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The modalized Heyting calculus:
a conservative modal extension
of the Intuitionistic Logic ⋆

Leo Esakia

Razmadze Mathematical Institute
Tbilisi 0193 (Georgia)

esakia@hotmail.com

ABSTRACT.In this paper we define an augmentation mHC of the Heyting propositional calculus
HC by a modal operator2. This modalized Heyting calculus mHC is a weakening of the Proof-
Intuitionistic Logic KM of Kuznetsov and Muravitsky. In Section 2 we present a short selection
of attractive (algebraic, relational, topological and categorical) features of mHC. In Section 3
we establish some close connections between mHC and certainnormal extension K4.Grz of the
modal system K4. We define a translation of mHC into K4.Grz andprove that this translation is
exact, i. e. theorem-preserving and deducibility-invariant. We have established (however, in this
note we do not present a proof of this) that the lattice of all extensions of mHC is isomorphic
to the lattice of normal extensions of K4.Grz (a generalization of the Kuznetsov and Muravitsky
theorem).

KEYWORDS:Heyting algebra, modal operator, derivative algebra, provability logic, topological
semantics, Kripke frame.

1. Introduction

In this section we describe an augmentation of the Heyting propositional calculus
by a modal operator2. We do not intend to give a systematic survey, but present a
short selection of attractive (algebraic, relational, topological and categorical) features
of themodalized Heyting calculus(Section 2). We establish some close connections
between the modalized Heyting Calculus and some normal extensions of the minimal
modal system K (Section 3).

The language of mHC consists of a set of propositional variables, connectives∧,
∨, →, ⊥ and a modal operator2 (“Always”).

⋆. This research was supported by the INTAS project 04-77-7080 Algebraic and deduction
methods in non-classical logic and their applications to computer science.
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350 JANCL – 16/2006. Algebraic and relational deductive tools

DEFINITION 1. — Themodalized Heyting calculusmHC is obtained by adding

(m1)2(p → q) → (2p → 2q),

(m2)p → 2p and

(m3)2p → (q ∨ (q → p))

to the Heyting propositional Calculus HC asnew“modal” axiom schemes.

Note that postulating the formula

(m4) (2p → p) → p

(an intuitionistic version of the Löb principle) as an additional axiom leads to the well-
knownProof-Intuitionistic logicKM of Kuznetsov-Muravitsky ([KUZ 85, MUR 85])
in which the modality2, being the “ambassador” of the Box as a Proof of the Gödel-
Löb modal system GL, expresses the provability predicate ofthe classical Peano arith-
metic.

The algebraic models of mHC are Heyting algebras with a modalload subject to
certain additional identities.

DEFINITION 2. — A frontal Heyting algebrais an algebra(H : ∧,∨,→,⊥, τ) (or,
(H : τ), for short) such that(H : ∧,∨,→,⊥) is a Heyting algebra andτ is a unary
operator (modal operator) satisfying the following conditions:

(f1) τ(p ∧ q) = (τp ∧ τq),

(f2) p 6 τp,

(f3) τp 6 q ∨ (q → p) for everyp, q ∈ H.

We say that a frontal Heyting algebra(H : ∧,∨,→,⊥, τ) is a KM-algebra(or a
fronton, for short) if the operator satisfies the additional condition

(f4) τp → p 6 p.

The equational class (and the category) of frontal Heyting algebras is denoted by
fHA. Before proceeding further let us pause to present a sketch, mixing algebraic and
modal viewpoints, of some properties of mHC, and to try to justify our favorite choice
of this modal extension mHC of Heyting Calculus HC.

2. Motivations and justifications

Note that in almost all “standard” intuitionistic modal systems known to the author
the postulate (m3) only seldom occurs (for notable examplessee [GAB 77, GOL 81,
SIM 82, TOU 87, TOU 90, WOL 99]; see as well the papers cited in [WOL 99] as
a point of entry to the literature on intuitionistic versions of the classical modal sys-
tems). The postulate (m2) is not typical, while the postulate (m3) stresses even more
“nonstandardness” of the chosen basic system mHC and of its extension KM, which
enables one to draw a conventional “demarcation line” between mHC and the standard
intuitionistic modal logics.
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Modalized Heyting calculus 351

It seems to us that the modalized Heyting calculus mHC (and, to no less extent,
KM) is interesting not only from the point of view of the provability interpretation,
but also thanks to its connections to

– The Intuitionistic logic with propositional quantification;

– Topology: Cantor scattered spaces, notions of the limit and isolated point;

– Categorical logic: topoi, whose subobject classifiers ( = truth value objects, car-
rying an internal Heyting algebra structure), as it turns out, are always equipped with
a canonical operatorτ of fHA-type;

– Intuitionistic temporal logic “Always & Before” possessing rich expressive pos-
sibilities.

One would hope that comments on these points (although sketchy) will enable
us to support the claim about attractiveness and usefulnessof such a “nonstandard”
version of intuitionistic modal logic.

The Intuitionistic logic with propositional quantification (alias, the intuitionistic
2nd-order propositional logic)

qHC is obtained by adding to Heyting propositional calculusHC some form of
quantification on the propositional variables. One way of introducing propositional
quantification into an intuitionistic propositional logicis to specify the characteristic
properties of quantification in the form of axioms and rules of inference and add them
to the list of the axioms and rules of inference of the Heytingpropositional calculus
HC. The merits of propositional quantification can be given,for example, by the fol-
lowing schemata of formulas, ∀p F (p) → F (q) andF (q) → ∃p F (p), andrules of
inference,

F (p) → G

∃p F (p) → G
and

G → F (p)

G → ∀p F (p)
, wherep is not free inG.

