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Abstract. We introduce the modal logic of planar polygonal subsets
of the plane, with the modality interpreted as the Cantor-Bendixson
derivative operator. We prove the finite model property of this logic and
provide a finite axiomatization for it.

1 Introduction

There is a separate direction in modal logic, dealing with the specific phenomena
related to logical reasoning about various objects of geometric nature with the aid
of modal operators. In the literature there are quite a few alternative approaches
to the way one interprets modalities in the context of space, shape, dimension,
contiguity, etc. When applying logical calculi to reason about planar or spatial
regions one often chooses some particular properties one wants to express, and
restricts the kind of regions considered to those for which it makes sense to ask
whether they have these properties. To point to an example, in a certain context
one may find useful to investigate mereological relationships between regular
subsets of a space—roughly, those which feature “filled up” areas without cracks,
hairs or punctures. There also are many other, entirely different approaches. Let
us limit ourselves to naming some sources—[1,2,9,10]; Let us also mention a
recent paper [4], whose approach is most similar in spirit to ours.

In a recent paper [8] we introduced one more version of such an app-
roach: instead of restricting topologically invariant properties of regions, we
have severely restricted their shapes, namely we considered polygonal regions—
subsets of the plane obtainable as boolean combinations of (either open or closed)
halfplanes—equivalently, these are subsets that may be determined by (either
strict or non-strict) linear inequalities. In that paper we interpreted modalities
as topological closure/interior operators acting on such polygonal regions.

In this paper, our target is another interpretation of modal operators fre-
quently studied in context of topological semantics. Namely, here we interpret ♦
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as the Cantor-Bendixson derivative operator. For a polygonal region this roughly
means to take its closure but also throw out any isolated points that the region
might have.

We thus obtain a certain modal logic PLd
2: all formulæ that hold true under

this interpretation about arbitrary polygonal subsets in the Euclidean plane.
Algebraically, we study the variety of modal algebras generated by the Boolean
algebra P2 of polygonal subsets of the plane equipped with the derivative oper-
ator ♦.

We are going to prove that the logic PLd
2 has the finite model property, and

provide five axioms that axiomatize it.
Our main approach is to employ a link to Kripke semantics with the aid of

certain maps, called (partial, polygonal) d-morphisms, from the plane to various
finite Kripke frames. Essentially these are exactly the maps that preserve validity
of modal formulas. Algebraically, a d-morphism f is a map with the property
that the induced Boolean algebra homomorphism f−1 from the powerset of
the frame to the powerset of the plane (a) lands in the subalgebra consisting
of polygonal subsets and (b) is a modal homomorphism with respect to the
standard (“R−1”) interpretation of the modality ♦ on the Kripke side, and its
above derivative interpretation on the polygonal side.

Using such morphisms helps us in applying a mixture of geometric and rela-
tional intuitions to find various finite modal algebras among subquotient algebras
of P2, or, on the contrary, prove that some other finite modal algebras cannot
occur as such subquotients. Specifically, we introduce a sequence of finite Kripke
frames, called ir-crown frames, well suited to be “test objects” for P2—namely,
any point in any polygonal configuration on the plane admits a (partial) polyg-
onal d-morphism, in the above sense, onto some ir-crown frame. This allows us
to prove that PLd

2 is the logic of all ir-crown frames, which gives as a result the
finite model property for it.

On the other hand, we gather a sufficient but finite supply of certain other
“forbidden” finite Kripke frames—those not admitting any partial polygonal d-
morphisms onto them from the plane. Then using techniques similar to that of
Jankov-De Jongh formulas we manage to express the fact of “forbiddenness” of
these frames in the modal language, thus providing an axiom system for PLd

2.

2 Preliminaries

2.1 Syntax and Semantics

Our aim is to set up the reasoning paradigm where we use the basic modal lan-
guage as our formalism and interpret its formulas as polyhedra in the Euclidean
space of fixed dimension, while interpreting the modal diamond as the topo-
logical derivative operator and the boolean connectives as their set-theoretic
counterparts. In this section we provide the necessary definitions of the relevant
notions.
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Syntax. We consider the basic modal language ML. The alphabet of ML con-
sists of a countable set Prop of letters for propositional variables and the sym-
bols ⊥, ∨, ¬, ♦. Formulas of ML are given by the recursive definition:

ϕ ::= ⊥ | p | ¬ϕ | ϕ ∨ ψ | ♦ϕ.

The other connectives, such as ∧, →, ↔, � and �, will be used as standard
shorthand notations. A normal modal logic Λ in the modal language ML is a
set of formulas of ML that contains all propositional tautologies, the formula
�(p → q) → (�p → �q), and is closed under the inference rules of modus ponens
(i.e. if ϕ ∈ Λ and ϕ → ψ ∈ Λ, then ψ ∈ Λ), uniform substitution (i.e if ϕ is in
Λ, then so are all of its substitution instances) and necessitation (if ϕ ∈ Λ, then
�ϕ ∈ Λ). All the logics we consider will be normal modal logics.

Kripke Semantics. We recall the basic notions from the Kripke semantics of
modal logic.

A Kripke frame F consists of a nonempty set W together with a binary
relation R ⊆ W × W . Such a pair is denoted by F = (W,R) with the set W
called the underlying set of the frame, and the relation R called the accessibility
relation on W . To indicate that (x, y) ∈ R holds we often write xRy (and say
that x sees y by R); in such a case the element y is called a successor of the
element x, and x a predecessor of y.

A relation is said to be transitive if for any three points x, y, z ∈ W , whenever
xRy and yRz, then xRz holds as well. All frames we will consider are transitive.

