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QUILLEN COHOMOLOGY AND BAUES-WIRSCHING
COHOMOLOGY OF ALGEBRAIC, THEORIES

by M. JIBLADZE and T.PIRASHVILI

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CA TEGORIQUES

Volume XLVII-3 (2006)

RESUME. Les theories algdbriques peuvent elles-memes 8tre consid6-
rdes comme des sortes de structures algébriques, par cons6quent il est

possible de considerer leur cohomologie au sens de Quillen. Dans cette
note, on montre que la cohomologie de Quillen d’une th6orie alg6brique
est isomorphe a sa cohomologie de Baues-Wirsching.

Introduction

The aim of this work is to construct cohomology groups of algebraic the-
ories. Our construction follows the general philosophy of Barr&#x26;Beck and
Quillen. As prescribed by it, the category of coefficients for cohomology of
a theory T is the category F(T) of internal abelian groups in the comma
category Theories/T of theories over T. We show that F(T) is an abelian
category with enough projective and injective objects, and we give two more
alternative descriptions of it. First, it is equivalent to the full subcategory
of the category of natural systems on T in sense of [6], namely, of the s. c.
cartesian natural systems (see Section 2); on the other hand, we construct an
explicit ringoid valued functor WT and prove that F(T) is also equivalent to
the category of modules over WT.

After establishing these three alternative descriptions of the category
g(T) we accordingly give three different constructions of the cohomology
groups of T with coefficients in an object of g(T). The first construction
follows the Quillen approach and uses simplicial resolutions of 1f in -5,79-w,.j
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by free theories. The second "Cartan-Eilenberg style" approach defines co-
homology groups as suitable Ext-groups in the category 9(T). Finally, the
third approach utilizes the Baues-Wirsching cohomology of T considered as
a small category.

Our main result claims that these three approaches give essentially the
same result. In particular, we prove that the Baues-Wirsching cohomology
of a free theory with coefficients in a cartesian natural system is trivial in
dimensions &#x3E; 1.

Finally, we must note that our constructions and results generalize the
work of the authors on this subject [10]. In that paper, coefficients for the

cohomology of theories were defined in much more restricted situation -
which however was of sufficient generality for the theories of modules over a
ring. The difference roughly corresponds to the difference between bifunc-
tors and Cartesian natural systems as coefficients for the Baues-Wirsching
cohomology. 

1 Recollections

1:1 Cohomology of small categories
1.1.1 Basic definitions

Let C be a category. Then the category FC of factorizations in C is defined
as follows. Objects of FC are morphisms f : A ~ B in C and morphisms
(a, b) : f ~ g in FC are commutative diagrams

in the category C. A natural system on C is a functor D : FC - Ab to the
category of abelian groups. We write . If a

and g : D ~ B are morphisms in C, then the induced homomorphism
will be denoted by g - a6, for 6 C D f, while

will be denoted by , We denote by
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C*(C; D) the following cochain complex:

with the coboundary map given by

According to [6] the cohomology H* (C; D) of C with coefficients in D is
defined as the homology of the cochain complex C*(C; D).

A morphism of natural systems is just a natural transformation. For a
functor q : C’ - C, any natural system D on C gives a natural system
D o (Fq) on C’ which we will denote q* (D). There is a canonical functor
FC - C°p x C which assigns the pair (A, B) to f : A - B. This functor
allows one to consider any bifunctor D : C°p x C ~ J*fi as a natural
system. In what follows bifunctors are considered as natural sy t 
this correspondence. Similarly, one has a projection C°p x C -+ , 

yields the functor FC ~ C given by (a : A ~ B) H B. This allows us to
consider any functor on C as a natural system on C. In particular one can
talk about cohomology of a category C with coefficients in bifunctors and in
functors as well. One easily sees that for a bifunctor D : C°p x C ~ Ab the
group H° (C; D) coincides with the end of the bifunctor D (see [ 12]), which
consists of all families (XC)C EOb C, where xc E D1C, for each C E Ob C,
satisfying the condition a(xA) - (xB )a for all a : A ~ B. In the case of a
functor F : C ~ Ab the group HO( C; F) is isomorphic to the limit of the
functor F and the groups H*(C; F) are isomorphic to the higher limits (see
[6]).
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1.1.2 Linear extensions and second cohomology of categories

We will need the definition of linear extensions of categories and their re-
lationship with the second cohomology following [6]. Let D be a natural

system on a small category C. A linear extension ,

of C by D is a category E, a full functor p which is identity on objects, and,
moreover, for each morphism f : A ~ B in C, a transitive and effective
action of the abelian group D f on the subset p-1 (f) C HomE(A, B),

such that the following identity holds

Here f and g are two composable arrows in C, f E p-1(f), g E p-1 (g) and
a E D f, b E Dg. Two linear extensions E and E’ are equivalent if there is
an isomorphism of categories E : E ~ E’ with p’E = p and with E (a + f ) =
a + E (f). For example, there is a ’trivial linear extension D )4 C ~ C with

and composition given by

for any composable f and g in C and any a E Df, b E Dg. It is proved in [11,
1.6] that for any natural system D on a category C the trivial linear extension
D x C ~ C has the structure of an internal abelian group in the comma

category CAT/C of categories over C and moreover there is a one-to-one
correspondence between linear extensions of C by D and (D x C - C)-
torsors in CAT/C.
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Let Linext(C; D) be the set of equivalence classes of linear extensions
of C by D.