These basic axioms and rules governing the quantifiers, together with usual axiomati-
zation of the Heyting calculus, give rise to the system qHC which can be regarded as
the minimal system corresponding to theintuitionistic logic with propositional quan-
tification. Assume the following definition:

2F (q) := ∀p(p ∨ (p → F (q)))

for every formulaF of the Intuitionistic logic with propositional quantification qHC
(p is not free inF ). It is easy to verify that this operator satisfies all axioms(m1),
(m2), (m3) of the modalized Heyting Calculus mHC.

For example, using⊢ F (q) → (p ∨ (p → F (q))) (p not free inF ) we obtain

⊢ F (q) → ∀p(p ∨ (p → F (q))),

i. e. F (q) → 2F (q) (axiom (m1)) by the right rule of qHC. The axiom (m3), i. e.
∀p(p ∨ (p → F (q))) → (p ∨ (p → F (q))), is an instance of the left axiom of qHC.
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352 JANCL – 16/2006. Algebraic and relational deductive tools

Thus we can identify mHC with a certainfragmentof the qHC and consequently
consider the modality2 as an operator “intrinsically” definable in the Intuitionistic
logic with propositional quantification.

Algebraic and topological models

Let X be a topological space. Recall thatδA is, by definition, the set of allaccu-
mulation(alias,limit) points of a subsetA of X. A point x is said to be alimit point
of the setA, if every neighborhood ofx contains a point ofA other thanx. The dual
operatorτ (co-derivative) is defined as follows:τA is the set of allfrontal pointsof a
subsetA of the spaceX. A point x is said to be a frontal point of a setA, if there is a
neighborhoodUx of x such thatUx ⊆ A ∪ {x}. It is not hard to verify that our “fa-
vorite example”, namely the Heyting algebraH(X) of all open sets of the topological
spaceX with the co-derivative operatorτ forms a frontal Heyting algebra. Indeed,
to prove thatτB ⊆ A ∪ (A → B) for everyA,B ∈ H(X), suppose thatx /∈ A
but x ∈ τB. Then by definition of frontal points there exists a neighborhoodU of x
such thatU ⊆ B ∪ {x}. Sincex /∈ A we see thatB ∪ {x} ⊆ B ∪ (X − A) and
U ⊆ B ∪ (X −A). Hencex ∈ I(B ∪ (X −A)) = A → B, whereI denotes interior.

A topological space is calledscattered(Cantor) if it has no dense-in-itself non-
empty subset. It is known that each ordinalα can be viewed as a scattered spaceΓ(α)
of all ordinals not exceedingα, with its intrinsic, interval topology. The frontal Heyt-
ing algebraH(X) corresponding toX = Γ(α) as described above is a KM-algebra
for any ordinalα [ESA 00]. In an arbitrary topos (i. e. in a category-theoretic uni-
verse for intuitionistic mathematics) thesubobject classifier( = the object of truth val-
ues)Ω carrying an internal Heyting algebra structure, is moreover an internal frontal
Heyting algebra in a canonical way, which enables one to interpret in a topos, along
with ordinary intuitionistic connectives and quantifiers,also themodal operatorτ
[ESA 00]. Toposes whose subobject classifiers are frontons,the so calledscattered
toposes, are categorical models of a quantifier extension of the Proof-Intuitionistic
logic KM [ESA 00].

PROPOSITION3. — A frontal Heyting algebra(H, τ) is a fronton if and only if every
polynomialt(x) in which the variablex occurs inside the scope ofτ possesses a fixed
pointp ∈ H: t(p) = p.

PROOF. — (if ) Consider the polynomialt(.) = τ(.) → p, wherep ∈ H. Since there
is a fixed pointq of t thenq = τ(q) → p. Henceq 6 τq → p andq ∧ τq 6 p. Since
q 6 τq, we haveq 6 p, henceτq 6 τp andτp → p 6 τq → p. Usingq = τ(q) → p
we obtainτp → p 6 q andτp → p 6 p.

(only if) Using Lemma 1.5 of [SAM 76] it is not hard to prove that in every fronton
(H, τ) every polynomialt(.) in which the variablex occurs inside the scope ofτ
possesses a fixed point. ■
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Modalized Heyting calculus 353

It is not difficult to see that every Heyting algebraH can be “turned into” a frontal
one: we can just equipH with the trivial operatorτ putting τp = p for all p ∈ H.
The situation with frontons is however different!

For every elementp of a Heyting algebraH consider the subset

{q ∈ H : q → p 6 q} = Fp

of the algebraH.

PROPOSITION4. — For everyp the setFp is a proper filter of the algebraH.

PROOF. — 1) Let q be an element ofFp andq 6 r. Sincer → p 6 q → p and
q → p 6 q one hasr 6 p 6 q. Hencer → p 6 r. 2) Supposing now thatq, r ∈ Fp

we show thatq ∧ r ∈ Fp. Sinceq, r ∈ Fp we haveq → p 6 q andr → p 6 r,
henceq ∧ (q → p) = q → p andr ∧ (r → p) = r → p, i. e. (a)q ∧ p = q → p
and (b)r ∧ p = r → p. Note thatq ∧ r → p = q → (r → p): using (b) we have
q → (r → p) = q → (r ∧ p) = (q → r) ∧ (q → p) 6 q → p.

Using (a) we obtain(q ∧ r) → p 6 q ∧ p 6 q. In a similar way,q ∧ r → p = r →
(q → p) = r → q ∧ p = (r → q) ∧ (r → p) = (r → q) ∧ (r ∧ q) 6 r ∧ q 6 r.
Thus(r ∧ q) → p 6 q and(r ∧ q) → p 6 r, hence(r ∧ q) → p 6 r ∧ q. Note that if
⊥ ∈ Fp, i. e.⊥ → p 6 ⊥, then⊤ 6 ⊥. ■

An intrinsic (τ -less) characterization of frontons is given by

PROPOSITION5. — A Heyting algebraH admits a structure of a fronton if and only
if the filtersFp are principal for allp ∈ H. Moreover such a structure is then unique.