We say that a point r ∈ W is a root of a transitive Kripke frame F = (W,R)
if any point y of W distinct from r is a successor of r. A Kripke frame is said to
be rooted if it has a root. A point in a Kripke frame is said to be irreflexive if
(x, x) /∈ R.

If R is a relation on W , and A ⊆ W , then the set {y ∈ W | ∃ x ∈ A(xRy)}
of all the successors of elements of A is denoted by R(A); the set {y ∈ W | ∃ x ∈
A(yRx)} of all the predecessors of elements of A is denoted by R−1(A).

A subset U ⊆ W is called upwards closed (or simply an up-set) if it contains
all successors of all of its elements, i.e. if R(U) ⊆ U holds. Dually, a down-set
or a downwards closed set D is defined as a set containing all predecessors of its
elements, i.e. satisfying R−1(D) ⊆ D. It is easy to see that the complement of
an up-set is a down-set and vice versa.

A subset A ⊆ W is called a cluster iff for any distinct w, v ∈ A both wRv
and vRw hold. In words, any two distinct points of a cluster are successors of
each other.

Note that with any accessibility relation R on a Kripke frame F we can
associate a partially ordered set SF with elements the equivalence classes with
respect to the equivalence relation ∼R defined by

x ∼R y ⇔ xR∗y and yR∗x,

where R∗ is the transitive-reflexive closure of R. On these equivalence classes we
define the partial order ≤R via

[x] ≤R [y] ⇔ xR∗y.
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A partial order S has finite height h if the maximum of the cardinalities of chains
in S is equal to h. Then the height of a Kripke frame F is the height of the partial
order SF corresponding to F as above.

Kripke frames provide semantics for modal logic in the following way. A
valuation of propositional letters on a Kripke frame F = (W,R) is a map
ν : Prop → P(W ) assigning a subset of W to each propositional letter. Such
valuation is then extended to the valuation of all well-formed formulas of the
language ML,

x �|= ⊥ ∀x ∈ W ;
x |= p iff x ∈ ν(p);
x |= ¬ϕ iff x �|= ϕ;
x |= ϕ ∨ ψ iff x |= ϕ or x |= ψ;
x |= ♦ϕ iff x ∈ R−1(ν(ϕ)).

The pair M = (F, ν) is called a Kripke model, where F = (W,R) is a Kripke
frame and ν is a valuation as above. We write M, x |= φ if a formula ϕ holds
at the point x of a model M.

For a subset A ⊆ we write M, A |= φ if M, x |= φ holds for all x ∈ A.
Further, M |= φ (φ is valid in M) means that M, x |= φ for all x ∈ W . We
write F |= φ (φ is valid on F) whenever (F, ν) |= φ for an arbitrary valuation
ν on F. If K is a class of Kripke frames we write K |= φ when F |= φ for each
F ∈ K. By Log(K) we denote the set of all modal formulas valid in all members
F ∈ K of K. It is a basic fact of Kripke semantics for modal logic that Log(K)
is always a normal modal logic.

Certain operations on frames preserving the modal validity will be useful in
our considerations. Notably those of taking a generated subframe of a frame,
taking a p-morphic image of a frame and the combination of these two called an
up-reduction of one frame to another. We proceed to define these.

Definition 1. Let F1 = (W1, R1) and F2 = (W2, R2) be Kripke frames. We say
that F1 is a subframe of F2 if W1 ⊆ W2 and R1 = R2∩(W1×W1). If in addition
W1 is an up-set in W2, then we say that W1 is a generated subframe of W2.

Proposition 1. Let F1 be a generated subframe of F2. Then F2 |= φ implies
F1 |= φ for any modal formula φ.

The proof can be seen in e.g. [5].
Let F1 = (W1, R1) and F2 = (W2, R2) be Kripke frames. A map f : F1 → F2

is said to be monotone if whenever (x, y) ∈ R1, then
(
f(x), f(y)

) ∈ R2. A map
f : F1 → F2 between Kripke frames is said to be a p-morphism if it is monotone,
and whenever

(
f(x), z

) ∈ R2, there exists y ∈ W1 such that (x, y) ∈ R1 and
f(y) = z.

y

x

z

f(x)

R1 R2
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The onto p-morphisms also preserve validity of formulas, i.e. the following holds
(see [5]):

Proposition 2. Let F1 and F2 be Kripke frames and f : F1 → F2 be an onto
p-morphism. Then F1 |= φ implies F2 |= φ for any modal formula φ.

Hence, Log(F1) ⊆ Log(F2) whenever F2 is a p-morphic image of F1.
Combining the above two constructions, we say that F2 is an up-reduction1

of F1, if there exists a generated subframe (i.e. an up-set) G1 of F1, such that
F2 is a p-morphic image of G1. We immediately infer:

Proposition 3. Let F1 and F2 be Kripke frames and let F2 be an up-reduction
of F1. Then F1 |= φ implies F2 |= φ for any modal formula φ.

Topological Semantics. There are two standard topological semantics for modal
logic, depending on whether the modal diamond is interpreted as the closure
operator or as the derivative operator. In this paper we focus on the latter. For
the corresponding definitions in the closure semantics see [8].

A topological space is a pair X = (X, τ), where X �= ∅ is a set and τ ⊆ P(X)
is a family of subsets of X, such that ∅ ∈ τ , X ∈ τ , and τ is closed under finite
intersections and arbitrary unions. X is called the underlying set of X, and τ
a topology on X. When there is no danger of ambiguity, we often write just
X instead of (X, τ). The elements of τ are called open subsets of X, or simply
opens. Set-theoretic complements of opens are called closed subsets. Clearly
finite unions and arbitrary intersections of closed sets are closed. For a set A ⊆ X
the closure of A is the intersection of all closed sets containing A,

C(A) =
⋂

{F | A ⊆ F ⊆ X and F is closed}.

