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1. Introduction and motivation

We are going to discuss certain intrinsic reincarnations of the standard provability predicate in Peano Arithmetic PA that
are of special interest in connection with the study of Provability Logic. All special modifications of the standard provability
predicate proposed for consideration here are metamathematical predicates distinct from the standard provability, yet
strong enough to satisfy the Hilbert–Bernays derivability conditions. Our modifications are internally definable and need
not be introduced as an additional structure. The purpose of our paper is to discuss certain observations arising from a study
of such reincarnations of the standard provability predicate. Namely:

• What are the implications of such reincarnations?
• What can we say about the modal logics of such ‘‘non-standard’’ provability predicates?

Note that our study has opened more questions than it has answered.
We assume that the reader is familiar with the concept of provability as a modality, i.e., as a modal operator � acting on

propositional formulas. Details of Provability Logic can be found in [4].
The Gödel–Löbmodal systemGL is the result of adding the Löb Axiom�(�p→ p)→ �p to K4. Arithmetical completeness

of GL, i.e., the fact that GL adequately reflects the behavior of the standard provability predicate in PA, was proved by
Solovay [18] in 1976. He defined an arithmetical realization of modal formulas of the system GL and proved its arithmetical
completeness. Usingmore technical terminology, we say that an arithmetical realization ofmodal formulas is an assignment
∗ to each atom p of an arithmetical sentence p∗ which commutes with non-modal connectives and (�p)∗ = Pr(pp∗q), where
Pr(·) is the standard provability predicate for PA and pp∗q is the code numeral of p∗.
Arithmetical completeness of GL (Solovay [18]): GL` p iff under all arithmetical realizations ∗ the sentence p∗ is provable

in PA.
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Suppose we modify the notion of arithmetical realization by amending the recursive clause for the box �. It should be
emphasized that we only offer modal analyses of some special type of modification, namely:
A-distortion: (�p)∗ = (A→ p∗) ∧ Pr(pp∗q), where the parameter A is a given sentence in the language of PA.
With algebraic nomenclature at hand, our definition of distortions is easily translatable into the language of

diagonalizable (alias, GL-) algebras. We refer the reader to the important paper ‘‘On the Diagonalizable Algebra of Peano
Arithmetic’’ by Franco Montagna [16]; there Montagna finds a very elegant algebraic proof of Solovay’s Completeness
Theorem:Montagna has shown, among other things, that the free diagonalizable algebra on a denumerable set of generators
is a subalgebra of the diagonalizable algebra of Peano arithmetic PA.
Following Montagna [16], we will denote operators corresponding to modalities � and ♦ by τ and δ.
Let (B,∧,∨,→,⊥, τ ) be an arbitrary diagonalizable algebra (for example, the diagonalizable algebra of Peano

Arithmetic PA) and e ∈ B; we define a new (polynomially definable) modal operator τe on the Boolean algebra B (the notion
of polynomial used here is simply that from universal algebra: polynomials are functions arising from constant functions
and the identity function by means of the Boolean operations and τ ):
e-distortion: τep := (e→ p) ∧ τp for every p ∈ B.
We present some observations regarding these distortions. Denote by (B; τe) the Boolean algebra B endowed with the

operator τe.
Let us note here that one can define the e-distortion of the dual operator δ as follows: δep = δp∨ (e∧ p) for every p ∈ B.

Main observation: some particular cases which illustrate the general picture:

I. for every e ∈ B, the algebra (B; τe) is a K4-algebra, satisfying the additional condition τe(τe(p→ τep)→ p) 6 τep, i.e.,
(B; τe) ∈ K4.Grz;

II. if e = ⊥, then the modal operator τe coincides with τ ;
III. if e = ¬⊥, then τep represents the ‘‘demonstrability’’ predicate Dem(pp∗q) := p∗ ∧ Pr(pp∗q). We recall that a sentence
s of PA is demonstrable if it is provable and true. Let us abbreviate s ∧ Pr(psq) as ‘‘Dem(s)’’ ([3]);

IV. if e 6= ⊥ and e 6 ¬τ⊥, then a modal version¬τe⊥ 6 ¬τe¬τe⊥ of Gödel’s Second Incompleteness Theorem is still valid
in the algebra (B; τe)while the Löb Axiom is refutable;

V. if e 6= ⊥ and e 6 τ⊥, then a modal version of Gödel’s Second Incompleteness Theorem is refutable in the algebra (B; τe)
and a weaker form (some instance) of the Löb Axiom, namely,

τe(τe(p→ τep)→ (p→ τep)) 6 τe(p→ τep),

is valid.

The paper is organized as follows.
In Section 2 we introduce provability-like modal systems including the central modal system K4.Grz.
Section 3 contains the definition of the basic equational class of derivative algebras, i.e., Boolean algebraswith anoperator,

which capture the algebraic properties of the topological derivative. In these terms we next define varieties of derivative
algebras corresponding to our main modal systems. We prove a lemma concerning intimate connection between derivative
algebras and the corresponding closure algebras.
The central theme of Section 4 is the polynomial generation of new derivative operations from old in arbitrary

diagonalizable algebras. In 4.1 we present algebraic reasons for the above I, II, and III, and show that the algebra (B, δe),
where δe is an arbitrary distortion of δ in a diagonalizable algebra (B, δ), is a K4.Grz-algebra. Moreover we show that the
lattice of all distortions of the derivative operator δ is Boolean. Nextwe present algebraic reasons for IV in 4.2 and for V in 4.3.
In Section 5 we define the modal system K4.Grz + (g) obtained by postulating the modal version (g) of Gödel’s Second

Incompleteness Theorem and the modal system K4.Grz + (wL) obtained by postulating a special instance (wL) of the Löb
Axiom. It is proved that the Gödel–Löb modal system GL can be axiomatized as K4.Grz+ (g)+ (wL).
In the Appendix of the paper we present a review (that, nevertheless, is likely to be incomplete) of some old and not-

so-old results on topological semantics for the modal systems considered in this paper and provide the reader with some
topological and relational completeness results whichwere obtained jointly with Gabelaia.We also describe a dual category
for the equational class of K4.Grz-algebras.