PROOF. — (only if) Let (H, τ) be a fronton. It is necessary to verify that every filter
Fp (p ∈ H) is principal. Sinceτp → p 6 p andp 6 τp one hasτp → p 6 τp, i. e.
τp ∈ Fp . Suppose thats ∈ Fp, i. e.s → p 6 s. Thens ∨ (s → p) 6 s; using axiom
(m3) we obtainτp 6 s ∨ (s → p), henceτp 6 s. Thus we see thatFp = [τp).

(if ) Suppose now that every filterFp (p ∈ H) is principal. Consider the operator
τ : H → H which assigns to every elementp ∈ H the elementτp such thatFp =
[τp). Note that for everyq ∈ H one hasq ∨ (q → p) ∈ Fp. Indeed we have
(q ∨ (q → p)) → p = (q → p) ∧ ((q → p) → p) = (q → p) ∧ p = p. Since
p 6 p → q, we havep 6 q ∨ (q → p). Thus(q ∨ (q → p)) → p 6 q ∨ (q → p), i. e.
q ∨ (q → p) ∈ Fp for everyq ∈ H. Recall that if someq ∈ Fp, i. e.p 6 (q → p),
thenq ∨ (q → p) = q. In particularτp 6 τq ∨ (τq → p). Moreoverq → p 6 q, i. e.
(q → p) ∧ p = q → p implies

(∗) p ∧ q = q → p.

From the remark made above it follows thatτp =
∧
{q ∨ (q → p) : q ∈ H}. It can

now be shown that the mapτ satisfies the axioms (f1)–(f4). Indeed sinceτp ∈ Fp,
i. e.τp → p 6 τp, using (∗) we haveτp → p 6 p (axiom f4). Sincep 6 q ∨ (q → p)
for everyq, we obtainp 6

∧
{q ∨ (q → p) : q ∈ H} = τp (axiom f2). It is clear that

τp =
∧
{q ∨ (q → p) : q ∈ H} 6 q ∨ (q → p) (axiom f3). Definition of the operator

τ implies directly the axiom f1. Thus the algebra(H, τ) is a fronton.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

ol
lo

ng
on

g]
 a

t 1
3:

14
 1

7 
Ju

ne
 2

01
3 



354 JANCL – 16/2006. Algebraic and relational deductive tools

Finally to show uniqueness, suppose that(H, τ ′) is a fronton. Using the axiom f3
we haveτp 6 τ ′q∨(τ ′q → p); by (f4) one sees thatτ ′p → p = p, henceτp 6 τ ′p∨p.
From the axiom f2 we see thatτ ′p ∨ p = p, henceτp 6 τ ′p. In a similar manner we
may obtaint′p 6 τp. Thusτp = τ ′p for everyp ∈ H. ■

All finite Heyting algebras, all Heyting algebras over well-founded Kripke frames,
all Heyting algebrasH(X) of open subsets of scattered spacesX (and consequently,
in particular, of ordinal spaces!) are frontons [ESA 00]. However most Heyting al-
gebras are not frontons! Note that although the Rieger-Nishimura lattice ( = the free
cyclic Heyting algebra) is a fronton (each filterFp is principal),noother nontrivial free
finitely generated Heyting algebra has this property. Despite that facteveryinterme-
diate logic is determined by its frontons. More precisely, an algebraic reformulation
of the well-known result of Kuznetsov [KUZ 85], underlies

PROPOSITION6 ([MUR 85]). — Every variety of Heyting algebras is generated by
its frontons.

Relational semantics: transits

Let us call a Kripke frame(W,<) a transit, if its reflexive closure6 (i. e. x 6 y
⇐⇒ x = y or x < y) is a partial order.

Thus any transit “automatically” gives rise to an ordinary intuitionistic Kripke
frame(W,6) : in a definition of the forcing relation|= let us single out two char-
acteristic items:

x |= p → q iff ∀y(x 6 y & y |= p ⇒ y |= q);

x |= 2p iff ∀y(x < y ⇒ y |= p).

The modalized Heyting calculus mHC is characterized by the class of transits.

Proof-intuitionistic logic KM requires in additionconversely well-foundedtransits
(i. e. those satisfying ascending chain condition).

Let (W,<) be a transit and letA be an arbitrary cone in it (i. e.x ∈ A and
x < y impliesy ∈ A); action of the modal operator2 on A can be described in the
following way: 2A = A ∪ max(W − A), where the symbol “-´´ denotes the set-
theoretic difference operator andmax B denotes the set of all maximal points of a set
B, i. e.x ∈ max B iff ¬∃y(y ∈ B andx < y). Thus to each coneA the operator2
“builds”, as an “architectural” fronton, the set of maximalpoints of its complement.
Such “behavior” of the modal operator has inspired our “frontal” terminology.

Few words about the canonical ( =descriptive) frames. Let(H, τ) be any frontal
Heyting algebra, and let(W,⊆) be the descriptive frame of the Heyting algebraH,
i. e. W is the set of all prime filters ofH ordered by the inclusion relation⊆. Using
axioms of mHC it is not difficult to see that the additional relation< induced onW
by the modal operatorτ , namely the relation
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Modalized Heyting calculus 355

(†) x < y ⇐⇒ (∀p ∈ H)(τp ∈ x ⇒ p ∈ y),

satisfies the following conditions:

1) If x < y, thenx ⊆ y,

2) If x ⊂ y (i. e.x ⊆ y andx 6= y), thenx < y and

3) Reflexive closure of the relation< coincides with the inclusion relation⊆.