1.1.3. Theorem. ([6]) There is a natural bijection

1.2 Finite product theories

1.2.1 Basic definitions

A finite product theory (simply theory for us) is a small category with fi-
nite products. A morphism of theories is a functor preserving finite prod-
ucts. With these morphisms, theories form a category Let V be
a category with finite products. A model of a theory T in the category
E, also termed a %-valued model of T, or an ’1r-model in C:C, is a functor
1r ~ b preserving finite products. Models of 1r in W form a category
T(E), with natural transformations as morphisms. Models in the category
Ens of sets will be called simply models, and the category 1I’( Ens) will
be also denoted by T-mod. It is known that the category T-mod is com-

plete and cocomplete for any theory T. Moreover the inclusion T-mod

Funct(T), bns) preserves all limits and has a left adjoint, and the Yoneda
embedding TOP ~ Funct(T, Fw) factors through it, i. e. there is a full em-
bedding F : TIP --&#x3E; T-mod. Models in the image of F are called finately
generated free models, so that 1I’ is equivalent to the opposite of the category
of such models. It is easy to see that the functor F preserves coproducts, i. e.
F(X x Y) is a coproduct of F(X) and F(Y) in the category of models. A
morphism of theories f : T ~ T’ induces a functor

where f * (M) = M o f . Clearly this functor preserves all limits. Since more-
over the categories of models have small generating subcategories (those of
free models), by Freyd’s Special Adjoint Functor Theorem the functor f *
has a left adjoint 
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One can see that the square

commutes. See [2] for details.

1.2.2 Single sorted theories

Let sop ~ Ens be the full subcategory of Wnd with the objects n =
{1, ..., n} for n &#x3E; 0. Since the category S°P has finite coproducts, the cate-
gory S, opposite of the category S°p is a theory, which is called the theory of
sets. To distinguish objects of S and S°p we redenote objects of S by XO = 1,
X1 = X, X2, X3, .... For any 1  i  n we denote by xi : Xn ~ X the
morphism of S corresponding to the map {1} ~ n, which takes 1 to i.

It is clear that n is a coproduct of n copies of 111 in S°p. It follows that

Xl, ..., Xn : Xn ~ X is a product diagram in S. One observes that S(W) is
equivalent to E for any category wiih finite products le. In particular S-mod
is equivalent to the category Ens.

A single sorted theory is a theory morphism S - 1r which is identity
on objects. The full subcategory of S/Theories with single sorted theories as
objects will be denoted by Th1. Thus objects of single sorted theories are
just natural numbers, which are denoted by XO = 1, X1 = X, X2, X3,....
There are projections x1, ..., Xn from X n to X . If M is a model of a single
sorted theory 1r, then M(X) is called the underlying set of M. It is then

equipped with operations uM : M(X)n ~ M(X) for each element u of
HOMT(Xn, X), satisfying identities prescribed by category structure of T.
By this reason, elements of HOMT (Xn, X) will be called n-ary operations
of 1r. Thus for any single sorted theory T, the category T-mod is a variety
of universal algebras. Conversely, for any variety V, the opposite of the
category of the algebras freely generated by the sets n == {1,..., n}, n &#x3E; 0,
is a single sorted theory, whose category of models is equivalent to V.
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1.2.3 Multisorted theories

Let I be a set and consider the category sop / I of maps n ~ I for various
sets n = {1, nl. Morphisms in SOP/I from n ~ I to Tn - I are
commutative diagrams of sets ,

One easily sees that this category has finite coproducts; for example, coprod-
uct of fi : n1 ~ I and f2 : n2 ~ I is (f1): nl U n2 ~ I. in fact, the set
of objects of sop I I can be identified with the free monoid generated by the
set I in such a way that a word il ... in represent the coproduct of the objects
i, : 1 ~ I, v = 1, ..., n. So any f : n ~ I is the coproduct of the objects
f (1): 1 - I, ..., f (n): 1 - I in S/7. We let F amI be the opposite of
the category sop I I. Then FamI is a theory called the theory of I -indexed
families. To distinguish objects of FamI and sop I I we denote the object
of FamI corresponding to a map f : n ~ I by Xf. Hence an object of
Fam, has the form Xi 1 x ... X Xin for a unique n-tuple (i1,..., in ) E I n . It
is straightforward to check that the functor

which assigns to a model M : FamI ~ E the family M (Xi)iEI is an

equivalence.
For a set I, an I -sorted theory is a theory morphism FamI ~ 1r which

is identity on objects. The full subcategory of FamI/Theories with I-sorted
theories as objects will be denoted by ThI.

Although I-sorted theories appear to be of very special kind, one has

1.2.4. Proposition. For any theoqy T there is a set I and an I -sorted theory
FamI ~ 1r such that the category T is equivalent to T.

Proof Let I be the set Ob(T) of objects of T. We then are forced to take
for the set of objects of T the free monoid En&#x3E;0 Ob(T)n on I. There is an
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obvious map from this monoid to the set of objects of T, n : Ob(T) ~ 
Ob(T) which assigns to an n-tuple (X, ..., Xn ) of objects of T its product
Xl x ... x Xn in T. We then simply define

This clearly defines the category ’it with the same objects as FamOb(T) and
a functor T~T which is full and faithful and surjective on objects, i. e.
it is an equivalence. Moreover by (*) above, models of Fam0b(T) in a cat-
egory with finite products W are families (CX)XEOb(T) of objects of W, so
the tautological family (X)XEob(T) gives a finite product preserving func-
tor Fam0b(T) -+ T. It is then obvious that this functor lifts to a functor

FamOb(T) ~ T which is identity on objects. D

A model of an I-sorted theory FamI ~ T is just a T-model. For

such a model T - W in a category its underlying family is the object
of eel corresponding to the composite FamI ~ T - W. When safe, we
will denote images of morphisms w : Xil x ... x Xin -+ Xi of T under a
model 1r ~ E by cv again. Thus intuitively, models M of an I-sorted the-
ory FamI ~ T in categories with finite products are I-tuples of objects
(Ci)iEI, Ci = M(Xi), equipped with additional structure, namely various
operations of the form

corresponding to morphisms w : Xil x ... x Xin ~ Xi in 1r. These operations
must further satisfy various identities expressing the fact that M is a product
preserving functor. In detail, this amounts to the following:

2022 the morphisms corresponding to the projections 7rl : Xi1 x ... x Xin ~ 
must be product projections

themselves;

o for morphisms
and u
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with the diagram

must commute.