2. Provability-like modal systems

The modal system K (named after Kripke) is the basic normal modal logic whose axioms are all Boolean tautologies and
all expressions of the form �(p→ q)→ (�p→ �q) and whose rules are modus ponens and necessitation. The diamond ♦
as usual means the dual¬�¬ of�. Recall that the system K4 is obtained by adding�p→ ��p to K as a new axiom schema.
It is appropriate to mention here that axioms and the necessitation rule of the system K4 are a modal simulation of the
Hilbert–Bernays derivability conditions; they are derivability conditions because they are formalizations of key properties
of the provability predicate Pr(·).
A slightly weakened version of K4 is the modal system wK4 = K+(p ∧ �p)→ ��p. Finally, the centralmodal system in

our paper is K4.Grz, a normal extension of K4, which is obtained by adding the formula Grz to K4 as an additional axiom,
i.e., K4.Grz = K4+�(�(p→ �p)→ p)→ �p.
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What makes K4.Grz of interest is that the system K4.Grz (a special intermediate system: K4 ⊂ K4.Grz ⊂ GL) captures
additional provability properties of Pr(·) that do not depend onGödel’s Diagonal Lemmaand Löb’s Principle. Note that adding
the ‘‘reflexive’’ axiom �p→ p to the system K4.Grz gives the well-known system S4.Grz, i.e., S4.Grz = K4.Grz+�p→ p.

3. Algebraic background

Derivative algebras are Boolean algebras with a unary operation δ, which captures the algebraic properties of the
topological derivation. Recall that the derivative δA of A is, by definition, the set of all accumulation (alias, limit) points
of a subset A of a topological space X . A point x is said to be a limit point of a set A if every neighborhood of x contains a point
of A other than x.

Definition 1. We say that a Boolean algebra B is a derivative algebra with respect to the operation δ, if (1) δ⊥ = ⊥, (2)
δ(a ∨ b) = δa ∨ δb, (3*) δδa 6 a ∨ δa.

Remark: It must be pointed out that weweaken the definition of derivative algebra (McKinsey–Tarski [15]) slightly; namely,
we postulate condition (3*) instead of (3) δδa 6 δa. We justify this weakening by noting that there are topological spaces in
which condition (3) is not valid (for example, spaces with anti-discrete topology, i.e., having the empty set and the whole
space as the only open sets). Note that the system of postulates for derivative algebras (or for topological spaces in terms
of derivative) has a certain completeness property: every ‘‘topological’’ equation, which is identically true in all topological
spaces, can be derived from these postulates [8].
With the operator δ is associated a dual operator τ (co-derivative) defined by τa := ¬δ¬a. Note that the dual of the

above condition (3*) has the form a∧ τa 6 ττa, which is the algebraic version of the axiom of wK4 appearing above. Using
the usual intuitively obvious relations between closure and derivative operations in topological spaces the closure of a set
can be defined in terms of the derivative, namely, cA := A ∪ δA. If we introduce a corresponding definition into derivative
algebra (namely, Ca := a ∨ δa), we can easily show that the derivative algebra (B, δ) becomes a closure algebra (B, C)with
respect to the operation C just defined. We remark that the interior operator I can be defined as follows: Ia := a ∧ τa. We
will use whichever of δ (resp., C) and τ (resp., I) is rhetorically the most convenient. As an immediate consequence of the
definition we have a corollary: in any derivative algebra (B, δ) the operator C satisfies the well-known Kuratowski Axioms:
(1) a 6 Ca, (2) Ca = CCa, (3) C(a ∨ b) = Ca ∨ Cb, (4) C⊥ = ⊥.
With these remarks in mind we can (and henceforth will) use topological notions and terminology in algebraic contexts.
We say that an element a ∈ B is open if a 6 τa (i.e., Ia = a) and closed if δa 6 a (i.e., Ca = a).
It is also very convenient to have special notations for the following topological notions.
Let X be an arbitrary topological space and A a subset of X . The derived set δA of the set A includes some points of A and

some points of its complement. Any point of A not in the derived set is called an isolated point since it must be contained in
an open set containing no other point of A. We therefore have: the set µA of isolated points of A is equal to A − δA. Given
x ∈ A ⊆ X , according to [5] A is called locally closed at x if there exists an open neighborhood U of x such that A∩U = cA∩U
(i.e., A ∩ U is closed in U). A is locally closed if A is locally closed at each point x ∈ A. It is known ([5], Ch. I, §3, Prop. 5) that a
set A is locally closed iff A = F ∩ U for some closed set F and open set U . Denote the residue [11] A ∩ c(cA− A) of the set A
by ρA and the rest A− ρA of A by πA. It is easily seen πA = A− c(cA− A) and A = ρA ∪ πA.
Using those topological notions we introduce the following ‘‘point-free’’ definition.

Definition 2. If (B, δ) is an arbitrary derivative algebra and a ∈ B we say that µa = a − δa is the isolated part of a, and
πa = a− δ(δa− a) is the locally closed part of a.

It is not hard to see that

Lemma 1. The following conditions are equivalent:

1. an element a ∈ B is locally closed, i.e., πa = a;
2. a = f ∧ g for some closed element f and open element g;
3. a = πb for a suitable element b ∈ B.

Proof. To begin with, let us note that the operator π is definable in terms of closure, namely,

a− C(Ca− a) = a− δ(δa− a) = πa. (A)

Let us transform the left-hand side as follows: a−C(Ca− a) = a− ((Ca− a)∨ δ(Ca− a)) = a∧¬(Ca− a)∧¬δ(Ca− a) =
a− δ(Ca− a) = a− δ((a ∨ δa)− a) = a ∧ ¬δ((a ∧ ¬a) ∨ (δa− a)) = a− δ(δa− a). Note also that

Ca− C(Ca− a) = a− C(Ca− a). (B)

Indeed, a − C(Ca − a) 6 Ca − C(Ca − a) is obvious. It remains to show that Ca − C(Ca − a) 6 a − C(Ca − a); since
Ca−C(Ca−a) 6 −C(Ca−a) and (Ca−a)−C(Ca−a) = 0, i.e., Ca−C(Ca−a) 6 a, one has Ca−C(Ca−a) 6 a−C(Ca−a).
(2)⇒ (1). Let a = f ∧ g , where f is a closed element and g is an open element. Then Ca − a = C(f ∧ g) − (f ∧ g) =