(1) Indeed, suppose thatx ⊂ y andp ∈ x. Sincep 6 τp, one hasτp ∈ x and then by
definitionp ∈ y. Thusx ⊆ y. (2) Suppose thatx ⊂ y (i. e. x ⊆ y andx 6= y), then
q ∈ y andq /∈ x for someq. Suppose now thatx < y is not true, i. e.τp ∈ x andp /∈ y
for somep. Sinceq /∈ x, we haveq → p /∈ x, as otherwise we would haveq → p ∈ y
(asx ⊂ y). Since moreoverq ∈ y, this would implyp ∈ y, which contradicts our
assumptions. Thus we obtainq /∈ x andq → p /∈ x, henceq ∨ q → p /∈ x; but
2p ∈ x, and since2p 6 q ∨ q → p, we would haveq ∨ q → p ∈ x, contradiction.
Thus we havex < y.

Thus, in the canonical frames the “modal” accessibility relation< is obtained from
the inclusion relation⊆ by “removing the loops” from some points inW .

Temporal intuitionistic logic

As usual we will say that an operator3 on a Heyting latticeH is adjoint to an
operator2 if for any elementsa, b ∈ H one has3a 6 b iff a 6 2b.

Recall that existence of an adjoint implies its uniqueness.Let us adopt the follow-
ing

DEFINITION 7. — A Heyting algebra(H,2,3) equipped with operators2, 3 is
called temporal, if (H,2) is a frontal Heyting algebra and the operator3 is adjoint
to 2.

In corresponding enriched calculi (let us mark them with letter t—tHC and tKM)
the adjoint operators2 (“Always”) and3 (“Before”) have distinct “flavor” of temporal
connectives. For example, in the “temporal reading” of the Kripke semantics(W,<,
|=) definition of the forcing relation|= looks like this:

(1) x |= 2p iff (∀y)(x < y ⇒ y |= p), i. e. in future it will always holdp
(Always(p));

for the adjoint operator one has:

(2) x |= 3p iff (∃y)(y < x & y |= p), i. e. there already has been a precedent forp
(Before(p)).

Thetemporal Heyting CalculustHC is defined on the basis of mHC with additional
axioms for the “adjoint” modality3; namely

t1) p → 23p,

t2) 32p → p,
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356 JANCL – 16/2006. Algebraic and relational deductive tools

t3) 3(p ∨ q) → 3p ∨ 3q,

t4) 3⊥ → ⊥

and an additional rule:

p → q

3p → 3q
.

REMARK . — Let (H,2,3) be a temporal Heyting algebra and let(W,⊆) be the
descriptive frame of the Heyting algebraH. Let < be the relation onW as above
(see (†)) and define anew relationR on W using the adjoint operator3: xRy iff
(∀p ∈ H)(p ∈ x ⇒ 3p ∈ y). It is not difficult to see thatxRy iff x < y. Indeed
if xRy and2p ∈ x then32p ∈ y. Since32p 6 p we obtainp ∈ y, thusx < y. If
x < y andp ∈ x then sincep 6 23p we obtain23p ∈ x. Usingx < y we have
3p ∈ y. ThusxRy.

This temporal enrichment tHC of the system mHC is a certain specimen of tem-
poral intuitionistic logics. In connection with computer science applications of clas-
sical temporal logics with operators alluding to the “past´´, let us mention the work
[LAR 95], where richness of expressive possibilities of such logical systems is stres-
sed. As for us here we will restrict ourselves to some remarks. In the calculi tHC and
tKM one can express some useful properties both of the pointsthemselves (stages)
of the Kripke semantics and their global properties. For example, the following rule
is a propositional version of the first order principle ofdescent induction([KLE 52]):
∀x [P (x) ⇒ ∃y(y < x & P (y))] ⇒ ¬P (x).

A point x ∈ W of a descriptive Kripke model(W,<, |=) is calledp-critical if on
the stagex the formulap is not forced, but(∀y)(x < y ⇒ y |= p); we will say that
the pointx ( = prime filter or, if wished, prime intuitionistic theory) is critical, if it is
p-critical for some propositional formulap.

An “adjoint” property is thecreativityproperty. We will say that a pointx ∈ W is
p-creative ifx |= p but the formulap has not been forced on any earlier stagey (i. e.
for y < x). Thus the pointx is creative if on the stagex at least one new fact has been
established. In terms of the adjoint modality3 this can be expressed as follows: the
point x is creative if on stagex certain formula is not just established (i. e.x |= p)
but also itsprecedentlessnessis established too (i. e. it is not the case thatx |= 3p).
In general not all points of the model are critical or creative. For example creativity
of the descriptive ordered model implies its well-foundedness. Nevertheless there is
always “a sufficient amount” of critical and creative pointsin descriptive modelsW
of the calculus tKM: the setW0 of all critical points of the modelW is topologically
densein W or, in order-theoretic terms, the set of critical points of any clopen ( =
formula-induced) set iscofinal in it. 2
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Modalized Heyting calculus 357

3. Exact embedding of the mHC-calculus into the modal systemK4.Grz: an
algebraic consideration

In his famous 1932 short note Gödel described an interpretation of the Heyting
Calculus HC in the Lewis’s modal system S4. Gödel’s result thus takes the following
form:

(1) if HC ⊢ p, then S4⊢ g(p),

where the modal formulag(p) is formed from the intuitionistic formulap according to
Gödel’s translation rules. In addition, Gödel conjecturedthat the converse of (1) also
holds, that is

(2) HC⊢ p iff S4 ⊢ g(p).

This conjecture was later verified by McKinsey and Tarski [MCK 44].

Solovay [SOL 76] characterized a modal system GL corresponding to formal prov-
ability in PA. The Gödel-Löb modal system GL (alias, the Provability logic) ade-
quately reflects behavior of the formalized Provability Predicate in Peano Arithmetic
PA. GL is the result of adding the Löb axiom2(2p → p) → 2p to K4. Solovay
defines anarithmetical realizationof modal formulas of the system GL and proves
its arithmetical completeness. Using more technical terminology, we say that an
arithmetical realization of modal formulas is an assignment ∗ to each atomp of an
arithmetic sentencep∗ which commutes with non-modal connectives and(2p)∗ =
Pr(pp∗q), wherePr(.) is the standard provability predicate for the Peano Arithmetic
PA andpp∗q is the code numeral ofp∗.