The "substrate" underlying the structure of an I-sorted theory is a family
of sets of the form I for n = 0,1,..., namely, the sets
HomT We thus have a forgetful functor

It is proved in [7] that this functor admits a left adjoint F. Theories in the
image of this left adjoint are free theories. It is more or less obvious that the
adjunction counits FUT - T are all full functors, so that in particular one
has

1.2.5. Proposition. For any theory T there exists a morphism IF ~ 1r from
a free theory to 1r which is a full functor.

Moreover, since every componentwise surjective map in ,
admits a section, it tollows

1.2.6. Proposition. Let P : T ~ IF be a morphism in ThI which is a full
functor. If F is a free theory, then P has a section, i. e. there is a morphism
S:F ~ T in ThI with PS = 1.

r-I

1.3 Ringoids and modules over them
Let us here recall some well known facts about ringoids and modules over
them. A good reference on this subject is [13].
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A ringoid is a category enriched in abelian groups. It is thus a small cat-
egory R together with the structure of abelian group on its Hom-sets in such
a way that composition is biadditive. Morphisms of ringoids are enriched
functors, i. e. functors preserving the abelian group structures. These are
also called additive functors. The category of ringoids will be denoted by
Ringoids.

Let 9 be a ringoid. We denote by 9-mod the category of all covariant
additive functors from 9 to Ab, and by mod--4 the category of all con-
travariant additive functors from 9 to Objects from 9-mod are called
left modules over 9, while those from mod-9 are called right modules.

For any small category I, we let Z[I] be the ringoid with the same objects
as I, while for any objects i and j the group of homomorphisms from i to j
in Z[I] is the free abelian group generated by Hom, (i, j):

whereas the composition law is induced by

Then clearly one has
For any ringoid N and an object c E 9 we define and

and

Then one has natural isomorphisms

and
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Therefore, the family of objects (hc)cEOb(R) (resp. (hc)cEOb(R) forms a
family of small projective generators in R-mod (resp. in mod-R). The
functor h, is called the standard free left 9-module concentrated at c.

Let f : R ~ :7 be a morphism of ringoids. Composition with f induces
a functor ’

It is well known that f * has right and left adjoint functors f * and f! respec-
tively (the so-called right and left Kan extensions).

There is a generalization to ringoids of the fact that to any ring R corre-
sponds the theory MR of (left) R-modules, which obviously is the category
opposite to that of free finitely generated left R-modules and their homo-
morphisms. Note that equivalently we may take for MR the category of free
finitely generated right R-modules.

In fact there is a functor M : Ringoids ~ Theories. It assigns to a ringoid
R the theory h5* of 9-modules. M31 its the additive category freely gener-
ated by M, i. e. it is an additive category equipped with a homomorphism
of ringoids I, : R ~ M_q which has the following universal property: for
any additive category A, precomposition with IR induces an equivalence of
categories

There exists an explicit description of M31 as the category of matrices over
9: M31 can be chosen to be an Ob(R)-sorted theory, so that its objects are
finite families of objects of 1%, pictured as al (1) ... (@a,, for any aI, ..., an E V,
n &#x3E; 0. Moreover HomMR (a1 EB ... EÐ an, bl EÐ ... EB bm) is defined as

with composition defined via matrix multiplication, for

1.3.1 Enveloping ringoids

There is a functor in the opposite direction, from theories to ringoids.
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1.3.2. Proposition. For any I-sorted theory 1r there exists a ringoid U(T),
depending functorially on 1r, such that Ab(T-mod) is equivalent to the
category of U(T)-modules.

Proof. The key observation here is that in the presence of an abelian group
structure any operation like w: X, x... x Xn ~ X must be an abelian group
homomorphism, hence have the form
for some unary operations wi : Xi ~ X.

Let the set of objects of U(T) be I, and present morphisms of U(T) by
generators and relations as follows. For each w in T
we pick n generators 81 (w) : And for each
such w and any w, :
we impose the relations

for 03BC = 1, ... , m. Furthermore we impose the relations

with 6 the Kronecker symbol, meaning the zero morphism for Ec + v and
the identity morphism for p = v. Here, are the

projections, J-L, v = 1, ..., n.
Thus a U(T)-module is a collection of abelian groups (Ai)iEI and homo-

morphisms ( Homy
satisfying the above relations. Then from any such module we obtain an

object of Ab(T-mod) by defining

for w as above and n. Conversely, if ( is
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given the structure of an object from Ab(1r-mod), then we define

It is easy to see that these procedures determine mutually inverse equiv-
alences between the category of U(lP)-modules and Ab(T-mod). 0

2 Cartesian natural systems

2.1 The notion

Let 1r be a theory and let D be a natural system on T. We will say that the
natural system D is cartesian (or compatible with products - cf. [5]) if
for any product diagram and any

morphism j the homomorphism

given by a H (pi a, ... , pna) is an isomorphism. Obviously D is cartesian if
and only if it satisfies the above condition with n = 0 and n = 2, i. e.

9 Dix= 0 for the unique morphism!x : X - 1 to the terminal object;

is an isomorphism for any

One observes that if a bifunctor ’ preserves products in
the second variable, then the natural system induced by D is cartesian. We
denote by F(T) the category of cartesian natural systems on T.

2.2 Motivation and properties
The following fact goes back to [10].
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be a linear extension of a theory 1r by a natural system D. Then D is carte-
sian iff E is a theory and P is a theory morphism.

Proof. Take a product diagram pi : X1 x ... x Xn - Xi, i = 1, ..., n, and
choose arbitrarily Pi in IE with P(pi) = pi. This then gives a commutative
diagram

which shows that E has and P preserves finite products iff all the maps

given by f - (p1f, ..., pnf) are bijective.
On the other hand the above maps are equivariant with respect to the

group homomorphisms

and the actions given by the linear extension structure. Our proposition then
follows from the following easy lemma. 0

2.2.2. Lemma. Suppose given a group homomorphism f : G1 ~ G2 and
an f-equivariant map x : Xl ---7 X2 between sets Xi with transitive and
effective Gi-actions. Then x is bijective iff f is an isomorphism.