A point x of a topological space X is called a limit point of a subset A ⊆ X if
x ∈ C(A − {x}). The set of all limit points of A is called the derived set of A
and is denoted by d(A). It is easy to see that x ∈ d(A) if and only if for any
open neighborhood U of x the intersection U ∩ A contains at least one point
distinct from x, i.e. U ∩ A − {x} �= ∅ (see e.g. [7]). The derived set operator has
the following properties:

(i) C(A) = A ∪ d(A);
(ii) If A ⊆ B, then d(A) ⊆ d(B);
(iii) d(A ∪ B) = d(A) ∪ d(B);
(iv)

⋃
i∈I d(Ai) ⊆ d(

⋃
i∈I Ai).

Elements of the set A − d(A) are called isolated points of A. A set A ⊆ X is
called dense in itself (dii for short) if A ⊆ d(A). Thus a subset is dii iff it has
no isolated points.
1 We introduce this terminology extending the terminology of [6] where reduction
means taking a p-morphic image and subreduction means taking a p-morphic image
of a subframe of the frame. Thus, up-reductions are special cases of subreduction,
where the subframe under question is an up-set.
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At the outset, we slightly generalize the derivative semantics by the following
definition.

Definition 2 (General derivative topological space). A general derivative
topological space is a tuple X = (X, τ, d,D), where (X, τ) is a topological space,
d is the derived set operator on (X, τ), and D ⊆ P(X), such that X ∈ D and
D is closed under the set-theoretic operations (e.g. taking unions and taking
complements), as well as under the derivative operation. Subsets from D will be
called the admissible sets for X.

For further use we mention that a collection D of subsets in a topological
space which is closed under the boolean set-theoretic operations and the deriva-
tive operation is said to be a derivative algebra of subsets. If the derivative
algebra is not specified in a general derivative topological space, we assume that
it is equal to the collection of all subsets.

Suppose X is a general derivative topological space. A valuation on X is a map
ν : Prop → D(X). Each such valuation extends uniquely from propositional
variables to all well-formed formulas of the language ML in the following way:

x �|= ⊥ ∀x ∈ X;
x |= p iff x ∈ ν(p);
x |= ¬ϕ iff x �|= ϕ;
x |= ϕ ∨ ψ iff x |= ϕ or x |= ψ;
x |= ♦ϕ iff x ∈ d(ν(ϕ)).

The notions of truth in a subset, validity in a model and validity on a space
are defined like in the case of Kripke semantics. We just point out that according
to the above definition, for a modal formula of the form ϕ = ♦ψ we have that
ν(ϕ) = ν(♦ψ) = dν(ψ), i.e. the truth set of ♦ψ is the derivative of the truth-set
of ψ.

If K is a class of general derivative spaces, by Log(K) we denote the set of
all modal formulas valid in all members X ∈ K. In case K consists of a single
member X we write Log(X) to denote the modal logic of X. It is well-known that
the modal logic of T1 topological spaces (in which each singleton subspace is
closed) is the modal logic K4, the logic of all transitive Kripke frames. We will
only be dealing with T1 spaces in this paper.

To connect the two semantics described above we need a definition of maps
which preserve the validity of modal formulas when the domain of a map is a
topological space and the target a Kripke frame (see [3]).

Definition 3. A map f : X → F where X = (X, τ) is a topological space and
F = (W,R) is a transitive Kripke frame, is called a d-morphism if the following
properties are satisfied:

(i) For each open U ∈ τ it holds that R(f(U)) ⊆ f(U), i.e. images of opens
are up-sets;
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(ii) For each V ⊆ W such that R(V ) ⊆ V , it holds that f−1(V ) ∈ τ , i.e. the
pre-images of up-sets are open;

(iii) For each irreflexive point w ∈ W it holds that f−1(w) is a discrete space
w.r.t. subspace topology;

(iv) For each reflexive point w ∈ W it holds that f−1(w) ⊆ d(f−1(w)), i.e.
f−1(w) is dense in itself (dii).

To synchronize the terminology, notice that the up-sets of a transitive Kripke
frame always form a topology. Thus we may occasionally refer to up-sets as open
sets and down-sets as closed sets. In this terminology, the first two conditions
of a d-morphism amount to the map being open and continuous (such maps are
often called interior maps).

It is well-known that d-morphisms preserve modal validity [3]. It is also known
that taking open subspaces preserves modal validity in derivative semantics.
These facts motivate the following definition, which is similar to that of up-
reduction for frames, and serves as a bridge between the Kripke semantics and
the derivative semantics.

Let f : X �→ F denote a partial map from the topological space X to the
Kripke frame F. In case the domain of f is an open subset of X, and f satisfies
the conditions of being a d-morphism, we say that f is a partial d-morphism.

Proposition 4. Let X be a topological space, F be a Kripke frame and f : X �→ F
be a partial onto d-morphism. Then for an arbitrary modal formula φ we have
F |= φ whenever X |= φ.

2.2 The Polygonal Plane

We are interested in specific general models defined over Euclidean spaces R
n.