Arithmetical completenessof GL [SOL 76]: GL⊢ p iff under all arithmetical real-
izations∗ the sentencep∗ is provable in PA.

Grzegorczyk [GRZ 67] axiomatically defined a modal system S4.Grz, which is a
proper normal extension of the system S4 and proved that HC could be embedded (via
the Gödel translationg) in the system S4.Grz, i. e.

(3) HC⊢ p iff S4.Grz⊢ g(p).

S4.Grz is the system that results when the schema

(Grz) 2(2(p → 2p) → p) → 2p

is added to the modal system S4.

It is appropriate to mention here that the system S4.Grz is the largest modal system
in which HC can be embedded by the Gödel embeddingg ([ESA 79]); moreover, the
lattice Lat(HC) of all intermediate logics is isomorphic tothe lattice Lat(S4.Grz) of
all normal extensions of the system S4.Grz (Blok-Esakia, 1976).

Define a transformations ( = splitting map) of the set of modal formulas into itself
stipulating thats commutes with Boolean connectives ands(2p) = s(p) ∧ 2 s(p).

It is appropriate to mention here a well-known fact which wasobtained indepen-
dently by Boolos, Goldblatt and Kuznetsov:
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358 JANCL – 16/2006. Algebraic and relational deductive tools

S4.Grz⊢ p if and only if K4.Grz⊢ s(p).

We shall now define a proper normal extension K4.Grz of the system K4 and ob-
serve that S4.Grz could be embedded (via the splitting maps) in the modal system
K4.Grz. K4.Grz is the system that results when the schema

(Grz) 2(2(p → 2p) → p) → 2p

is added to the modal system K4.

K4.Grz axiomatizes those properties ofPr(.) that do not depend on the Gödel’s
Diagonal Lemma. It is not hard to verify that GL is aproper extension of K4.Grz.
Indeed for example a Boolean algebra with the identity operator as2 is a model for
K4.Grz but not for GL. Note also that the same example gives a model for mHC but
not for KM.

The following proposition presents our key observation.

PROPOSITION8. — S4.Grz⊢ p iff K4.Grz⊢ s(p).

Moreover, the system K4.Grz is theleast normal extensionof K4 for which this
proposition is true.

This observation was inspired by an intimate connection existing between K4.Grz-
and S4.Grz-algebras (see below, Main Lemma).

Before proceeding further let us focus attention on certainprovability interpre-
tation of the modal system K4.Grz. We assume that the reader is familiar with the
conception of the Provability as a modality, i. e. as a modal operator2 acting on
propositional formulas. Suppose we modify the notion of arithmetical realization by
amending a recursive clause for the box2, namely:(2p)∗ = (A → p∗) ∧ Pr(pp∗q),
where the parameterA is a given sentence in the language of Peano arithmetic PA.

With algebraic nomenclature at hand, this notion of “reincarnation” is easily trans-
latable into the language of GL-algebras. Let(B,∧,∨,→,⊥,2) be an arbitrary GL-
algebra (for example, the Lindenbaum Sentence algebra for PA) ande ∈ B; we de-
fine a new (polynomially definable) modal operator[e] on the Boolean algebra B by
[e]p := (e → p) ∧ 2p for everyp ∈ B. (The notion ofpolynomialused here is
simply that from universal algebra: polynomials are functions arising from constant
functions and the identity function by means of the Boolean operations and2). We
note some observations regarding this reincarnation. Denote by (B, [e]) the Boolean
algebraB endowed with the operator[e] and note that the modal algebra(B, [e]) is a
K4-algebra, satisfying additional condition[e]([e](p → [e]p) → p) 6 [e]p, i. e. the
algebra(B, [e]) is a K4.Grz-algebra. We note some particular cases which illustrate
the general picture:

1. If e = ⊥ then the modal operator[e] coincides with2;

2. If e = ¬⊥ then [e]p represents the “demonstrability” predicateDem(pp∗q) =
p∗ ∧ Pr(pp∗q) and the algebra(B, [e]) is a S4.Grz-algebra;
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Modalized Heyting calculus 359

3. If e 6= ⊥ and e 6 ¬2⊥ then the modal version¬2⊥ → ¬2¬2⊥ of the
Gödel’s Second incompleteness theorem is stillvalid in the algebra(B, [e]) while the
Löb axiom isrefutable.

4. If e 6= ⊥ ande 6 2⊥, then a modal version of the Gödel’s Second incomplete-
ness theorem isrefutablein the algebra(B, [e]).

We recall the relevant definition of some notions concerningalgebraic semantics
of certainclassicalmodal systems.

In Appendix I. Derivative algebraof the paper [MCK 44], McKinsey and Tarski
initiated an investigation of the fundamental topologicaloperation of derivation from a
purely algebraic (and/or modal) point of view. On p.182 of [MCK 44] the authors say:
“Like the topological operation of closure, other topological operations can be treated
in an algebraic way. This may be especially interesting in regard to those operations
which are not definable in terms of closure... An especially important notion is that of
the derivative of a point setA which will be denoted byδA”.

Thus, Derivative algebras(B : ∧,∨,¬, δ) are Boolean algebras with an unary
operationδ, which captures algebraic properties of the topological derivation. Recall
thatδA is, by definition, the set of allaccumulation(alias,limit) points of a subsetA
of a topological spaceX, where a pointx is said to be a limit point of a setA, if every
neighborhood ofx contains a point ofA other thanx.

DEFINITION 9. — We say that a Boolean algebraB is a Derivative algebrawith
respect to the operationδ, if

1) δ⊥ = ⊥,

2) δ(a ∨ b) = δa ∨ δb,

3) δδa 6 a ∨ δa.