Proof. See e. g. [10, Lemma 3.5] 0

2.2.3. Theorem. For any I-sorted theory 1f there is an equivalence of cate-
gories

of the category f (T) and the category of internal abelian groups in ThI/T.
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Proof It is easy to see from 1.1.2 above that for any natural system D on T,
the trivial linear extension D x T~ T of T by D is an internal abelian group
in categories over 1r. If D is moreover cartesian, then by 2.2.1 D x T is actu-
ally a theory and the projection is a morphism of theories. Furthermore the
group structure functors +
and 0 : T ~ D x 7 over 1r are evidently morphisms of theories, i. e. pre-
serve product projections, so that one obtains an internal abelian group E(D)
in ThI/T. The aforementioned correspondence between natural systems
and internal abelian groups is in fact functorial and it is equally easy to see
that under it morphisms of cartesian natural systems are carried to product
preserving functors.

Conversely, given an internal abelian group structure on an object p :
E ~ T of ThI/T put D(p) f = p-1 (f) for a morphism f in T and define
for any composable f, 9 the actions by

for any p f = A P§ = g, where 0 : 1r - E is the functor defining zero
of the internal abelian group structure. This clearly defines a natural system
D(p) on T. It is easy to see that D(p) is cartesian if (and only if) p is a
morphism of theories, i. e. preserves products. Moreover any morphism of
theories f : E ~ E’ over T clearly defines a natural transformation of the
corresponding natural systems.

We have thus defined functors in both directions between J(7) and
Ab(ThI/T). It is straightforward to check that the composite S(I) -
g-(T) is identity. To show that the other composite is isomorphic to the
identity of Ab(ThI/T), note that for an internal abelian group (p : E ~ 

functoriality of
implies

for any composable f , g in 1r and any It follows that E
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is isomorphic to D(p) x T over T. 0

2.2.4. Remark. The above theorem can be also deduced from general results
of [4, 1.5 and 4.11]. We omit the details.

The terminal object of thI/T is obviously the identity functor 1T: T
T. The global sections functor

composed with the above equivalence , yields the
functor

It is easy to identify the functor Der(T; -) explicitly. Given a Cartesian
natural system D on T, the abelian group Der(I; D) is by definition the
group of global sections of the projection D x T ~ T. It is then straightfor-
ward to calculate that this amounts to

2.2.5. Proposition. For any theory T and any Cartesian natural system
D E F (T) there is an isomorphism

Proof. A section T - D x T must assign to each morphism VJ : X ~ Y
from 1r a morphism (d(w), w) E HOMDxT(X, Y); preservation of compo-
sition amounts precisely to the above equality. The latter also implies that
d(identity) = 0, so identities are preserved too. 0
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3 Enveloping ringoids and modules over ringoid
valued functors

3.1 Enveloping ringoids
3.1.1 The Grothendieck construction

Our next goal is to prove that the category F(T) is an abelian category with
enough projectives and injectives. To do that, we are going to generalize the
notion of module over a ringoid to that of one over a ringoid valued functor
on a small category. We will then realize g(T) as the category of modules
over certain ringoid valued functor.

Suppose given a functor F : I --&#x3E; CAT from a small category I to the

category of categories, denoted Then
the Grothendieck construction f, F of F is defined as the lax colimit of F.
Explicitly, it is a category with objects of the form (i, X), with i E Ob(I)
and X E Ob(Fi); morphisms are defined to be pairs

with and . Identity morphism for (i, X)
is (idi, idx), and composition of with

(p, f ) as above is defined to be the pair . There is a canonical

functor PF : f, F ~ I given by projection onto the first coordinate, i. e.

sending (i, X) to i and (cp, f ) to p.

3.1.2 Comma category as models

As an application of previous discussion we prove that the comma category
of a category of models of a theory is still a category of models for a theory.

3.1.3. Proposition. For an I-sorted theory 11: and any model M in 1I’-mod,
the category -sorted theory and moreover the comma
category 1r -modi M is equivalent to the category of models (fT M) -mod.

Proof Any object N of 1r -mod equipped with a morphism f : N - M
can be considered as a collection of sets
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and maps , for all
and in T, fitting into certain commutative

diagrams
Then regarding M as an object of Ens, and defining Then regarding M as an object of Ens, and defining 

for , we can consider the above data as

a functor . , which sends the object
of the latter category to the product of the objects Now
the proof follows from the subsequent lemma. D

3.1.4. Lemma. A functor M : T ~ Ens preserves finite products if and
only if the category IT M has finite products and the canonical functor P :
IT M --&#x3E; T, sending m E M(X) to X, preserves them.

Proof. Let us first recall that functors of the form P : IT M -&#x3E; T for any
functor M: T~ Ens are characterized by a property called discrete opfi-
bration :

for any x E fT M and any cp : Pz - a, there is a unique
Q x ~ y with PV) = cp.

Using this property it is easy to prove that a pullback of a product preserving
discrete fibration between categories with products along a product preserv-
ing functor is again a product preserving functor between categories with
products.

The "only if" part then follows because of the following pullback dia-
gram in the category of categories

in which Ens denotes the category of pointed sets and U the forgetful func-
tor : since the latter is a discrete opfibration and preserves products, it follows
that IT M will have and P : IT M ~ T preserve them too.

For the "if" part, we again use the discrete fibration property to prove



181

a) M (1) has single element: the particular case of the above discrete
opfibration condition with Px = a = 1 implies that for any x E

P-1 (1) one has since

is bijective: this follows from
another two particular cases of the discrete opfibration condition -
with x = Xl x X2 for some xi E P-1(ai) and cp = 7ri, i = 1, 2;
indeed these cases give that there are unique oi starting out of x with
P(Yi) = Ti, hence x is a unique element of M(al x a2) satisfying
M7ri(X) = xi, i = 1, 2.

D

3.1.5. Corollary. For any model M of a theory T, there exists a ringoid
u(M), the enveloping ringoid of M, depending functorially on M, such
that the category Ab(T-mod/M) is equivalent to the category of all (M)-
modules.