Let Pn be the boolean algebra of the n-dimensional polyhedra in R
n. Basic, or

elementary polyhedra can be described as sets that are intersections of finitely
many halfspaces in R

n, and are known to be those polyhedra which are convex
subsets of R

n. General polyhedra are then the finite unions of the latter.
To be more precise, a polyhedron is any subset of R

n of the form P = {x̄ |∨ ∧
(�i(x̄) 	
 ai)} where �i are linear forms on R

n and ai are real numbers, 	

denotes any of the inequality symbols ≥, >,≤, <, while

∨
and

∧
denote finite

disjunction and finite conjunction. The sets of the form P = {x̄ | ∧
(�i(x̄) 	
 ai)}

we call basic or elementary polyhedra.
Then it is clear from definitions that the set Pn of all the n-dimensional

polyhedra forms a boolean subalgebra of the powerset P(Rn) (note that the
negation of an inequality is again an inequality). Moreover, the following holds:

Proposition 5. The boolean algebra Pn is a modal subalgebra of the powerset
derivative algebra P(Rn) equipped with the derivative operator for the Euclidean
topology on R

n.

Proof. To show that Pn is closed under the derivative operator, first note that
the derivative operator distributes over finite unions. Since every polyhedron is



154 D. Gabelaia et al.

a finite union of basic polyhedra, it suffices to point out that given a nonempty
basic polyhedron P defined by a finite conjunction of inequalities, its derivative
is either the closed basic polyhedron obtained by turning all strict inequalities
into non-strict ones, or is the empty set in case P happens to consist of a single
point.

Definition 4. Let Pn = (Rn, Pn, d) be the general derivative space defined by
means of the derivative algebra of polyhedra in the Euclidean space R

n. We call
such a space the n-dimensional Euclidean polyhedral derivative space. The modal
logic PLd

n of the n-dimensional Euclidean polyhedral derivative space is defined
to be the set of all modal formulas which are valid on Pn.

PLd
n ::= Logd(Pn)

In this paper we concentrate on the 2-dimensional polyhedral modal logic
PLd

2. We call this logic the polygonal modal logic for simplicity and the corre-
sponding general space P2 = (R2, P2, d) is called the derivative polygonal plane.

The admissible sets in P2 are finite unions of generalized planar polygons,
where under a generalized planar polygon we understand a (possibly unbounded)
region in the plane which is an intersection of finitely many (closed or open)
half-planes. It is clear that any point, line, ray or segment also falls under this
definition, as do triangles, pentagons and n-gons in general.

We consider a class IC of finite frames which are called crown frames with
irreflexive root, ir-crown frames for short (not to be confused with the crown
graphs); this class will play crucial role of finite models for PLd

2 as we will see
later.

Definition 5. A crown frame with irreflexive root, or ir-crown frame is a frame
Sn = (Sn, Qn) such that Sn = {r, s1, · · · , s2n} and Qn is defined as follows:

s1 s2n−1 s3 sn+1 sn−1

s2n s2 s2n−2 sn−2 sn

r

· · ·

Fig. 1. An ir-crown frame. Here and in further pictures we depict irreflexive points by
black circles and the reflexive ones by circles with white interior.
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(r, r) �∈ Qn;
(r, si) ∈ Qn for all si ∈ Sn;
(si, si) ∈ Qn for all si ∈ Sn;
(si, sj) ∈ Qn when i < 2n is even and j = i − 1, i + 1;
(s2n, s1) ∈ Qn;
(s2n, s2n−1) ∈ Qn.

We are going to show that the modal logic of ir-crown frames and the modal
logic of derivative polygonal plane coincide. To show that the formulas valid on
the derivative polygonal plane are valid on ir-crown frames as well, first we prove
the following theorem:

Theorem 1. For an arbitrary ir-crown frame F = (W,R) there is an onto d-
morphism f : P2 → F from the derivative polygonal plane to F such that for any
point w ∈ W the inverse image f−1(w) belongs to P2, i.e. is an element of the
derivative algebra P2 of planar polygons.

Proof. Let F = (W,R) be an ir-crown frame. According to the construction of
ir-crown frames, F is a finite frame with the equal numbers of points on the
second (middle) and the third (maximum) layer; let us denote by n the number
of maximal points of F. The construction for obtaining an onto mapping from
the polygonal plane to a crown frame introduced in Proposition 3.2 of [8] works
here too. Namely, consider any point x and arbitrary distinct rays l1, . . . , ln
emanating from x and enumerated in the counter-clockwise direction (Fig. 2).

x

l1

ln

li

li+1

. . .

. . .

On

Oi

Fig. 2. Polygonal partition of the Euclidean plane corresponding to a d-morphism onto
an ir-crown frame.

For i = 1, ..., n− 1 let Oi be the open regions between li and li+1, and let On

be the open region between ln and l1.
Define the map f : P2 → F by putting f(x) = r, f(li) = s2i and f(Oi) = s2i−1

where r is the irreflexive root of the ir-crown frame while s2i and s2i−1 are as in
Fig. 1. We only need to check that this f satisfies conditions from Definition 3.
Conditions (i) and (ii) are easily checked. By the definition of ir-crown frames,
the only irreflexive point is the root. Hence we see that condition (iii) holds as
well since the preimage of r is the single point x which obviously is a discrete
subspace of R

2. Now since by construction of f for any i ≤ n the pre-image
f−1(si) has no isolated points, the condition (iv) holds as well.
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Thus by Proposition 4, if F is an ir-crown frame with root r and φ is a modal
formula, it holds that F, r |= φ whenever P2, x |= φ for some point x ∈ R

2.
Hence PLd

2 ⊆ Log(IC).
Let us now prove the converse inclusion.

Theorem 2. If a formula ϕ is satisfiable on the derivative polygonal plane P2

then it is satisfiable on some ir-crown frame F.