C(f ∧ g) ∧ (−f ∨ −g) = (C(f ∧ g) − f ) ∨ (C(f ∧ g) − g). But C(f ∧ g) − f 6 (Cf ∧ Cg) − f = f ∧ Cg ∧ ¬f = 0.
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Consequently Ca − a = C(g ∧ f ) ∧ ¬g and, thus, Ca − a is a closed element, that is, C(Ca − a) = Ca − a; hence
πa = Ca− C(Ca− a) = Ca− (Ca− a) = a, that is, πa = a.
(1)⇒ (2). If a = π(a), then a = πa = Ca− C(Ca− a) = Ca ∧ I(−Ca ∨ a).
Thus (1) and (2) are equivalent. Moreover (1)⇒ (3) is obvious.
(3)⇒ (2). Suppose, by (3), a = πb; since πb = Cb− C(Cb− b), (2) holds. �

In the terminology of the derivative δ we define the variety of algebras corresponding to our main modal systems.

Definition 3. Let B be a Boolean algebra and δ be a unary function on B. We say that (B, δ) is:

1. a K4-algebra if (B, δ) is a derivative algebra and δδa 6 δa for each a ∈ B;
2. a K4.Grz-algebra if (B, δ) is a K4-algebra satisfying the following condition for each a ∈ B:

δa 6 δ(a− δ(δa− a)), (grz)

or, in our terminology, δa 6 δπa;
3. a GL-algebra (diagonalizable algebra) if (B, δ) is a K4-algebra and

δa 6 δ(a− δa), (L)

or, in our terminology, δa 6 δµa.

Since δ is monotone, in (grz) and (L) we can replace ‘‘6’’ by ‘‘=’’. We discuss the topological significance of the conditions
δa 6 δπa, and δa 6 δµa in the Appendix.
Using the de Morgan laws and δa = ¬τ¬a (a ∈ B), it is not difficult to see that (grz) and (L) are equivalent to

τ(τ (a→ τa)→ a) 6 τa (grz’)

and

τ(τa→ a) 6 τa. (L’)

It is known (see, for example, [4]) that Löb’s Axiom is equivalent to the Löb Rule, whose algebraic version can be written as
follows:

a 6= 0⇒ µa 6= 0. (RL)

Similarly, axiom (Grz) is equivalent to the Grz Rule [7], whose algebraic version is as follows:

a 6= 0⇒ πa 6= 0. (RGrz)

We will require the following Main Lemma (see [9]):

Lemma 2 (Main Lemma). A K4-algebra (B, δ) satisfies the equation

(a) δa = δ(a− δ(δa− a)), i.e., (B, δ) ∈ K4.Grz, iff the corresponding S4-algebra (B, C) satisfies the equation
(b) Ca = C(a− C(Ca− a)), i.e., (B; C) ∈ S4.Grz (where, as above, Ca := a ∨ δa).

In the interest of completeness we present a proof.

Proof. Taking into account the monotonicity of operators δ and C it is only necessary to verify that the following conditions
are equivalent: (c) δa 6 δ(a ∧ ¬δ(δa ∧ ¬a)) and (d) Ca 6 C(a ∧ ¬C(Ca ∧ ¬a))
(⇐) We eliminate step by step the closure operator C in condition (d).

(1) Ca ∧ ¬a = ¬a ∧ (a ∨ δa) = ¬a ∧ δa
(2) a∧¬C(Ca∧¬a) = a∧¬((δa∧¬a)∨ δ(δa∧¬a)) = a∧¬(δa∧¬a)∧¬δ(δa∧¬a)) = a∧¬δ(δa∧¬a)∧ (¬δa∨a) =
a ∧ ¬δ(δa ∧ ¬a).

Thus condition (d) is equivalent to the condition

a ∨ δa 6 (a ∧ ¬δ(δa ∧ ¬a)) ∨ δ(a ∧ ¬δ(δa ∧ ¬a)). (d∗)

Applying the monotonicity and additivity of the derivative operator δ, we obtain

δa ∨ δδa 6 δ(a ∧ ¬δ(δa ∧ ¬a)) ∨ δδ(a ∧ ¬δ(δa ∧ ¬a)).

From the K4-axiom δδa 6 δa, we see that δa 6 δ(a ∧ ¬δ(δa ∧ ¬a)).
(⇒)We notice that δa∧¬a 6 δa implies δ(δa∧¬a) 6 δδa 6 δa. Thus we have δ(δa∧¬a) 6 δa and¬δa 6 ¬δ(δa∧¬a).

Taking conjunction with a on both sides, we obtain
(e) a ∧ ¬δa 6 a ∧ ¬δ(δa ∧ ¬a).
Formula (e) together with (c) implies

δa ∨ (a ∧ ¬δa) 6 (a ∧ ¬δ(δa ∧ ¬a)) ∨ δ(a ∧ ¬δ(δa ∧ ¬a)).
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Using the equation

δa ∨ (a ∧ ¬δa) = a ∨ δa, we have a ∨ δa 6 (a ∧ ¬δ(δa ∧ ¬a)) ∨ δ(a ∧ ¬δ(δa ∧ ¬a)),

i.e., condition (d*), which is equivalent to (d). �

4. Distortion algebras

The central theme in this section is the polynomial generation of new derivative operations from old in arbitrary
diagonalizable algebras.

4.1. Algebraic analysis of distortions and some special cases

We start by observing that for each GL-algebra (B, δ) and e ∈ B, the following hold:

Proposition 1. (a) Ca = Cea; that is, a ∨ δa = a ∨ δea;
(b) δa 6 δea (a ∈ B);
(c) e 6 e′ ⇒ δea 6 δe′a;
(d) If e = 0, then δea = δa (a ∈ B);
(e) If e = 1, then δea = a ∨ δa = Ca.

Proof is immediate from the definition of distortions of δ.

Theorem 1. Let (B, δ) be an arbitrary diagonalizable algebra and e ∈ B. Then the algebra (B, δe), where δe is a distortion of δ, is
a K4.Grz-algebra.