Proof. Of course this is just a particular case of 1.3.2 in view of 3.1.3. Let
us, however, give explicit presentation of W (M) = U(fT M) in this case,
assuming for simplicity that T is an I-sorted theory. The set of objects of
u(M) is then IIiEI M(X2), and the morphisms are generated by ones of
the form for each w E HomT(Xi1 x 

and
The defining relations are indexed by data (

, and and have the form

and

Once again, functoriality is obvious from this presentation.
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Occasionally we will write uT (M) to make explicit dependence on T.
This construction is known under various names in the literature - see e. g.
[3] or [16].

3.2 Derivations

Given a theory T, its model M E T-mod, and an object p : A ~ M of the
category Ab(T-mod/M) = o//’f(M)-mod, we will denote by Der(M; A)
the abelian group of all sections of A ~ M, i. e. the set of all morphisms
s : M ~ A of T-models with ps ---- 1M. Elements of Der(M; A) will be
called derivations of M in A. Der(llil; A) is contravariantly functorial in M,
in the following sense. For a morphism f : M’ ~ M of models we get the
induced homomorphism f*: Der(M; A) ~ Der(M’; f*A), where f*A de-
notes the pullback of p : A - M along f . Equivalently, one might interpret
Der(M’; f *A) as the abelian group of allW-model morphisms M’ - A over
M, i. e. fitting in the commutative diagram

Clearly also Der(M; A) is covariantly functorial in A and so defines a func-
tor Der(M; -) on o/ty(M)-mod. We then have

3.2.1. Proposition. The functor Der(M; -) is representable. That is, there
exists an uT(M)-module S2M with a natural isomorphism

for all A. Moreover S2M depends functorially on M. When M is a finitely
generated free 1r -model, then S2M is a projective object of all (M)-mod.

Proof. Following the equivalence from 3.1.5, we see that for an u(M)-
module A the corresponding object of Ab(1r-modj M) is the 1r-model given
by; with the T-model structure assigning to a mor-
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phism the operation

given by

Then

consists of those families (d(x) E A(x))xEIIiM(Xi) which respect all these
operations. That is, Der ( M; A) consists of assignments, to each x E M(Xi),
of an element d (x) E A(x), in such a way that for any w : Xil x ... x Xin ~ 
Xi and any xv E M(Xiv), v = 1, ..., n, one has

Because of this expression it is natural to call such assignments derivations.
We then present S2M by generators and relations as a u (M)-module as

follows: it has generators d(x) E n 1M(x) for each x E M(Xi) and each
i E I; and the defining relations are (*) above. It is then clear that S2M
carries a generic derivation d, so that one has a natural isomorphism

given by f H f d. That Oiw is functorial in M is also clear from the con-
struction.

Now suppose M is a finitely generated free model F(X), i. e. there
is an X E T with M = HomT(X, -). Then it is straightforward to check
using Yoneda lemma that for an object of Ab(T-mod/M) corresponding to
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a o/t (M)-module A we will have Der(F(X); A) = A(idX). It follows that

Homu (F(X)) (Ql A) is an exact functor of A, i. e. n1F(X) is projective. In
fact of course this actually means that n1F(X) = hidX. 

3.3 Ringoid valued functors
Let us consider now a small category I and a covariant functor

It is easy to see that the category fI R is a ringoid in a canonical way.
We will say that M is a left 9-module if the following data are given:

i) a left !!li-module Mi for each object i E I; 

ii) a homomorphism Ma : Mj - 9,,*,Mj of ffli-modules for each arrow
a : i - j of I.

Moreover it is required that for any composable morphisms a and B one has
MaB = MaMB.

If M is a left R-module, i is an object of I, and x is an object of the
ringoid ffli, then we denote by M(i,x) the value Mi(x) of Mi on x. Having
this in mind it is clear that a left ffl-module is nothing else but a functor
M:f R~ Ab such that each composition M 0 Çi : Ri ~ Ab, i E I, is
an additive functor. The category of all left 9-modules will be denoted by
-q-mod.

3.3.1. Example. As an example, we can take any small subcategory I of the
category of commutative rings and let Zf be the inclusion 1 - Rings. Thus
61 is a ring valued functor, hence can be regarded as a functor with values
in ringoids with a single object. For any ring S E I the absolute Kahler
differentials Os is a module over S. Since Q* functorially depends on S
we obtain that Q* E 0-mod. Another example comes from topology. Let
I be a small subcategory of the category of topological spaces. Then for
any ring R, the ordinary (singular) cohomology of spaces with coefficients
in R defines a ring valued functor H*(-; R), and for any R-module M the
functor H*(-; M) is a module over H*(-; R) in the above sense. Similarly
X - Z[7r,X] is a ring valued functor defined on any small subcategory of
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the category of pointed topological spaces, while X H 7riX is a module
over it, for any i &#x3E; 2.

An alternative description of the category R-mod is possible, showing
that it is equivalent to the category of modules over a single ringoid. Given
a functor f1l : 1 - Ringoids as above, we define its total ringoid R[I] in
the following way: the set Ob(R[I] of objects of the ringoid R[I] is the
disjoint union or else again the set of pairs (i, x), just
as for f M. Morphisms of the ringoid &#x26;llIJ are given by

Composition homomorphisms are given by

and the identity of is the element of

given by the identity of x in gi, situated in the idi-th summand. It is straight-
forward to check that this construction indeed yields a ringoid. One then has

3.3.2. Proposition. For any ringoid-valued functor 9 : I ~ Ringoids, the
category of left 9-modules is equivalent to R[I]-mod.

Proof. An R [I] -module M is a family of abelian groups
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and a family of abelian group homomorphisms

for x E Ob(Ri), y E Ob(Rj), satisfying certain conditions. Just by uni-
versality of sums then, specifying the above homomorphisms M(i,x),(j,y) is
equivalent to specifying families

It is then straightforward to check that the conditions on the M(i,x),(j,y) to
form an R[I]-module give precisely the conditions on the Ma to form an
,4-module. 0

It is thus clear that q-mod is an abelian category with enough projec-
tive and injective objects. Let us give the explicit description of the pro-
jective generators and injective cogenerators corresponding to the standard
ones from 8l [I].