Proof. Let ν be a valuation and x be a point such that P2, ν, x |= φ, where
φ depends on propositional variables p1, . . . , pk. Our strategy is to find a small
enough open neighborhood U around x such that the partial d-morphism could
be built from U onto one of the ir-crown frames, in such a way that the pre-images
of points from the ir-crown frame have constant valuation for propositional vari-
ables occurring in φ. We follow the construction introduced in Theorem 3.1 of
[8].

Suppose φ depends on propositional variables p1, . . . , pk. It is clear that the
truth of φ will not be affected if we assume that all the other propositional
variables are mapped to the empty set. Let Ai = ν(pi) for i ∈ {1, . . . , k}. Then
each Ai is a finite union of simple polygons (two-dimensional cases of basic, or
elementary polyhedra, as described above towards the beginning of Sect. 2.2).
Let S be the collection of all the simple polygons occurring in the Ais. Let E
be the collection of all lines or line segments occurring as an edge of one of the
simple polygons in S. It is obvious that E is finite. Furthermore, we observe the
following:

Key observation: For any segment I on the plane, if the valuation of a
propositional letter pi changes along this segment, then I must intersect with a
member of E, namely with the one that is represented as a border of Ai which
I must cross in order to change valuation from one point to the other.

Now, for each line in E, calculate the distance from x to that line and to its
endpoints (if it has such). This will produce a finite number of non-negative real
numbers. Let α be the least positive number thus obtained and let B = B(x, α

2 )
be the open ball of radius α

2 centered at x. It is straightforward that only those
lines from E that pass through x (or have it as an endpoint) will intersect with
B. Let us label the intersection points of lines from E with the boundary of B

x
lm

l1. . .

li

li+1
. . .

Om

Oi

x1

xm

xi

xi+1

f(O1)
f(Om) f(O2) f(Oi+1)

f(Oi)

f(l1) f(lm) f(li+1)

f(x)

Fig. 3. The open n-gon and its partition corresponding to an ir-crown frame.
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in the clockwise direction as x1, x2, . . . , xm, with m ≤ k. Let li denote the open
segments (x, xi) and let Oi denote the open triangles xixxi+1 inside B bounded
by li and li+1 for i ∈ {1, . . . , m − 1}. Let Om be the remaining open triangle
x1xxm confined between lm and l1. Then the open n-gon x1 . . . xm inside B
breaks down into the sets {x}, li and Oi (Fig. 3).

The desired d-morphism is built in the same way as in Theorem 1. Then the
valuation μ on F defined by putting μ(p) = f(ν(p)) for each p is such that

f(x) ∈ μ(p) iff x ∈ ν(p);

and hence F, μ, f(x) |= φ.

Thus we have proved that the two logics PLd
2 and Log(IC) coincide.

Corollary 1. The logic PLd
2 is determined by the class IC. Hence this logic

has the finite model property (fmp).

3 Axiomatization

In this section we give a complete axiomatization of the logic Log(IC) = PLd
2.

Let Λd
2 be the modal logic axiomatized by the following formulas:

θ1 = ♦�
θ2 = ♦♦p ↔ ♦p
θ3 = (♦p ∧ ♦¬p) → ♦

(
(p ∧ ♦¬p) ∨ (¬p ∧ ♦p)

)

θ4 = �
(
p → �(¬p → �¬p)

)

θ5 =
[
r ∧ γ ∧ �(r → γ)

] → ♦(¬r ∧ ♦�p ∧ ♦�¬p)

where γ is the formula ♦�(p ∧ q) ∧ ♦�(p ∧ ¬q) ∧ ♦�(¬p ∧ q).
In this section we aim to show that Λd

2 = Log(IC) = PLd
2. To this end, we

(a) associate a semantic condition to each of the axioms; (b) demonstrate that
each of the five axioms is valid on any ir-crown frame; and (c) show that any
rooted frame validating all of these axioms is an up-reduction of some ir-crown
frame.

First we associate semantical conditions to each of these formulas. Some of
them are well-known - e.g. validating θ1 is equivalent to the frame being serial,
i.e. each point having a successor, while validating θ2 is equivalent to the frame
being both transitive (successor of a successor is a successor) and dense (any
successor is a successor of a successor).

In our description we will employ the notions of a subframe, generated sub-
frame and convex subframe. We say that F = (W,R) is a convex subframe of
G = (V, S), if F is a subframe of G and additionally, for arbitrary w, u ∈ W and
v ∈ V , if wSvSu holds, then v ∈ W . In words, a convex subframe must contain
whatever is “in between” its two points, akin to the geometric meaning of the
term “convex”. Clearly, generated subframes are always convex (Fig. 4).

The following picture lists some of the frames that will be useful in the next
theorem. Here, as well as in subsequent pictures, hollow circles denote reflex-
ive points, filled circles denote irreflexive points, while the symbol × is used to
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denote a point that is either reflexive or irreflexive, so in effect e.g. B3 below is
a generic name denoting any of the four distinct frames obtained from the corre-
sponding picture by substituting reflexive or irreflexive points in place of ×:

B2

× ×

C

×

×

B3 D1 D2 Tref

Fig. 4. Frames

Theorem 3. Let F = (W,R) be an arbitrary Kripke frame. Then:

(i) F |= θ1 iff F is serial, i.e. ∀w ∈ W ∃v ∈ W (wRv). Moreover, F contains
no generated subframe consisting of a single irreflexive point.

(ii) F |= θ2 iff F is transitive and dense, i.e. ∀w, u, v ∈ W (wRv∧vRu → wRv)
and ∀w, v ∈ W (wRv → ∃u ∈ W (wRu ∧ uRv)). Moreover, F |= ♦p → ♦♦p
iff F contains no convex subframe isomorphic to B2.