REMARK . — It must be pointed out that weweakenthe definition of Derivative
algebra [MCK 44] slightly; namely, we postulate the condition (3) instead ofδδa 6

δa. We justify this weakening by noting that there are topological spaces, in which the
conditionδδa 6 δa is not valid (for example, spaces with anti-discrete topology).2

With the operatorδ is associated a dual operatorτ (co-derivative) defined byτa :=
¬δ¬a, i. e. τA is the set of all frontal points of a subsetA of a topological spaceX.
Using the usual intuitively obvious relations between closure and derivative operations
in topological spaces theclosureof a set can be defined in terms of thederivative,
namely,cA = A ∪ δA. If we introduce a corresponding definition into derivative
algebra (namely,C a := a∨ δa), we can easily show that the derivative algebra(B, δ)
becomes a closure algebra(B,C) with respect to the operationC just defined. Note
that theinterior operatorI can be defined as follows:I a := a ∧ τa.

We will use whichever ofδ (resp.,C) and τ (resp.,I) is rhetorically the most
convenient. As an immediate consequence of the definition 9 we have a corollary.

COROLLARY 10. — In any Derivative algebra(B, δ) the operatorC satisfies the
well-known Kuratowski axioms:
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360 JANCL – 16/2006. Algebraic and relational deductive tools

1) a 6 C a,

2) C a = C C a,

3) C(a ∨ b) = C a ∨ C b,

4) C⊥ = ⊥.

We recall that an elementa ∈ B is calledopenif a 6 τa (i. e. I a = a) andclosed
if δa 6 a (i. e.C a = a). The following simple Lemma will be useful below.

LEMMA 11. — In any Derivative algebra(B, δ) one hasτa 6 b ∨ I(¬b ∨ a).

PROOF. — Using monotonicity ofτ , a 6 ¬b ∨ a implies τa 6 τ(¬b ∨ a) 6 b ∨
τ(¬b∨a) = (b∨¬b∨a)∧(b∨τ(¬b∨a)) = b∨[(¬b ∨ a) ∧ τ(¬b ∨ a)] = b∨I(¬b∨a).
Thus we haveτa 6 b ∨ I(¬b ∨ a). ■

Derivative algebras are algebraic models of a slightly weakened version wK4 of
the modal system K4; namely, wK4 = K +p ∧ 2p → 22p, where the system K
(named after Kripke) is the minimal normal modal logic whoseaxioms are all Boolean
tautologies and all expressions of the form2(p → q) → (2p → 2q) and whose rules
are modus ponens and necessitation. The diamond3 as usual means the dual¬2¬ of
2.

Recall that a relational semantics for the system K is based on the notion of a
Kripke frame, that is, a pair(X,R) whereX is a nonempty set (“of possible worlds”)
andR is a binary relation onX (“accessibility relation”). A valuation is a functionf
assigning to each propositional letterp a subsetf(p) of X (“the set of worlds in which
p is true”). The valuation is then extended to all formulas viathe obvious definitions
for Boolean connectives, together withx ∈ f(3p) iff ∃y ∈ X such thatxRy and
y ∈ f(p). A formula p is valid in (X,R) iff f(p) = X. For detailed exposition
of Modal Logic we refer the reader to the comprehensive textbook [CHA 97] or to
any other source on Modal Logic. Relational semantics for the system wK4 is based
on the notion of Kripke frame with aweakly transitiveaccessibility relation. This
terminology was inspired by the following “historic” discussion:“This is continuation
of the discussion initiated in the papers XXIV 185(1,2). In spite of disagreements on
the way, the polemic ends with all parties agreeing that notion of weak-transitivity of
a relationR, characterized byx 6= y & xRy & yRz ⇒ xRz must be distinguished
from that of strong transitivity, characterized byxRy & yRz ⇒ xRz” (Church,
[CHU 60]).

The reason for our favoring of the system wK4 and weak-transitivity as follows.

PROPOSITION12 ([ESA 01]). —

(a) Relational completeness of wK4: wK4⊢ p iff p is valid ineveryweakly transitive
Kripke frame;

(b) Topological completeness of wK4: wK4⊢ p iff p is valid in every topological
space; in other words, wK4 is the Logic of topological spaces(under reading the
diamond-modality3 as thederivativeoperationδ).
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Modalized Heyting calculus 361

For the system K4 we need to impose somerestrictionon topological spaces. Re-
call that X is said to be aTd-spaceif every singleton subset ofX is an intersection
of an open and a closed subset. This separation axiom, introduced by Aull and Thron
[AUL 62], proved to play important role in the context of lattice-equivalence of topo-
logical spaces.

Recall that the system K4 is obtained by adding2p → 22p to K as a new axiom
schema.

PROPOSITION13 ([ESA 04]). — Topological completeness of K4: K4⊢ p iff p is
valid in everyTd-space.

Recall that a topological spaceX is calledirresolvable(Hewitt) if each pair of its
dense subsets has nonempty intersection. A space is said to be hereditary irresolv-
able (HI-space, for short) if each subspace ofX is irresolvable. Various aspects of
HI-spaces have been investigated in [BEZ 03]. It is appropriate to mention here the
following related interesting result which may be found in [GAB 05]:

Topological completenessof K4.Grz: for every formulap, K4.Grz⊢ p iff p is valid
in every HI-space; in other words, K4.Grz is the Modal Logic of topological HI-spaces
(under reading the diamond modality3 as the derivative operationδ).

In what follows we need the following simple, but useful, observation.

Main Lemma

A K4-algebra(B, δ) satisfies the equation

(a) δa = (δa − δ(δa − a)), i. e.(B, δ) ∈ K4.Grz

iff the corresponding S4-algebra(B,C) satisfies the equation

(b) C a = (C a − C(C a − a)), i. e.(B,C) ∈ S4.Grz

(where, as above,C a := a ∨ δa).

