives the Lemma. O
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5 Cohomology of algebraic theories

5.1 Definitions

There are several possible approaches to define cohomology of an I-sorted
theory T. First, there is a general approach of Quillen to define cohomology
of an object T in 7%, with coefficients in an object of Ab(7%;/T), which
by 2.2.3 we know to be equivalent to % (T). The main ingredient needed to
construct this cohomology is availability of simplicial resolutions in 7%, by
degreewise free objects. In our case this is possible due to 1.2.5. Namely,
for any T we choose a simplicial object F, in the full subcategory of I,
on free theories and an augmentation € : Fg — T. This is called a free
resolution of T if for any sorts iy, ..., %,,¢ € I the augmentation € induces a
weak equivalence from the simplicial set Homg, (X;, X ... X X, , X;) given
by :

Homg, (X;, % ... x X;,, Xi)x = Homg, (X;; % ... x X, X;)

to the discrete simplicial set on the set of 0-simplices Homp(X;, x ... X
X;,,Xi). Existence of such a free resolution is a consequence of the work
of Quillen [14]. Namely, it is straightforward to check that the category %
satisfies condition (*x) of Theorem 4 in §4 of Chapter II of [14] (page 4.2).
This allows one to apply the whole machinery of Quillen (simplicial) closed
model category theory to 9%,. In particular, our resolution is a cofibrant
replacement of T considered as a constant simplicial object of .

Having this, we then define for any T in 9%, and any A € Z(T) the
Quillen cohomology groups of T with coefficients in A by the equality

H(T; 4) := H*(Dex(F.; A)),

where A is considered as an object of each of the categories # (F,), n > 0,
via pullback along the unique morphism of theories F, — T given by the
resolution.

For a theory T and an object A € #(T), we next define the Cartan-
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Eilenberg type cohomology
Heg(T; A)
by the equality
Heg(T; A) == Extyy moa(Q, 2(A))

Here Q! is from 3.4.1 above.
Finally, there is yet a third approach to constructing cohomology. Given
a theory T and an object A € #(T), one can form the Baues-Wirsching

cohomology
H*(T; A)

of the category T with coefficients in the cartesian natural system A as in
1.1.1.

5.2 Equivalence

We will show that these three approaches actually give isomorphic results.
More precisely, for any /-sorted theory T and any Cartesian natural system
A € Z(T) there are natural isomorphisms

Hip(T; A) = H*(T; A) = H&—l('ﬂ'; A).

5.2.1. Theorem. Let T be an I-sorted theory and let A € F(T) be any
Cartesian natural system on T. Then there are isomorphisms

Hig(T; A) = HY(T; A).

Proof. Since by 3.4.2 ® and @»(_; —) are mutually inverse equivalences,
by Proposition 3.2.1 one has an isomorphism of natural systems:

A= Fon (), B(A)).
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Hence the isomorphism to be proved is a consequence of Corollary 4.1.3.
The fact that the condition of Corollary 4.1.3 holds here follows from Propo-
sition 3.2.1. (W

5.2.2. Lemma. If F is a free I-sorted theory and A is a cartesian natural

system on I, then ‘
H'(F;A)=0, i>1.

Proof. First consider the case ¢ = 2; thanks to Theorem 1.1.3 it suffices
to show that any linear extension of F by A splits. By Lemma 2.2.1 any
such extension is an extension in s and we can use Proposition 1.2.6
to conclude that it really splits. If 7 > 3 we can use the isomorphism of
Theorem 5.2.1 above to identify H*(F; A) with Hi;(F; A). These are Ext-
groups in appropriate abelian categories vanishing on injective objects. As
we showed, they also are identically zero in dimension two. Standard homo-
logical algebra argument shows that derived functors identically vanishing
in some dimension are zero in all higher dimensions too. This finishes the
proof. O

This result in the case when A is a bifunctor over a single sorted theory
was proved in [10] (see Proposition 4.22 of loc. cit.).

5.2.3. Theorem. There is an isomorphism

Der(T; A), n=0,
HG(T; A) =
a(T; 4) {H"“(']I‘;A), n>0

for any theory T and any A € Z#(T).

Proof. Let C**1(T; A) be the downshift by one of the cochain complex from
1.1.1. That is, it is the cochain complex with C"*1(T; A) in degrees n > 0
and zero in all negative degrees. Thus we have

Der(T;A), n=0,

Hn(cﬁ-l('][‘;A)) = {Hn+l(T A) n > 0.
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Next suppose given a free resolution € : F, — T of T in 9%, J/T. We
then similarly obtain a cosimplicial cochain complex C**1(F,; A), with two
spectral sequences converging to the cohomology of the total complex of the
associated bicomplex.

The spectral sequence with

By = HO(CV (Fy; )
has

1EPY — Der(Fp; A), ¢=0,
0, q > 0,

by Lemma 5.2.2 above, so the common abutment is 1somorph1c to Hy(T; A)
by definition.
The second spectral sequence has

"EP* = H*(CPYL(F,; A)).

By definition of the resolutions, for any objects Y, Z of T the augmentation
¢ induces a weak equivalence from the simplicial set Homg, (Y, Z) to the
discrete set Homy(Y, Z). In particular, the latter is in one-to-one correspon-
dence with the set of connected components of the former.

Now, looking at the explicit formula for the cochain complex C*in 1.1.1,
we see that there are isomorphisms

CPH(F.;A) S [[  C*(Homg, (Y,Y0) X ... x Homg, (Ypu1, Yy )i A))

Yo,..,Yp+1

to the product of cochain complexes of simplicial sets Homp, (Y7, Yp) X ... X
Homp, (Yp41,Y,) with coefficients in abelian groups equal to Ay,..s,., on
the connected component of the former corresponding to (fi, ..., fp+1) €
Homt(Y7, Yp) ... x Homy (Yp41, Yp). Since these simplicial sets have trivial
cohomology in positive dimensions, we obtain

"B =0forq > 0.
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Moreover obviously

"B = ] H°(Homg,(Y:,Yp) x ... x Homg, (Ypi1,Y,); Am))
Yo,.._,yp+1

= CPYY(T; A),

so on the other hand the abutment is isomorphic to Der(T; A) in dimension
zero and to H™"(T; A) in dimensions n > 0.

Comparing these two descriptions of the abutment gives the theorem.
a
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