Take i E Ob(I) and let x be an object of the ringoid 8li. Then, in
accord with the above 3.3.2, associated to the standard free R[I]-module
concentrated at (i, x) there is a left 9-module hRi,x given by

In other words (hRi,x)j is the direct sum of standard free 9 -modules:
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It follows that for any &#x26;ij-module X one has isomorphisms

Thus for any 9-module M one has a natural isomorphism

Let now k be an object of I and let A be an Elk-module. We denote by
k*(A) the R-module, whose value at i is given by

The a-component of (k*A)i has an 3t’i-module structure given by restriction
of scalars along the ringoid homomorphism 3t’a : Ri ~ 3t’k. Hence (k*A)i 2
is an 3t’i-module and now it is clear that k*A is an 9-module. Moreover the
functor k* : !Ilk-mod -+ 9-mod is right adjoint to the evaluation functor
eVk: &#x26;t’-mod -+ 8t’k-mod, which is given by eVk(M) = Mk. In particular,
if A is an injective gk-module then k*A is an injective 9-modules. Hence
the family (k*Q)k,Q, is a family of injective cogenerators for the category of
9-modules. Here k runs over the set of objects of I , and then Q over the set
of injective cogenerators of the category of 3t’k-modules.

3.4 The equivalence
Our main example of a ringoid valued functor stems from 3.1.5. To any
theory T one can assign a ringoid valued functor uT on T considered as
a small category, by sending an object X of T to the enveloping ringoid
uT(F(X)) of the corresponding free T-model F(X).

For any objects A, B of q¿T-mod there is a natural system Hom u (A, B)
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on T given by

where the ringoid morphism is induced by
F( f ) : F(Y) ~ F(X), i. e. by (g H gf): HomY(Y, -) - HomT(X, -).
Let us find out when is this natural system cartesian. For this it will be
convenient to rewrite the above in the following way:

Indeed as we saw in 1.2.1 all the functors F(f)* have left adjoints. The

above conditions then show that this natural system is cartesian if and only
if

o Hom, for;

o the canonical morphism

is an isomorphism for any

In particular Hom u (A, B) is cartesian for all B if and only if A satisfies

is an isomorphism for any Xl,

It is natural to call such an A a cartesian uT-module.
We next discuss our main example n1 of such an uT-module, obtained

from 3.2.1.
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3.4.1. Example. Any uT-module B determines a natural system Der (-; B)
on T in the following way: for a morphism f : X ~ Y of T, put

Here pX: Bx -+ F(X) is the object of Ab(T-mod/F(X)) corresponding
to B(X) under the equivalence uT(F(X))-mod = Ab(T-mod/F(X)).
That this is indeed a natural system, follows from the functorial properties
of Der. Moreover this natural system is cartesian. Indeed, T-models of the
form F(X) are the representable ones, F(X)(Y) = HomT(X,Y). Then
considering the diagram (1) we see that Der(F(Y); f*(BX)) can be identi-
fied with the set of all elements b E Bx (Y) with pX(b) = f E F(X)(Y) =
HomT(X, Y). Then given fi : X - Xi, i = 1, ..., n, one has

But it is immediate from 3.2.1 that there is an uT-module n1 such that
the natural system Der (-; B) is actually isomorphic to
Namely, 01 is just given by X ~ n1F(x). It is then a cartesian uT-module
in the above sense, i. e. one has

is an isomorphism for

3.4.2. Theorem. There is an equivalence of categories

in particular, F(T) is an abelian category with enough projectives and in-
jectives. Moreover the quasi-inverse of this equivalence assigns to an object
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A of o/Iy-mod the cartesian natural system
from 3.4.1.

Proof. As always, we can assume here that 1r is an I-sorted theory. Then
for a cartesian natural system D on T, to define O(D) we must first name
for each module The set of objects of

(see 3.1.5), i. e. HomT-(X,Xi). We
then define values of 4l (D)x on these objects by

Next action of morphisms of uT(F(X)) is uniquely determined by requir-
ing, for and

commutativity of the diagrams

where the isomorphism is the inverse of the canonical map that is required
by cartesianness of D, and tv is the v-th embedding into ? = x of abelian
groups. 

We also have to define action on O(D) of morphisms f : X - Y in 1r,
which must be Wr (F(Y) )-module morphisms O(D)Y ---&#x3E; F(f)*(O(D)X),
where the functor F(f)*: o/trr(F(X))-mod -t o/ty(F(Y))-mod is the re-
striction of scalars along the ringoid morphism uT(F(Y))-&#x3E; uT(F(X))
induced by the morphism of T-models F(f) : : F(Y) - F(X). Now
F(f)*(O(D)x) is easily seen to be given by (y : Y ~ Xi) - Dyf, so
what we must choose is a suitably compatible family of abelian group ho-
momorphisms

and these we declare to be the action of -f on D. It is then straightforward
that all of the above indeed gives a functor (D : F(T) ~ uT-mod.

Next note that, as we have seen in 3.2.1, one has Der(F(X);A) = 
A(idx) for any uT(F(X))-module A, so in particular for any f : X --&#x3E; Y
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in T we have by 3.4.1

Conversely, given a q¿rr-module A, by definition

(Of course one should also check these on morphisms, but this is straightfor-
ward too). 0

3.4.3. Corollary. A natural system on a theory 1r is cartesian if and only if
it is isomorphic to one of the form

for some q¿1f-module B.

As another corollary we obtain a generalization of [11, 2.4].

3.4.4. Corollary. For any additive theory 1r (i. e. a theory which is additive
as a category) the functor

which assigns to a functor
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the cartesian natural system t on T given by

is an equivalence of categories.