For the sake of completeness we present a proof.

PROOF. — Taking into account monotonicity of the operatorsδ and C it is only
necessary to verify that the following conditions are equivalent:

(c) δa 6 δ(a − δ(δa − a))

and

(d) C a 6 C(a − C(C a − a)).

(⇐) We eliminate step by step the closure operatorC in the condition (d).

1. C a − a = ¬a ∧ (a ∨ δa) = ¬a ∧ δa.

2. a − C(C a − a) = a − ((δa − a) ∨ δ(δa − a))
= a − (δa − a) − δ(δa − a)) = a − δ(δa − a) ∧ (¬δa ∨ a) = a − δ(δa − a).
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362 JANCL – 16/2006. Algebraic and relational deductive tools

Thus the condition (d) is equivalent to the condition

(d∗) a ∨ δa 6 (a − δ(δa − a)) ∨ δ(a − δ(δa − a)).

Applying monotonicity and additivity of the derivative operatorδ we obtainδa ∨
δδa 6 δ(a − δ(δa − a)) ∨ δδ(a − δ(δa − a)). From the K4-axiomδδa 6 δa, we see
thatδa 6 δ(a − δ(δa − a)).

(⇒) We notice thatδa − a 6 δa impliesδ(δa − a) 6 δδa 6 δa. Thus we have
δ(δa − a) 6 δa and¬δa 6 ¬δ(δa − a). Multiplying both sides through bya we
obtain

(e) a − δa 6 a − δ(δa − a).

The formula (e) together with (c) impliesδa ∨ (a − δa) 6 (a − δ(δa − a)) ∨ δ(a −
δ(δa−a)). Using the equationδa∨ (a−δa) = a∨δa, we havea∨δa 6 (a−δ(δa−
a)) ∨ δ(a − δ(δa − a)), i. e. the condition (d∗) which is equivalent to (d). ■

Let us return to the variety fHA.

Let (B : ∧,∨,¬, δ) be an arbitrary Derivative algebra andH = {a ∈ B : a 6

τa}.

It is easy to show that(H : ∧,∨,→,⊥) is a Heyting algebra, where(H : ∧,∨) is
a sublattice of the Boolean lattice(B : ∧,∨), andp → q = I(¬p ∨ q) for p, q ∈ H.

Notice that ifp ∈ H thenτp ∈ H. Indeed, supposep ∈ H, i. e. p 6 τp; by
monotonicity ofτ we haveτp 6 τ(τp), i. e.τp ∈ H.

THEOREM 14. — The above algebra(H : ∧,∨,→,⊥, τ) is a frontal Heyting alge-
bra.

PROOF. — To see that(H, τ) is a frontal Heyting algebra it is only necessary to
verify that the axiom (3)τp 6 q ∨ (q → p) is satisfied. By the Lemma 11 we see that
this axiom is simply an instance ofτa 6 b ∨ I(¬b ∨ a) for a, b ∈ H. ■

Thus we associate with every Derivative algebra(B, δ) a frontal Heyting algebra
(H, τ) of all open elements of(B, δ). We call the algebra(H, τ) the Heyting core
(H-core, for short) of (B, δ). This assignment of the Heyting core(H, τ) to each
Derivative algebra(B, δ) can be expanded to yield afunctorF from the category of
derivative algebras DA to the category of frontal Heyting algebras fHA. Indeed, it is
easy to see that restriction of a homomorphism of Derivativealgebras to H-cores is a
frontal homomorphism.

DEFINITION 15. — Let (B, δ) be a Derivative algebra and let(H, τ) be its H-core.
We say that(B, δ) is a stencilDerivative algebra (or simply, astencil) if the Boolean
part B of (B, δ) is generated (as a Boolean algebra) by the subsetH, i. e. every
element ofB is a finite Boolean combination of elements ofH.

In the following theorem we show that every frontal Heyting algebra can (and
henceforth will) be identified with the Heyting core of a suitable Derivative algebra.
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Modalized Heyting calculus 363

This theorem is a modest generalization of a related result of McKinsey and Tarski
concerning closure algebras [MCK 46].

We obtain a representation for arbitrary frontal Heyting algebra; this representation
is functorial and is extended to a full duality.

THEOREM 16. — Let (H, τ) be a frontal Heyting algebra. There exists a Derivative
algebra(B, τ∗) such that(H, τ) is (isomorphic to) the Heyting core of(B, τ∗) and
τ∗p = τp for p ∈ H.

PROOF. — First of all we note that for every Heyting algebraH there exists a map
τ : H → H such that the algebra(H, τ) is a frontal Heyting algebra. Thus if we
setτp = p for all p ∈ H then we see that our “modal packing” is conservative over
the variety of Heyting algebras. We know that for every Heyting algebra there exists
an Interior algebra(B(H), I) containing (an isomorphic copy of)H as the sublattice
of all its open elements, and generated as a Boolean algebra by the setH. Such
algebras(B(H), I) are calledstencil algebras[ESA 79]. Note that every elementa
of the stencil algebra(B(H), I) can be represented in the forma =

∧
i(¬pi ∨ qi)

for suitablepi, qi ∈ H and besidesI a =
∧

i(pi → qi). Furthermore [ESA 85]
the algebra(B(H), I) is a K4.Grz-algebra, i. e. the interior operatorI satisfies the
additional equation:I(¬ I(¬a ∨ I a) ∨ I a) = I a (cf. the “dual equation”C a =
(C a − C(C a − a)) of the main lemma).

Now we define an operatorτ∗ on the algebraB(H) in terms of operatorsI and
τ by means of the equalityτ∗a = τ I a (for a ∈ B(H)). It is not hard to see that
the Boolean algebra becomes a Derivative algebra with respect to the operatorτ∗ just
defined. It is clear from the definition ofτ∗ thatτ∗p = τp for everyp ∈ H. ■

LEMMA 17. — In the stencil algebra(B(H), τ∗) the following relation between the
interior operatorI and the derivativeτ∗ holds:

I a = a ∧ τ∗a.