(iii) If F |= θ3 then F cannot be up-reduced to any of the frames D1,D2.
(iv) If F |= θ4, then F is of height ≤ 3 and does not contain subframes isomor-

phic to either C or B3. If in addition F is transitive, the converse holds as
well.

(v) If F |= θ5 then F has no generated subframes isomorphic to Tref .

Proof. (i) This is well-known and easy to check. We note in addition that for
finite transitive frames seriality means that all maximal points are reflexive.

(ii) That ♦♦p → ♦p corresponds to transitivity and ♦p → ♦♦p corresponds
to density is well-known and easy to check. We only show the second part of the
claim.
Suppose F has a convex subframe consisting of two irreflexive points xRy as in
B2. Consider a valuation ν such that ν(p) = {y}. It is obvious that F, x |= ♦p
and F, x �|= ♦♦p, hence F, x �|= ♦p → ♦♦p.
To show the converse, suppose F �|= ♦p → ♦♦p. Then there exists a point x of
F such that F, x |= ♦p and F, x |= ¬♦♦p. Thus there exists a further point y
with xRy and for any point z of F, either (x, z) �∈ R or (z, y) �∈ R. It clearly
follows that both x and y are irreflexive. Hence there is a copy of B2 as a convex
subframe of F.

(iii) It is immediate that θ3 is refuted on the frames D1 and D2. Just take
the valuation shown on the picture below (Fig. 5).

Since F validates θ3 by assumption, and validity is preserved by up-reductions
and taking generated subframes, the claim follows.
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p ¬p

p

p ¬p

Fig. 5. Refutation of θ3

(iv) Suppose F |= θ4. Assume F contains C as a subframe. The frame F
contains at least two points. Take any two points u and v from C. Take on
it a valuation ν such that ν(p) = {u}. Since u and v are interrelated, clearly
v �|= �¬p, which means that v �|= ¬p → �¬p. Hence u �|= �(¬p → �¬p) and
equally u �|= p → �(¬p → �¬p). The latter implies that v �|= �(p → �(¬p →
�¬p)) which contradicts the assumption. Now assume that F contains B3 as a
subframe. The same reasoning as in the previous case goes through. Again let
us show that �

(
p → �(¬p → �¬p)

)
is refuted on F. Clearly F contains at least

three distinct points u, v and w with uRv and vRw, where R is the accessibility
relation of F. Take a valuation ν such that ν(p) = {u,w}. Then v �|= ¬p → �¬p.
Hence u �|= �(¬p → �¬p) and u �|= p → �(¬p → �¬p). Since uRu we conclude
that u �|= �(p → �(¬p → �¬p)) which is again in contradiction with the
assumption. Now in case F contains a frame of strict height more than 3 as a
subframe, which means that there are at least four distinct points u, v, w and z
with uRv, vRw and wRz, then we choose a valuation V as follows: V (p) = {v, z},
and the formula is refuted at u. We therefore obtain that if F |= θ4 then F is of
height ≤3 and does not contain subframes isomorphic to C and B3. To show the
converse, assume F is transitive and suppose F �|= θ4, i.e. there is a point x with
x |= ¬�

(
p → �(¬p → �¬p)

)
. This is the same as x |= ♦

(
p ∧ ♦(¬p ∧ ♦p)

)
, i.e.

there exist points y, z, u with xRyRzRu and y |= p, z |= ¬p, u |= p. To wrap
up, if y = u or uRx, then F contains a copy of C as a subframe; if y �= u and
¬(uRx), then either F contains subframes isomorphic to B3 in case x = y, or is
of height greater than 3 in case x �= y.

(v) It is easy to see that the frame Tref refutes the formula θ5. Indeed, consider
the valuation on Tref as follows (Fig. 6):

¬p, q

r

p, q p,¬q

Tref

Fig. 6. Refutation of θ5
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Consider the root of Tref . We see that r is true only at the root, which models
γ as well. Hence the root models (r ∧ γ ∧ �(r → γ)). It is also clear that the
root refutes ♦(¬r ∧ ♦�p ∧ ♦�¬p). Hence θ5 is refuted at the root.

Since F validates θ5 by assumption, and validity is preserved by up-reductions
and taking generated subframes, (v) follows.

Next we show that ir-crown frames validate all of the axioms θ1 − θ5.

Theorem 4. Let Gn = (Sn, Qn) be an arbitrary ir-crown frame. Then for each
i ≤ 5 we have Gn |= θi.

Proof. We rely partially on the semantic characterizations afforded by Theo-
rem 3. That ir-crown frames are serial (have reflexive maximum), transitive and
dense is trivial to check. Thus Gn |= θ1 ∧θ2. It is also clear that ir-crown frames
contain no non-trivial clusters, have height ≤ 3 and contain no subframe iso-
morphic to B3. Thus Gn |= θ4. We show in detail below that Gn |= θ3 and
Gn |= θ5.

To show that Gn |= θ3, take an arbitrary ir-crown frame Sn = (Sn, Qn)
where Sn = {r, s1, · · · , s2n} and an arbitrary valuation ν. Take an arbitrary
point u ∈ Sn.

Let us distinguish three cases:
Case 1: u = s2k−1 for some 1 ≤ k ≤ n. This by definition means that u

belongs to the maximal layer. Then u �|= ♦p ∧ ♦¬p, which implies that u |= θ3.
Case 2: u = s2k where 0 ≤ k ≤ n. This by definition means that u belongs

to the middle layer. Without loss of generality we can assume that u |= p.
Assume that u |= ♦p ∧ ♦¬p. Then either s2k−1 |= ¬p or s2k+1 |= ¬p. Hence
u |= p ∧ ♦¬p. We thus conclude that u |= θ3 since s2k is reflexive.