Proof. Following the proof of 3.4.2 in this case, we see that any cartesian
natural system D on 1r can be given by

where B is some o/ty-module and BX -&#x3E; F(X) is the object of the category
Ab(T-mod/F(X)) corresponding to B(X) under the equivalence

But since the category T-mod is additive (even abelian), there is a canonical
equivalence of categories

for any T-model M. Composing these two equivalences we obtain that there
is a functor T : TOP --&#x3E; T-mod such that for each object X of T the above
internal abelian group in T-mod/F(X) represented by BX --&#x3E; F(X) is
naturally isomorphic to the constant one given by the direct sum projection
F(X) G) T (X )--&#x3E; F(X). Moreover this isomorphism gives compatible
isomorphisms

for any f : X - Y. D

3.4.5. Example. As an example of essentially non-additive situation, let us
take the case when 1r is the theory of groups Or. The corresponding coef-
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ficient systems according to [10] were functors from the category of finitely
generated free groups to the category of abelian groups.

The category g(Cr) is equivalent to a larger category whose objects are
assignments M of an F-module MF to each finitely generated free group F,
in a way which is functorial in F. Then coefficients in the sense of [10]
correspond to those objects M for which the F-module structure on MF is
trivial for all F.

The enveloping ringoid uGr(G), for any group G, has the set of objects
equal to G. From the relations given in 3.1.5 it is clear that all morphisms of
uGr(G) are linear combinations of composites of the ones of the form

for 91, 92 E G. Moreover these relations imply that åv(XIX2)(91,92) are
isomorphisms, with the inverses given by

and

Indeed the relations from 3.1.5 easily imply that for any 1  v  n an
operation of the form 

in any theory T one has for any model M of T and any n-tuple
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taking this into account readily gives

and

and similarly for the inverse of 92(X1X2)(g1,g2).
We thus see that all objects of uGr (G) are isomorphic to each other, so

that ÓÙGr(G) is equivalent to the ringoid with single object whose endomor-
phism ring is that of the unit of G in uGr (G). It is easy to show that this

ring is isomorphic to the group ring Z[G] of G. Indeed this is also clear

already from the statement of 3.1.5 since it is well known that the category
Ab Groups/G) is equivalent to the category of Z[G]-modules for any group
G.

Moreover it is easy to see that under this equivalence the functor Der
corresponds to taking derivations of G with values in G-modules, hence
the uGr(G)-module f2h described in 3.2.1 corresponds to the Z[G] mod-
ule equal to its augmentation ideal. It follows that the uGr-module n1 as-
signs to the group F the uGr(F)-module uniquely determined by the fact
that its value on the unit object is the augmentation ideal of the group ring
Z[F], with actions of morphisms of Wcr (F) prescribed by the structure of
F-submodule of Z[F].
3.4.6. Example. Let us give another example in which the notation S21 has
its "usual" meaning. For a commutative ring k, let Ak be the theory of com-
mutative k-algebras. Finitely generated free k-algebras are the polynomial
algebras k[X1, ...,xn], so as a category Ak is equivalent to the full subcate-
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gory of the category of affine k-schemes whose objects are the affine spaces
Ak =Spec (k[xi, Xn

Similarly to the above example, it is easy to see that for any k-algebra
A the ringoid q¿Ak (A) with the set of objects A is equivalent to the ringoid
with a single object whose endomorphism ring is A. Moreover this equiv-
alence indentifies the functor Der with usual k-derivations of A with values
in A-modules, so the ÓÙ(A)-module n1A corresponds to the classical mod-
ule n1A/k of Kahler differentials. It follows that the values n1(Ank) of the
uAk-module S21 are determined by assigning to the zero object 0 E A of
the ringoid uAk(Ank) the module n1k[x1,...,xn]/k = k[Xl, ..., xn] (dxl, ..., dXn) ,
with the action of morphisms determined by the free module structure on the
latter.

4 The local-global spectral sequence
The aim of this section is to construct our main technical tool - a spectral
sequence computing the Ext groups in the category of modules over a ringoid
valued functor, using some local data.

4.1 Construction

Let I be a small category and let /1l : 1 - Ringoids be a ringoid valued
functor on I. As we have seen in 3.3.2, the category 9-mod is an abelian
category with enough projective and injective objects. One can generalize
the construction in 3.4.1 and define for any 9-modules M and N the natural

systems 67e._q(M, N) and Ext rR(M, N) on I by

and

respectively, where the actions of ili on Nj are given via restriction of scalars
along f1lx : f1li --&#x3E; Rj. We call the natural systems Hom R (M,N) and
Ext nR (M, N) local Horn and local Ext groups. One observes that in the
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case when &#x26;l is a constant functor, these natural systems actually come from
bifunctors. The following theorem, which is the main result of this section,
was proved for the particular case of such constant 9 with values in rings in
[10].

4.1.1. Theorem (the local-to-global spectral sequence). Let I be a small
category and let f1l : I --&#x3E; Ringoids be a functor to the category of ringoids.
For any 9-modules M and N there exists a spectral sequence with

4.1.2. Corollary. Let I be a small category and let M, N be 9-modules,
where 

is a functor. Then one has a five-term exact sequence

Moreover, if gl. dim Ri  1 for each object i, then one has an exact sequence

4.1.3. Corollary. Suppose Mi is a projective Ri-module for each i E Ob(I).
Then there is an isomorphism
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4.2 Proof of Theorem 4.1.1

We fix a left -4-module N. We claim that for any left 9-module X one has
an isomorphism:

Indeed, by the definition of cohomology is isomor-

phic to the kernel

Thus H’(I; Hom R(X, N)) consists of families (fi : Xi - Ni) of R;,-
homomorphisms, such that for any a : i - j the diagram

commutes, and the claim is proved. One observes that the diagram

commutes and the Theorem is a consequence of the Grothendieck spectral
sequence for composite functors. Of course in order to apply the Grothen-
dieck theorem we first have to show that Hn(I; Hom R(M, N)) = 0 as soon
as n &#x3E; 0 and M is projective. To this end we can assume without loss of
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generality that for some i E I and x E Ri. In this case

and therefore we can use the following Lemma to finish the proof. E3

4.2.1. Lemma. Let us fix i E I and x E Ob(Ri). For any functor N :
f, 9 --+ consider the natural system D on I given by

Then

and

Proof. One easily checks that

where z/7 is the comma category under the object i and T : i/I --&#x3E; Ab is
given by

Hence the cohomology of I with coefficients in D coincides with the coho-
mology of the category i/I with coefficients in the functor T.