Proof. (1) We show that the operator δe is monotone; that is, a 6 b⇒ δea 6 δcb. Suppose a 6 b; then, by the monotonicity
of δ, we obtain δea = (a ∧ e) ∨ δa 6 (b ∧ e) ∨ δb = δeb.
(2)We show that δe is additive; that is, δe(a∨b) = δea∨δeb; δe(a∨b) = ((a∨b)∧e)∨δ(a∨b) = (a∧e)∨(b∧e)∨δa∨δb =

(a ∧ e) ∨ δa ∨ (b ∧ e) ∨ δb = δea ∨ δeb.
(3) We show that δeδea 6 δea. The following equalities hold: δeδea = (((a ∧ e) ∨ δa) ∧ e) ∨ δ((a ∧ e) ∨ δa) =

(((a ∧ e) ∨ δa) ∧ e) ∨ δ(a ∧ e) ∨ δδa = (a ∧ e) ∨ (δa ∧ e) ∨ δ(a ∧ e) ∨ δδa. But

(a) a ∧ e 6 (a ∧ e) ∨ δa,
(b) δa ∧ e 6 (a ∨ δa) ∧ (e ∨ δa) = (a ∧ e) ∨ δa,
(c) δ(a ∧ e) 6 (a ∧ e) ∨ δa, and lastly,
(d) δδa 6 (a ∧ e) ∨ δa, as δδa 6 δa.

Therefore, (B, δe) is a K4-algebra. It is left to be shown that (B, δ) ∈ K4.Grz; that is, δea 6 δe(a − δe(δea − a)) (a ∈ B).
Since (B, δ) ∈ GL, it is known (see, for example, [4]) that (B, C) ∈ S4.Grz; that is, a 6 C(a− C(Ca− a)). As (∀b)(Cb = Ceb)
for each e ∈ B, by the Main Lemma one has ∀a ∈ B δea 6 δe(a− δe(δea− a)). �

Let (B, δ) be an arbitrary diagonalizable algebra.

Lemma 3. If e1, e2 ∈ B and e1 6= e2, then δe1 6= δe2 ; that is, δe1(a) 6= δe2(a) for some a ∈ B.

Proof. Let e1 6= e2. Without loss of generality, we may assume that e1 66 e2. Then e1 − e2 6= 0. Let a = e1 − e2. Then
δe1(e1−e2) = ((e1−e2)∧e1)∨δ(e1−e2) = (e1−e2)∨δ(e1−e2). On the other hand, δe2(e1−e2) = ((e1−e2)∧e2)∨δ(e1−e2) =
δ(e1 − e2). Suppose that δe1(e1 − e2) = δe2(e1 − e2); that is, (e1 − e2) ∨ δ(e1 − e2) = δ(e1 − e2), which means that
e1−e2 6 δ(e1−e2). By Löb’s Rule, e1−e2 = 0,which contradicts our assumption that e1 66 e2. Thus, δe1(e1−e2) 6= δe2(e1−e2),
which means that δe1 6= δe2 . �

Basing on the Main Lemma, note that in any K4.Grz-algebra (in particular, in any diagonalizable algebra) (B, τ ) for e = 1
the operator τe satisfies the axiom (grz). Note that in case e = 1 one has τea = a ∧ τa (∀a ∈ B).
We will use (following Boolos [4]) the following abbreviation: �α := α ∧ �α (dotted box). We will say that a formula α

is ‘‘dotting’’ if all occurrences of boxes in the formula α are ‘‘dotted’’.
Recall that an arithmetical realization of modal formulas is an assignment ∗ to each atom p of an arithmetical sentence

p∗ which commutes with non-modal connectives and (�p)∗ = Pr(pp∗q), where Pr(·) is the standard provability predicate
for PA.
Note that arithmetical realization of the dotted box, i.e., (p∧�p)∗, is expressible in terms of the demonstrability predicate,

namely, (�p)∗ = Dem(pp∗q).
A somewhat refined version of the main result of Chapter 12 ([4], p. 156) is valid.

Theorem 2. For every dotted formula p the following assertions are equivalent:

1. K4.Grz ` p;
2. for all realizations ∗, the sentence p∗ is provable in Peano Arithmetic PA;
3. for all realizations ∗, the sentence p∗ is true in the standard model of PA.
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Sketch of proof. Since K4.Grz is a subsystem of S4.Grz, we obtain K4.Grz ` p implies S4.Grz ` p. If K4.Grz 6̀ p, then there
is a K4.Grz-algebra (B, δ) such that p = 1 is not true in (B, δ). We consider the algebra (B, C). By the Main Lemma, (B, C) is
a S4.Grz-algebra. Because p is dotted, p = 1 is also not true in (B, C). Therefore, S4.Grz 6̀ p. Thus, for a dotted formula p, we
have K4.Grz ` p iff S4.Grz ` p. The rest follows from the main result of Chapter 12 ([4], p. 156). �

Let (B, δ) be a fixed diagonalizable algebra. Let us denote by D(B, δ) the set of all distortions of the operator δ, i.e.,
D(B, δ) = {δe : e ∈ B}. Let us define a partial order on the set D(B, δ) in a component-wise manner: for any δ1, δ2 ∈D(B, δ)
put

δ1 6 δ2 ⇔ (∀a ∈ B)(δ1a 6 δ2a).

It is easy to see that with respect to this partial order in D(B, δ) there exists the smallest element δ = δe when e = 0 and
the largest element c = δe for e = 1.
Let us equip the set D(B, δ)with the following operations. For δ1, δ2 ∈D(B, δ),

(δ1 ◦ δ2)(a) = δ1(a) ∧ δ2(a) (for a ∈ B)
(δ1 + δ2)(a) = δ1(a) ∨ δ2(a) (for a ∈ B)
(−δ1)(a) = (Ca− δ1a) ∨ δa (for a ∈ B).

Let us define the map F : B→D(B, δ) putting F(e) = δe for e ∈ B.
We already know that the map F is injective and preserves Boolean order (see Proposition 1 and Lemma 3).