Case 3: u = r. Assume that u |= ♦p ∧ ♦¬p. Then there exist w and v with
w |= p and v |= ¬p.

Let us consider the case when both w and v belong to the middle layer; other
cases follow in a similar way. Assume w = s2k and v = s2k+2l (Fig. 7).

p p

p

w

p p ¬p
v

· · · · · · · · ·

Fig. 7. Case 3.

In case s2k+1 �|= p we are done since rQnw and wQns2k+1 which yields
r |= ♦(p ∧ ♦¬p). In case s2k+1 |= p we proceed by looking at an immediate
(distinct from s2k) predeccessor of s2k+1 which is s2k+2. If s2k+2 �|= p we are
done since rQns2k+2 and s2k+2Qns2k+1 which means that r |= ♦(¬p ∧ ♦p). If
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s2k+2 |= p we proceed by the same reasoning and either we arrive at an sm

satisfying sm �|= p for some m with 2k < m ≤ 2k + 2l − 1, or s2k+2l−1 also
models p. In the last case since rQns2k+2l−1 and s2k+2l−1Qnv we have that
r |= ♦(p ∧ ♦¬p). We omit the details for the other cases.

To show that Gn |= θ5, suppose the antecedent of the formula is true at a
point w in an ir-crown frame Sn = (Sn, Qn) for some valuation ν. Note that
making γ true forces w to have at least three distinct successors. It follows that
w is the irreflexive root of Sn, and is the only point making r true. Moreover,
w |= γ also implies that both p and ¬p are true at some maximal points of
Sn. Then there exists an i < n such that the maximal points s2i−1 and s2i+1

differ on the value of p (otherwise all maximal points would agree on the value
of p). Since wQns2i, s2iQns2i−1 and s2iQns2i+1, it follows that w makes the
consequent of the formula true as well.

Theorem 5. The logic Λd
2 has the finite model property.

Proof. Note that since frames from B≥3 are not admitted by Λd
2, the logic is of

finite depth. By Segerberg’s Theorem (see e.g. Theorem 8.85 of [6]) any logic of
finite depth is characterized by its finite frames. It follows that Λd

2 has the finite
model property.

Since each ir-crown frame validates all the axioms of Λd
2, we have the inclusion

IC ⊆ Fr(Λd
2). The other inclusion follows from the following theorem.

Let F be a rooted transitive frame of height 3 with the root irreflexive, and
let F∗ be the frame obtained from F by making the root reflexive. Then the
following holds:

Lemma 1. Let Sn be an ir-crown frame, let F be a rooted frame with irreflexive
root and with height equal to 3. Then Sn up-reduces to F if and only if S∗

n up-
reduces to F∗.

Proof. Assume that Sn up-reduces to F. Then F is obtainable as a p-morphic
image of some generated subframe of Sn. Let us fix U and f to be the mentioned
generated subframe and p-morphism. If U is a strict subframe, i.e. U ⊂ Sn, then
U is a generated subframe of S∗

n as well and we take the same function f which
is a p-morphism from U to F∗. In case U = Sn it is clear that the irreflexive root
is mapped to the irreflexive root since f cannot map reflexive points to irreflexive
points due to the monotonicity condition. It follows that the restriction of f to
U \ {r} is a p-morphism, so that f is a p-morphism from S∗

n to F∗.
Conversely, assume that S∗

n up-reduces to F∗. Again let us fix U and f to be
the generated subframe and the p-morphism doing the up-reduction. The case
U ⊂ S∗

n is exactly the same as for the previous direction. Now assume that
U = S∗

n and let us show that the preimage of the root w ∈ F∗ is exactly the root
r of S∗

n. Clearly r ∈ f−1(w). Assume that some other point x ∈ f−1(w). Since
the height of F∗ is three, there are at least two distinct points v, v′ ∈ F∗ with
v �= w �= v′ and wRvRv′. Since f is a p-morphism, there exist u and u′ in U with
xQnuQnu′ and f(u) = v, f(u′) = v′. But this is a contradiction, since ir-crown
frames do not contain a chain of four distinct points such as rQnxQnuQnu′.
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Theorem 6. If a finite rooted frame validates all five axioms of Λd
2, then it is

an up-reduction of some ir-crown frame.

Proof. Assume that F = (W,R) is a finite rooted frame validating the logic Λd
2.

By Theorem 3 (iv) we know that F does not contain clusters and is of height
≤ 3. Let us distinguish three cases.

Case 1 (height = 1). This means that there are no arrows between distinct
points in F. Since F is a rooted serial frame, it can only consist of a single
reflexive point. Clearly we can obtain one reflexive point by taking a generated
subframe of the ir-crown frame S1. Hence F is an up-reduction of an ir-crown
frame (Fig. 8).

Case 2 (height = 2). By Theorem 3 (v), F cannot have width > 2. Addi-
tionally, by seriality, we know that the maximum of F must be reflexive. Let us
picture all frames with no clusters, with reflexive maximal points, having width
< 3 and height 2. These are:

B5 B6 D1 B7

Fig. 8. Frames with height 2, width < 3 and reflexive maximum.

By Theorem 3 (iii), F cannot be D1. The other three frames are up-reductions
of ir-crown frames. B5 is a p-morphic image of the ir-crown frame S1 below; B6

is a generated subframe of S1 and B7 is a generated subframe of S2, as pictured
below (Fig. 9).