Now cohomology groups of a category with coefficients in functors are
isomorphic to the right derived functors of the inverse limit on that category.
Since li is the initial object in the category i / I, inverse limit of a functor on
it is given by the value of this functor on li. So the inverse limit is exact and
its right derived functors vanish. This gives the Lemma. 0
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5 Cohomology of algebraic theories

5.1 Definitions

There are several possible approaches to define cohomology of an I-sorted
theory T. First, there is a general approach of Quillen to define cohomology
of an object T in 3:l with coefficients in an object of Ab(ThI/T), which
by 2.2.3 we know to be equivalent to F(T). The main ingredient needed to
construct this cohomology is availability of simplicial resolutions in 3:l by
degreewise free objects. In our case this is possible due to 1.2.5. Namely,
for any T we choose a simplicial object IF, in the full subcategory of ThI 
on free theories and an augmentation e : IFo -&#x3E; 1r. This is called a free
resolution of T if for any sorts i1, ..., in, i E I the augmentation 6 induces a
weak equivalence from the simplicial set HomF. (XiI x ... x Xin, Xi) given
by 

to the discrete simplicial set on the set of 0-simplices HomT(Xi1 x ... x

Xin, Xi). Existence of such a free resolution is a consequence of the work
of Quillen [ 14]. Namely, it is straightforward to check that the category 5Z
satisfies condition (**) of Theorem 4 in §4 of Chapter II of [14] (page 4.2).
This allows one to apply the whole machinery of Quillen (simplicial) closed
model category theory to 50,. In particular, our resolution is a cofibrant
replacement of 1r considered as a constant simplicial object of 50,.

Having this, we then define for any 1r in ThI and any A E F(T) the
Quillen cohomology groups of T with coefficients in A by the equality

where A is considered as an object of each of the categories F(Fn), n &#x3E; 0,
via pullback along the unique morphism of theories IF--&#x3E;T given by the
resolution.

For a theory T and an object A E $(1r), we next define the Cartan-
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Eilenberg type cohomology

by the equality

Here 01 is from 3.4.1 above.
Finally, there is yet a third approach to constructing cohomology. Given

a theory T and an object A E F (T), one can form the Baues-Wirsching
cohomology

of the category T with coefficients in the cartesian natural system A as in
1.1.1.

5.2 Equivalence
We will show that these three approaches actually give isomorphic results.
More precisely,.for any I-sorted theory T and any Cartesian natural system
A E F(T) there are natural isomorphisms

5.2.1. Theorem. Let 1r be an I-sorted theory and let A E F(T) be any
Cartesian natural system on T. Then there are isomorphisms

Proof. Since by 3.4.2 O and Der (-; -) are mutually inverse equivalences,
by Proposition 3.2.1 one has an isomorphism of natural systems:
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Hence the isomorphism to be proved is a consequence of Corollary 4.1.3.
The fact that the condition of Corollary 4.13 holds here follows from Propo-
sition 3.2.1. 0

5.2.2. Lemma. If F is a free I-sorted theory and A is a cartesian natural
system on IF, then 

Proof. First consider the case i = 2; thanks to Theorem 1.1.3 it suffices
to show that any linear extension of F by A splits. By Lemma 2.2.1 any
such extension is an extension in Theories and we can use Proposition 1.2.6
to conclude that it really splits. If i &#x3E; 3 we can use the isomorphism of
Theorem 5.2.1 above to identify Hi(IF; A) with HbE(IF; A). These are Ext-
groups in appropriate abelian categories vanishing on injective objects. As
we showed, they also are identically zero in dimension two. Standard homo-
logical algebra argument shows that derived functors identically vanishing
in some dimension are zero in all higher dimensions too. This finishes the
proof. D 

This result in the case when A is a bifunctor over a single sorted theory
was proved in [10] (see Proposition 4.22 of loc. cit.).

5.2.3. Theorem. There is an isomorphism

for any theory 1r and any A E F(T).

Proof. Let C*+l(1r; A) be the downshift by one of the cochain complex from
1.1.1. That is, it is the cochain complex with cn+l(1r; A) in degrees n &#x3E; 0
and zero in all negative degrees. Thus we have
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Next suppose given a free resolution e : F. --&#x3E; T of T in ThI/T. We
then similarly obtain a cosimplicial cochain complex C*+1(F.; A), with two
spectral sequences converging to the cohomology of the total complex of the
associated bicomplex.

The spectral sequence with

has

by Lemma 5.2.2 above, so the common abutment is isomorphic to HQ(1r; A)
by definition.

The second spectral sequence has 

By definition of the resolutions, for any objects Y, Z of T the augmentation
6 induces a weak equivalence from the simplicial set Hom]F. (Y, Z) to the
discrete set HomT(Y, Z). In particular, the latter is in one-to-one correspon-
dence with the set of connected components of the former.

Now, looking at the explicit formula for the cochain complex C* in 1.1.1,
we see that there are isomorphisms

to the product of cochain complexes of simplicial sets HomF. (Yl, Yo) x ... x
HomF. (Yp+,, YP) with coefficients in abelian groups equal to Af1...fp+1 on
the connected component of the former corresponding to (fl,..., fP+1) E
HomT(Yi, YO) x ... x HomT(YP+1, Yp). Since these simplicial sets have trivial
cohomology in positive dimensions, we obtain
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Moreover obviously

so on the other hand the abutment is isomorphic to Der(T; A) in dimension
zero and to Hn+1(T; A) in dimensions n &#x3E; 0.

Comparing these two descriptions of the abutment gives the theorem.
D
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