Theorem 3. The map Fδ : B→ D(B, δ) commutes with Boolean operations on the Boolean algebra B, i.e.,

1. F(e1 ∧ e2) = F(e1) ◦ F(e2);
2. F(e1 ∨ e2) = F(e1)+ F(e2);
3. F(¬e) = −F(e).

Proof. (1) δe1(a) ∧ δe2(a) = [(e1 ∧ a) ∨ δa] ∧ [(e2 ∧ a) ∨ δa] = δa ∨ (e1 ∧ a ∧ e2 ∧ a) = δa ∨ (e1 ∧ e2 ∧ a) = δe1∧e2a.
(2) δe1a ∨ δe2a = [(e1 ∧ a) ∨ δa] ∨ [(e2 ∧ a) ∨ δa] = δa ∨ ((e1 ∧ a) ∨ (e2 ∧ a)) = δa ∨ (a ∧ (e1 ∨ e2)) = δe1∨e2a.
(3)−δea = (Ca− δea)∨ δa. Let us transform the polynomial Ca− δea = (a∨ δa)∧¬((a∧ e)∨ δa) = (a∨ δa)∧¬(a∧

e) ∧ ¬δa = (a ∧ ¬(a ∧ e) ∧ ¬δa) ∨ (δa ∧ ¬(a ∧ e) ∧ ¬δa) = ((a ∧ ¬(a ∧ e) ∧ ¬δa) = a ∧ (¬a ∧ ¬e) ∧ ¬δa =
a ∧ ¬(a ∧ e) ∧ ¬δa = a ∧ (¬a ∨ ¬e) ∧ ¬δa = (a ∧ ¬a ∧ ¬δa) ∨ (a ∧ ¬e ∧ ¬δa) = a ∧ ¬e ∧ ¬δa. Thus
(Ca− δea) ∨ δa = (a ∧ ¬e ∧ ¬δa) ∨ δa = ((a ∧ ¬e) ∨ δa) ∧ (¬δa ∨ δa) = (a ∧ ¬e) ∨ δa = δ¬ea. �

Corollary 1. The set D(B, δ) of all distortions forms a Boolean algebra isomorphic to the Boolean algebra (B,∧,∨,¬).
For any finite Boolean algebra B let us denote by At(B) the set of its atoms.

Theorem 4. Let (B, δ) be a finite diagonalizable algebra and let δ′ be a normal (δ′0 = 0) and additive (δ′(a ∨ b) = δ′a ∨ δ′b,
a, b ∈ B) operator on B such that a∨ δa = a∨ δ′a. Then δ′ coincides with a distortion δe of the operator δ for e =

∨
{a ∈ At(B) :

a− δ′a = 0}.

Proof. In view of additivity of the operators δ and δ′ it suffices to ensure the equality δ′a = δea for a ∈At(B).
Case 1. Let a ∈At(B) and a − δ′a = 0, i.e., a 6 δ′a. Then δea = (a ∧ e) ∨ δa = a ∨ δa. Since a 6 δ′a, one has a ∨ δ′a = δ′a.
But by the hypothesis of the theorem we have a ∨ δ′a = a ∨ δa; hence δ′a = a ∨ δa = δea.
Case 2. a ∈At(B) and a− δ′ 6= 0. Let us show δea = δ′a, i.e., (a ∧ e) ∨ δa = δ′a. But a ∧ e = a ∧

∨
{b ∈ AtB : b− δ′b = 0}.

Since a − δ′a 6= 0, for b ∈AtB and b − δ′b = 0 we have a 6= b and, since a is an atom, a ∧ b = 0. Hence
a ∧

∨
{b ∈ AtB : b − δ′b = 0} = 0, and therefore δea = (a ∧ e) ∨ δa = δa. Let us show that δ′a = δa. From the

condition a∨ δ′a = a∨ δa it follows that ∀b ∈At(B) b 6 a∨ δ′a⇔ b 6 a∨ δa, i.e., ∀b ∈AtB (b− a 6 δ′a⇔ b− a 6 δa), i.e.,
for b 6= a, b 6 δ′a⇔ b 6 δa. �

4.2. Distortion algebras in which a modal version of Gödel’s Second Incompleteness Theorem is valid, while the Löb Axiom is
refutable

Let (B, τ ) be a diagonalizable algebra, e 6= 0, and e 6 ¬τ0 = δ1. Let us show that in the K4.Grz-algebra (B, τe) the modal
version of the Gödel Second Incompleteness Theorem holds; that is,

¬τe0 6 ¬τe(¬τe0). (a)

In terms of the derivative operation, condition (a) is written as

δe1 6 δe¬δe1. (b)

Proof. δe1 = (e ∧ 1) ∨ δ1 = e ∨ δ1.
¬δe1 = ¬(e ∨ δ1) = ¬e ∧ ¬δ1.
δe(¬δe1) = δe(¬e ∧ ¬δ1) = (e ∧ ¬e ∧ ¬δ1) ∨ δ(¬(e ∨ δ1)). Therefore, (b) reduces to

e ∨ δ1 6 δ¬(e ∨ δ1); (c)
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e 6 δ1 implies

δ1 6 δ¬δ1. (d)

But (d) is a substitution instance of the Löb Axiom δa 6 δ(a − δa), when a = 1. Let (B, δ) be a diagonalizable algebra and
e = ¬τ0 = δ1 6= 0. We show that Löb’s Axiom is falsified in (B, δe); that is,

δea 6 δe(a− δea) (e)

is false for some a ∈ B. Set a = e = δ1 and show that (b) is false, which in this case reads as

δ1 6 (δ1 ∨ δ¬δ1) ∧ (¬δ1 ∧ δ(¬δ1)). (f)

By simplifying (f), we obtain

δ1 6 ¬δ1 ∧ δ(¬δ1). (g)

From (g) it follows that δ1 6 ¬δ1; that is, δ1 = 0. But this contradicts the condition δ1 6= 0. Therefore, condition (f) is false,
and hence so is (e). �

4.3. Distortion algebras in which a modal version of Gödel’s Second Incompleteness Theorem is refutable but a weaker form of the
Löb Axiom is valid

Let (B, τ )be adiagonalizable algebra.Wewill need the following substitution instance of the LöbAxiom: τ(τb→ b) 6 τb
for b = a→ τa.