PROOF. — Using the definitionτ∗a = τ I a and the axiom (2)p 6 τp of frontal
Heyting algebras we obtainI a 6 τ I a, consequentlyI a 6 a∧τ I a, i. e.I a 6 a∧τ∗a.
Thus it only remains to verify thata ∧ τ∗a 6 I a, i. e. a ∧ τ I a 6 I a. Substituting
I a for p and I(¬a ∨ I a) for q in the axiom (3)τp 6 q ∨ (q → p) yields τ I a 6

I(¬a∨ I a)∨ I(¬ I(¬a∨ I a)∨ I a). Using the Grz-axiomI(¬ I(¬a∨ I a)∨ I a) = I a
we obtainτ I a 6 I(¬a∨I a)∨I a. SinceI(¬a∨I a) 6 ¬a∨I a we haveτ I a 6 ¬a∨I a.
Multiplying both sides through bya we obtaina∧ τ I a 6 a∧ (¬a∨ I a) = I a. Thus
a ∧ τ I a 6 I a. Moreover it is clear that for everya ∈ B, a 6 τ∗a iff a ∈ H. ■

THEOREM 18. — The stencil derivative algebra(B(H), τ∗) is a K4.Grz-algebra,
that is, the derivative algebras of the form(B(H), τ∗) satisfy the conditions

(a) τ∗a 6 τ∗τ∗a

and

(b) δ∗a = δ∗a − δ∗(δ∗a − a).
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364 JANCL – 16/2006. Algebraic and relational deductive tools

PROOF. — To see that (a)τ∗a 6 τ∗τ∗a holds for alla ∈ B(H) we notice that
τ : H → H, i. e.τ I a 6 I(τ I a). Using the axiom (m2) of the definition 1 we obtain
I τ I a 6 τ(I τ I a), henceτ I a 6 τ I τ I a, i. e. τ∗a 6 τ∗τ∗a. (b) Recall that the
Interior algebra(B(H), I) is a S4.Grz-algebra. Since our Derivative algebra is also a
K4-algebra andI a = a ∧ τ∗a (Lemma 17), the Main Lemma applies. ■

Thus we associate with every frontal Heyting algebra(H, τ) a Derivative algebra
(B(H), τ∗). The following lemma shows that this assignment of the “Boolean em-
brace”B(H) to every Heyting algebraH can be expanded to yield a functorG from
the category of frontal Heyting algebras fHA to the categoryof Derivative algebras
DA.

LEMMA 19. — Let (H1, τ1), (H2, τ2) be frontal Heyting algebras andh : H1 →
H2 a frontal homomorphism (i. e. a Heyting algebra homomorphism commuting with
“modal loads” τ1, τ2. There exists a unique extensionh+ : B(H1) → B(H2) of h to
a homomorphism of Derivative algebras from(B(H1), τ

∗

1 ) to (B(H2), τ
∗

2 ).

PROOF. — We know ([BLO 75], see also [ESA 85]) that there exists a unique ex-
tensionh+ of h to a homomorphism of the corresponding Interior algebras, from
(B(H1), I1) to (B(H2), I2). It follows from the definition of the operatorτ∗ and the
fact thath is a frontal homomorphism, thath+τ∗

1 a = τ∗

2 h+a for everya ∈ B(H1). ■

Now note that for a frontal algebra(H, τ) the corresponding stencil algebra
G(H, τ) = (B(H), τ∗) has a universal property of being the “best possible” Deriva-
tive algebra obtainable from(H, τ), in the following sense: there is an embed-
ding H →֒ B(H) identifying (H, τ) with the Heyting core of(B(H), τ∗) such
that for any other Derivative algebra(B′, τ ′) and any fHA homomorphismf :
(H, τ) → F (B′, τ ′) to the Heyting core of(B′, τ ′) there is a unique extension
f∗ : (B(H), τ∗) → (B′, τ ′) of f to a Derivative algebra homomorphism.

In category-theoretic terms this means that the functorsF andG constructed above
form an adjoint pair, withG left adjoint toF . Moreover the fact that the fHA(H, τ)
is isomorphic to the Heyting core ofG(H, τ) = (B(H), τ∗) means in this language
that the adjunction structure unit natural transformation(H, τ) → FG(H, τ) is an
isomorphism. It is a well known fact in abstract category theory that this happens if
and only if the functorG is a full embedding and in this case the adjoint pairG ⊣
F restricts to an equivalence between fHA and the full image ofF , i. e. the full
subcategory of DA consisting of stencil algebras.

COROLLARY 20. — The equational category of frontal Heyting algebras (resp.,
frontons) is equivalent to the category of stencil Derivative algebras (resp. stencil
GL-algebras).

Using the composite of the Gödel translationg and of the splitting maps we induc-
tively define a translation# from formulas of the modalized Heyting Calculus mHC
to formulas of the modal system K4.Grz setting#(p) = p∧2p if p is a propositional
variable;# commutes with∧, ∨, ⊥, 2 and

#(p → q) = (#p → #q) ∧ 2(#p → #q).
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Modalized Heyting calculus 365

With the above algebraic considerations in mind it is not hard to see validity of the
following

COROLLARY 21. — mHC⊢ p iff K4.Grz⊢ #p.

It is easy to see that as a by-product of this corollary we obtain an exact embedding
of the Heyting Calculus HC into the modal system K4.Grz.

Finally let us note that this corollary can be further strengthened: the lattice
Lat(mHC) of all extensions of mHC is isomorphic to the lattice Lat(K4.Grz) of all
normal extensions of the modal system K4.Grz. However, a proof of this result re-
quires additional considerations as the above algebraic machinery does not suffice for
it.
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