S1 S2

Fig. 9. Frames G1 and G2.

Case 3 (height = 3). Let us define a relation R by (x, y) ∈ R iff xRy ∧x �= y.
Denote the root of F by r1. We define a partition of W as follows:
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(i) G0 = {r1}
(ii) G1 = {x ∈ W | r1Rx ∧ ¬∃y(r1Ry ∧ yRx)}
(iii) G2 = {x ∈ W | ∃y ∈ G1, yRx}
Since height = 3, we know that G2 �= ∅. We investigate the structure of F in a
series of claims below.

Claim 1. Every point of G2 is reflexive. Clearly every point of G2 is a max-
imal point of F. The claim then follows from seriality of F.

Claim 2. The root r1 is irreflexive. Since the height of F is exactly 3, there
exist distinct points u, v ∈ W with r1RuRv. Recall that by Theorem 3 (iv) the
frame B3 cannot be a subframe of F. It follows that r1 is irreflexive.

Claim 3. Every point of G1 is reflexive. Indeed, as r1 is irreflexive and B2

is not a convex subframe of F, we deduce that all points in G1 are reflexive.
Claim 4. Each point in G1 sees at most 2 points from G2. Indeed, other-

wise the frame Tref would be a generated subframe of F, which contradicts
Theorem 3 (v).

Claim 5. G1 does not contain maximal points. Assume it does. Since the
height of F is 3 it can be divided into three nonempty parts—the root r1, A =
{w ∈ G1 | w is maximal} and B = W \ ({r1} ∪ A). We construct a p-morphism
f : F → D1 by sending the root to the root, A to the left successor of the root
and B to the right successor of the root.

Given the properties of F revealed by these claims, we further claim that F∗

cannot be up-reduced to any of the following five frames taken from the paper
[8] (Fig. 10).

X1 X2 X3 X4 X5

Fig. 10. Posets X1 − X5.

Indeed, that F∗ is reflexive, transitive, without non-trivial clusters and of
height 3, means precisely that it cannot be up-reduced to any of X1,X2 and X4.

Suppose that F∗ is up-reduced to X3 using a generated subframe U and a
p-morphism f . If U � W , then U is also a generated subframe of F and the same
up-reduction works for reducing F to X3, which is isomorphic to Tref, and this
is forbidden by Theorem 3 (v). Suppose then U = W . It is clear, that f(r1) is
the root of X3. If any other point from W maps to the root of X3, we can reason
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as for the case U � W . Otherwise, the same f works as a p-morphism from F
onto Tirr below, which clearly maps p-morphically onto D1 thus contradicting
Theorem 3 (iv) (Fig. 11).

TIrr

Fig. 11. The frame Tirr.

Therefore, F∗ cannot be up-reduced to X3.
Suppose, finally, that F∗ can be up-reduced to X5. A reasoning similar to that

in Lemma 1 suffices to deduce that F can be up-reduced to D2, in contradiction
to Theorem 3 (iv).

It follows that none of the frames X1 − X5 is an up-reduction of F∗. By
Lemma 4.2 in [8] we can now claim that F∗ is an up-reduction of some crown
frame (i.e. a frame similar to an ir-crown frame, but with reflexive root). Using
Lemma 1 above, we can conclude that F is an up-reduction of an ir-crown frame,
as required.

Theorem 7. The d-logic of the polygonal plane is axiomatized by the axioms
θ1 − θ5, i.e. PLd

2 = Λd
2.

Proof. By Theorem 4 any ir-crown validates Λd
2, hence Λd

2 ⊆ Log(IC). By The-
orem 5 the logic Λd

2 is determined by its finite frames and by Theorem 6 each
such rooted frame is an up-reduction of an ir-crown frame. Since up-reductions
preserve validity, it follows that Log(IC) ⊆ Λd

2. Since by Corollary 1 we have
PLd

2 = Log(IC), the proof is completed.

4 Conclusion

We have axiomatized the modal logic of the Euclidean plane when propositional
letters denote planar polygons, while the modal diamond is interpreted as the
standard derivative operator on the plane. The obvious question is how these
results can be generalized to higher dimensions. The research is under way to
determine the C-logic of the polyhedra in the Euclidean space of dimension 3.
We are convinced that the approach taken in this paper to determine the d-
logic of planar polygons given the knowledge of their C-logic can be lifted to
higher dimensions as well. That for each n < ω the C-logic and the d-logic of n-
dimensional polyhedra are Kripke complete can be proved using the Segerberg’s
theorem on transitive logics of finite height, since a formula like θ4 can be written
in each dimension utilizing the fact that the border CA−A of a polyhedron is a
polyhedron of strictly lower dimension. The link between Kripke semantics for
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the C-logic and the d-logic seems to be that admissible rooted frames of maximal
possible height for these logics are very similar, with the only difference of having
an irreflexive root in the case of d-logic and the reflexive one in the case of C-
logic. Some further general observations can be made for such frames, like all of
them necessarily being without trivial clusters, but the precise details have to
be postponed until a more in-depth investigation.

Some final words about possible applications of the formalism and semantic
interpretation studied in this paper. Modal language is often praised for its fine
balance between simplicity and expressivity. Thus it is desirable to find ways
of interpreting it on mathematical structures modeling phenomena of particular
interest. Many spatial phenomena and their interrelations can be modelled with
arbitrary precision using polyhedra in the Euclidean space. Our approach in this
paper interprets the modal language on such structures and studies the emerging
basic reasoning mechanisms. We believe this prepares the ground for fruitful
applications in the area of spatial knowledge representation and reasoning.
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