τ(τ (a→ τa)→ (a→ τa)) 6 τ(a→ τa) (a)

or, in terms of the derivative operator,

δ(a ∧ δ¬a) 6 δ((a ∧ δ¬a)− δ(a ∧ δ¬a)). (b)

We show that in (B, δe), if e 6 τ0 = ¬δ1, the weakened formulation (b) of the Löb Axiom is satisfied; that is,

δe(a ∧ δe¬a) 6 δe((a ∧ δ¬a)− δe(a ∧ δ¬a)). (c)

Let us transform the left-hand side: δe(a∧δe¬a) = δe(a∧((¬a∧e)∨δ¬a)) = δe((a∧¬a∧e)∨(a∧δ¬a)) = δe(a∧δ¬a) =
(a ∧ δ¬a ∧ e) ∨ δ(a ∧ δ¬a). Since δ¬a 6 δ1, one has δ¬a ∧ ¬δ1 = 0 and, since e 6 ¬δ1, a fortiori δ¬a ∧ e = 0. Hence
(a ∧ δ¬a ∧ e) ∨ δ(a ∧ δ¬a) = δ(a ∧ δ¬a). Thus δe(a ∧ δe¬a) = δ(a ∧ δ¬a).
Right-hand side: δe((a∧ δ¬a)− δe(a∧ δ¬a)) = δe((a∧ δ¬a)− δ(a∧ δ¬a)) = ((a∧ δ¬a)∧¬δ(a∧ δ¬a)∧ e)∨ δ(a∧

δ¬a ∧ ¬δ(a ∧ δ¬a)). Since¬δ1 6 ¬δ(a ∧ δ¬a) and e 6 ¬δ1, one has e 6 ¬δ(a ∧ δ¬a). Hence the last expression is equal
to (a∧ δ¬a∧ e)∨ δ(a∧ δ¬a∧¬δ(a∧ δ¬a))which, since δ¬a 6 δ1 implies δ¬a∧¬δ1 = 0 and a fortiori δ¬a∧ e = 0, is
equal to δ((a ∧ δ¬a)− δ(a ∧ δ¬a). Thus the condition (c) takes shape:

δ(a ∧ δ¬a) 6 δ((a ∧ δ¬a)− δ(a ∧ δ¬a)). (d)

But (d) holds, being a substitution instance of the Löb Axiom (see (b)).
Let (B, δ) be a diagonalizable algebra with non-degenerate Boolean part, i.e., 1 6= 0. Then the modal version of Gödel’s

Second Incompleteness Theorem is refutable in the algebra (B, δe) for e = ¬δ1, i.e.,

δe1 6 δe¬δe1 (e)

is false. Indeed, δe1 = (¬δ1 ∧ 1) ∨ δ1 = 1 so ¬δe1 = ¬1 = 0; whereas δe¬δe1 = δe0 = 0. Thus (e) is equivalent to

1 6 0, i.e., 1 = 0. (f)

5. Three modal satellites of the Gödel–Löb modal system

Our analysis of special reincarnations of the standard provability predicate in PA led us to the modal system K4.Grz and
two of its normal extensions. Namely, the modal system K4.Grz+ (g) obtained by postulating the modal version of Gödel’s
Second Incompleteness Theorem and the modal system K4.Grz+ (wL) obtained by postulating a special instance of the Löb
Axiom

τ(τp→ p)→ τp (l)

consisting of two ‘‘independent’’ parts, namely

¬τ⊥→ ¬τ(¬τ⊥) (g)

and

τ(τ (p→ τp)→ (p→ τp))→ τ(p→ τp). (wL)



L. Esakia / Annals of Pure and Applied Logic 161 (2009) 174–184 181

Obviously (wL), being an instance of (L), formalizes the Löb Principle not for arbitrary propositions p, but only for propositions
of the form p→ τp, expressing the local principle of semantic completeness: ‘‘truth of p implies provability of p’’.
As we will show below, GL= K4.Grz+ (g)+ (wL).
Before that, let us present a simple (four-element) diagonalizable algebra (B, δ) and its two different distortions that will

show us that all four modal systems are different in that the inclusions between them are proper, i.e.,

K4.Grz+ (g)
� r

$$JJJJJJJJJJ

K4.Grz

+ �

88rrrrrrrrrr

� s

&&LLLLLLLLLL
GL

K4.Grz+ (wL)

, �

::tttttttttt

Let B = {0, a, b, 1} be the four-element Boolean algebra and δ be the operator on B defined as follows: δ0 = 0, δa = 0,
δb = a, δ1 = a. It is easy to verify that (B, δ) is a diagonalizable algebra; let δe be the distortion of the operator δ with e = a
and e = b. Denote by (B, δ1) and (B, δ2) the algebras with δ1 = δe for e = a and δ2 = δe for e = b.
Simple checking shows that

(a) (B, δ), (B, δ1), (B, δ2) ∈ K4.Grz;
(b) (B, δ1) ∈ K4.Grz+ (g) and (B, δ1) /∈ K4.Grz+ (wL);
(c) (B, δ2) ∈ K4.Grz+ (wL) and (B, δ2) /∈ K4.Grz+ (g);
(d) (B, δ1), (B, δ2) /∈ GL.

We will need the following lemma having certain independent significance.
Lemma 4. Let (B, τ ) be any K4-algebra. The following conditions are equivalent:

(g) ¬τ0 6 ¬τ(¬τ0) (modal version of Gödel’s Second Incompleteness Theorem);
(g’) τ(τp→ p) 6 τ(τ¬p→ p) (∀p ∈ B).

Proof. As we already know, in terms of the derivative operator δ condition (g) is equivalent to

δ1 6 δ¬δ1 or, more shortly, δ1 6 δµ1. (1)

It is easy to check that the δ-version of the condition (g′) looks as follows:

δ(p ∧ ¬δ¬p) 6 δ(p− δp). (2)

Let us prove the equivalence of the conditions (1) and (2).
(2)⇒ (1). Substituting 1 in place of p in (2), we obtain δ(1∧¬δ¬1) 6 δ(1∧¬δ1), i.e., δ1 6 δ¬δ1, i.e.,¬δ1∨ δ¬δ1 = 1;

i.e., Cµ1 = 1.
(1)⇒ (2). Note that p∧µ1 6 µp; indeed, p∧¬δ1 6 p∧¬δp (since δp 6 δ1). Furthermore, we have p∧¬δ¬p = Ip 6 Cµ1

(using Cµ1 = 1). Let us use the following property of arbitrary closure algebras (see [15], Cor. 1.8, p. 146). If an element a is
open, and b is arbitrary, then a ∧ C(a ∧ b) = a ∧ Cb. Putting in this equality a = Ip and b = µ1, we obtain

Ip ∧ C(Ip ∧ µ1) = Ip ∧ Cµ1; (a)

and using the density of µ1, we obtain

Ip ∧ C(Ip ∧ µ1) = Ip, (b)

i.e.,

Ip 6 C(Ip ∧ µ1); (c)

but p ∧ µ1 6 µp, and a fortiori Ip ∧ µ1 6 µp. Hence C(Ip ∧ µ1) 6 Cµp, and by (b) we obtain

Ip 6 Cµp; (d)

then

δIp 6 δCµp.

But δCµp = δ(µp ∨ δµp) = δµp ∨ δδµp = δµp. Consequently δIp 6 δµp. Thus

δ(p ∧ ¬δ¬p) 6 δ(p− δp). �
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Theorem 5. The modal system GL can be axiomatized as K4.Grz+ (g)+ (wL).
Proof. (g)+ (wL)⇒ (L), i.e.,

δ(p ∧ δ¬p) 6 δ((p ∧ δ¬p)− δ(p ∧ δ¬p)) (wL)

and

δ(p ∧ ¬δ¬p) 6 δ(p ∧ ¬δp) (g)

imply

δp 6 δ(p− δp). (L)

Representing p in the form p = (p ∧ δ¬p) ∨ (p ∧ ¬δ¬p), we see that (L) is equivalent to the conjunction of

δ(p ∧ δ¬p) 6 δ(p ∧ ¬δp) (L1)

and

δ(p ∧ ¬δ¬p) 6 δ(p ∧ ¬δp). (L2)

We have (g)= (L2). Let us show that (g)+ (wL)⇒ (L1). Clearly p ∧ δ¬p ∧ ¬δp 6 p ∧ ¬δp, i.e., p ∧ δ¬p ∧ ¬δ((p ∧ δ¬p) ∨
(p∧¬δ¬p)) 6 p∧¬δp, i.e., p∧ δ¬p∧¬δ(p∧ δ¬p)∧¬δ(p∧¬δ¬p) 6 p∧¬δp, i.e., µ(p∧ δ¬p)∧¬δ(p∧¬δ¬p) 6 µp,
i.e., µ(p ∧ δ¬p) 6 µp ∨ δ(p ∧ ¬δ¬p); consequently δµ(p ∧ δ¬p) 6 δµp ∨ δδ(p ∧ ¬δ¬p) 6 δµp ∨ δ(p ∧ ¬δ¬p), i.e.,

δµ(p ∧ δ¬p)− δ(p ∧ ¬δ¬p) 6 δµp. (1)

But by (g) we have δ(p ∧ ¬δ¬p) 6 δ(p ∧ ¬δp); hence

δµ(p ∧ δ¬p)− δ(p ∧ ¬δp) 6 δµ(p ∧ δ¬p)− δ(p ∧ ¬δ¬p). (2)

(1) and (2) by transitivity of 6 give

δµ(p ∧ δ¬p) 6 δµp ∨ δµp = δµp. (3)

(wL) δ(p ∧ δ¬p) 6 δµ(p ∧ δ¬p) and (3) by transitivity give (L1), i.e., δ(p ∧ δ¬p) 6 δµp.
Thus (g) & (wL)⇒ (L). �

Final remarks
Note that every distortion τe of τ in an arbitrary diagonalizable algebra (B, τ ) is an operator weaker than the original

operator τ ; that is, τep 6 τp for every p ∈ B.
To conclude, let us present a certain observation arising from consideration of an internally definable strengthening of

the ‘‘standard’’ provability operator. More precisely, we introduce the following definition.
Let e be a fixed element of a diagonalizable algebra (B, τ ).

e-modest strengthening: for every p ∈ B, τ ep := τp ∨ (e ∧ τ(e→ p)).
The e-modest strengthening is of special interest in connection with incompleteness of Peano Arithmetic.
Recall that Gödel’s First Incompleteness Theorem asserts that if PA is consistent then it is incomplete. Nevertheless there

are consistent principles asserting completeness.
We consider the local principle of semantic completeness: p → Pr(ppq) (somewhat loosely, ‘‘if p is true then p is

provable’’). This principle is equivalent to ¬Consis, i.e., to Pr(p⊥q) (‘‘inconsistency’’), and hence is not in general derivable.
One half of the relation between p and Pr(ppq) in PA is provided by a theorem of Löb which states that PA ` Pr(ppq) → p
implies PA ` p.
However, there is a large and interesting set (see [14]) of sentences for which PA ` p → Pr(ppq), i.e., p 6 τp in the

diagonalizable algebra D(PA) of Peano Arithmetic. The set H = {p ∈ D(PA) : p 6 τp} can be shown to be a sublattice of
D(PA)which is a Heyting algebra.
It may happen that an element e of a diagonalizable algebra (B, τ ) (for example, of D(PA)) is a ‘‘violator’’ of the local

principle of semantic completeness, i.e., e 
 τe. The latter condition of course means that the ‘‘perplexus’’ e ∧ ¬τe (‘‘e is
true but not provable’’) is non-zero.
The e-modest strengthening τ e is the least among all those strengthenings of τ which restore the local principle of

semantic completeness for e. More precisely,
Observation. Let (B, τ ) be a diagonalizable algebra and e ∈ B. Then

(i) The algebra (B, τ e) is a diagonalizable algebra.
(ii) If a K4-operator τ ′ is a strengthening of τ , i.e., τp 6 τ ′p for all p ∈ B, and e 6 τ ′e, then τ ep 6 τ ′p for every p ∈ B.

Finally, let us indicate a simple but important special case. Let e = ¬τ0 (‘‘consistency’’ in the case of D(PA)). Then
τ ep = τ((¬τ0) → p). Roughly speaking, in this case τ ep expresses not the ‘‘absolute’’ provability of p but rather
the provability of p under the assumption of consistency of PA. The above observation implies that here τ e is the least
strengthening of the ‘‘standard’’ operator τ under which e (‘‘consistency of PA’’) satisfies the local principle of semantical
completeness.
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Appendix

We start by recalling the necessary definitions to state topological completeness theorems for the modal systems
discussed in the paper.

Definition 4. A topological space is called a scattered space if it has no dense-in-itself non-empty subset.

An ‘‘equational’’ (à la Kuratowski) characterization of scattered spaces using the derivation operation as a primitive notion
is contained in the following proposition.

Proposition 2 ([7]). A scattered space is a set X equipped with an operator δ, satisfying the equations:

1. δ∅ = ∅;
2. δ(A ∪ B) = δA ∪ δB;
3. δA = δ(A− δA); i.e., δA = δµA (the dual form of the Löb Axiom).

Proposition 3 (Topological Completeness of GL [8]). GL |= p iff p is valid in every scattered space.

Reducible sets as defined below were introduced by Hausdorff [11], p. 192 (so-called Hausdorff’s Theory of Residues). A
set A is called reducible if it can be obtained as a chain of differences of a well-ordered decreasing sequence of non-empty
closed sets whose intersection is empty.

Definition 5 ([8]). A topological space X is called well reducible if every subset A of X is reducible.

Proposition 4 ([8]). A topological space X is well reducible iff for every subset A of X A 6= ∅ implies A− ρ(A) 6= ∅.

Theorem 6 (An ‘‘Equational’’ Characterization of Well-reducible Spaces [8]). The following conditions on a topological space X
are equivalent:

(1) The space X is well reducible.
(2) CA = A− C(CA− A) for every A ⊆ X; i.e., CA = Cπ(A).
(3) dA = A− d(dA− A) for every A ⊆ X; i.e., dA = dπ(A).

It is not hard to verify that every scattered space is well reducible. An example of a well-reducible space which is not
scattered has been constructed in [2]:
Example: If X is an infinite set, F is a free ultrafilter on X and the topology T = F ∪ ∅, then (X, T ) is a dense-in-itself (so,
not scattered) well-reducible space.
In [2] there has also been shown that scatteredness and well-reducibility coincide on a wide class of spaces, including all

of the spectral, first countable, or locally compact Hausdorff spaces (see, e.g., [13] for definitions of these notions).

Proposition 5 (Topological Completeness of S4.Grz [8]). S4.Grz |= p iff p is valid in every well-reducible topological space
(under reading the diamond ♦ as closure operation C).

Recently, in [2], the authors have established the equivalence of this notion with that of hereditary irresolvability.

Definition 6 (Hewitt [12]). A space X is resolvable iff X contains two disjoint dense subsets. A space X is hereditarily
irresolvable if no non-empty subspace is resolvable.

Proposition 6 ([2]). A space X is well reducible iff X is hereditarily irresolvable.

So S4.Grz is the modal logic of well-reducible= hereditarily irresolvable spaces when the modal diamond is interpreted
as the topological closure operator.

Proposition 7 (Topological Completeness of K4.Grz [10]). The modal system K4.Grz is sound and complete with respect to the
class of all hereditarily irresolvable spaces (when the diamond is read as the derivation operator).

Definition 7. Call a topological space X weakly scattered if the set of isolated points of X is everywhere dense in X .

Theorem 7 ([10] Topological Completeness of K4.Grz+ (g):). K4.Grz + (g) |= p iff p is valid in every weakly scattered space;
(under reading the diamond-modality as the derivative operation).

Definition 8. A topological space is called almost scattered if it has no dense-in-itself non-empty sets with empty interior.

Theorem 8 ([10] Topological Completeness of K4.Grz+ (wL)). K4.Grz + (wL) |= p iff p is valid in every topological almost-
scattered space (under reading the diamond-modality ♦ as the derivative operation).
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Now we consider the Kripke semantics for the considered modal systems. Recall that a Kripke frame F = (X, R) is a
non-empty set X together with a binary relation R ⊆ X × X .
We say that R is transitive, if
(tr) (∀x, y, z ∈ X)(xRy ∧ yRz → xRz)
irreflexive, if
(irref) (∀x ∈ X)(¬xRx)
and antisymmetric, if
(asymm) (∀x, y ∈ X)(xRy ∧ yRx→ x = y).
A point x ∈ A is called amaximal (resp., strongly maximal) point of A if, for every y ∈ A, xRy implies x = y (resp.,¬∃y ∈ A

such that xRy). We denote the set of maximal points of A by max A.
All the systems considered in the paper have the finitemodel property (fmp). The corresponding completeness theorems

are given below:

Theorem 9 ([17]). GL is complete w.r.t. finite transitive irreflexive Kripke frames.

Theorem 10 ([1,10]). K4.Grz is complete w.r.t. finite transitive antisymmetric Kripke frames.

Theorem 11 ([10]). K4.Grz+ (g) is complete w.r.t. finite transitive antisymmetric frames F = (X, R) such that

(∀x ∈ X)(xRx→ x 6∈ max X).

Theorem 12 ([10]). K4.Grz+ (wL) is complete w.r.t. finite transitive antisymmetric frames F = (X, R) such that

(∀x ∈ X)(xRx→ x ∈ max X).

We note that all these systems have in fact a stronger tree-like model property. For details see [10].

Duality for K4.Grz

In order to describe the dual category for the category K4.Grz of K4.Grz-algebras and homomorphism we recall that a
topological space X is a Stone space if X is compact, Hausdorff and zero-dimensional. For a transitive relation R on X and
A ⊆ X let R−1(A) = {x ∈ X : y ∈ A ∧ xRy}.
We call (X, R) a topological Grz-frame if X is a Stone space and R is a transitive relation on X such that

1. the set R(x) = {y ∈ X : xRy} is closed for every x ∈ X;
2. for every clopen A the set R−1(A) is a clopen;
3. Maximality Principle: for each non-empty clopen A the set max A is non-empty. For topological Grz-frames X1, X2 a
map f : X1 → X2 is a morphism of the category TGF of topological Grz-frames if f is a continuous function and
fR1(x) = R2(f (x)) for every point x ∈ X1.

Theorem A (cf. [6]). The category TGF is dually equivalent to the category of K4.Grz-algebras and algebraic homomorphisms.

We note that the category of diagonalizable algebras (alias, GL-algebras) is dually equivalent to the full subcategory
of topological K4.Grz-frames, satisfying an addition condition: for every clopen A every maximal point x of A is strongly
maximal.
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