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The modalized Heyting calculus:
a conservative modal extension
of the Intuitionistic Logic *

Leo Esakia

Razmadze Mathematical Institute
Thilisi 0193 (Georgia)
esakia@hotmail.com

ABSTRACTIN this paper we define an augmentation mHC of the Heytinggeitipnal calculus
HC by a modal operatorl. This modalized Heyting calculus mHC is a weakening of tlefr
Intuitionistic Logic KM of Kuznetsov and Muravitsky. In 8ee 2 we present a short selection
of attractive (algebraic, relational, topological and egforical) features of mHC. In Section 3
we establish some close connections between mHC and cedairal extension K4.Grz of the
modal system K4. We define a translation of mHC into K4.Grzpaonk that this translation is
exact, i. e. theorem-preserving and deducibility-invatiaMe have established (however, in this
note we do not present a proof of this) that the lattice of ateasions of mHC is isomorphic
to the lattice of normal extensions of K4.Grz (a generalirabdf the Kuznetsov and Muravitsky
theorem).

KEYWORDSHeyting algebra, modal operator, derivative algebra, mbility logic, topological
semantics, Kripke frame.

1. Introduction

In this section we describe an augmentation of the Heytinggsitional calculus
by a modal operator. We do not intend to give a systematic survey, but present a
short selection of attractive (algebraic, relationaldlogical and categorical) features
of themodalized Heyting calculuSection 2). We establish some close connections
between the modalized Heyting Calculus and some normahsgixtes of the minimal
modal system K (Section 3).

The language of mHC consists of a set of propositional viesalzonnectives,,
V, —, 1 and a modal operatar (“Always”).

*. This research was supported by the INTAS project 04-70A8ebraic and deduction
methods in non-classical logic and their applications tongter science
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DEeFINITION 1. — Themodalized Heyting calculumHC is obtained by adding

(m1)O(p — q) — (Bp — Bg),

(m2)p — Op and

(m3)0p — (¢ V (¢ — p))

to the Heyting propositional Calculus HC asw“modal” axiom schemes.

Note that postulating the formula

(m4) (Op —p) —p

(an intuitionistic version of the L&b principle) as an adtial axiom leads to the well-
known Proof-Intuitionistic logicKM of Kuznetsov-Muravitsky ([KUZ 85, MUR 85])

in which the modalityd, being the “ambassador” of the Box as a Proof of the Gddel-
L6b modal system GL, expresses the provability predicateeo€lassical Peano arith-
metic.

The algebraic models of mHC are Heyting algebras with a miodal subject to
certain additional identities.

DEFINITION 2. — Afrontal Heyting algebrés an algebra(H : AV, —, L, 7) (or,
(H : 1), for short) such thatH : A, Vv, —, 1) is a Heyting algebra and is a unary
operator fnodal operatqrsatisfying the following conditions:

(1) r(pAq) = (tp A 7q),
(f2)p < 7p,
(f3) 7p < q V (¢ — p) for everyp,q € H.

We say that a frontal Heyting algeb(d : A,V,—, L, 7) is aKM-algebra(or a
fronton, for short) if the operator satisfies the additional conaiiti

(f4) 7p — p <p.

The equational class (and the category) of frontal Heytiggtaras is denoted by
fHA. Before proceeding further let us pause to present achketixing algebraic and
modal viewpoints, of some properties of mHC, and to try tdifusur favorite choice
of this modal extension mHC of Heyting Calculus HC.

2. Motivations and justifications

Note that in almost all “standard” intuitionistic modal sgiss known to the author
the postulate (m3) only seldom occurs (for notable examgeesGAB 77, GOL 81,
SIM 82, TOU 87, TOU 90, WOL 99]; see as well the papers citedWOL 99] as
a point of entry to the literature on intuitionistic versgoaf the classical modal sys-
tems). The postulate (m2) is not typical, while the postu(@at3) stresses even more
“nonstandardness” of the chosen basic system mHC and oftéason KM, which
enables one to draw a conventional “demarcation line” betweHC and the standard
intuitionistic modal logics.
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It seems to us that the modalized Heyting calculus mHC (amdptless extent,
KM) is interesting not only from the point of view of the prdyity interpretation,
but also thanks to its connections to

— The Intuitionistic logic with propositional quantificati;
— Topology: Cantor scattered spaces, notions of the lintitisplated point;

— Categorical logic: topoi, whose subobject classifiersrluthtvalue objects, car-
rying an internal Heyting algebra structure), as it turng ate always equipped with
a canonical operatar of fHA-type;

— Intuitionistic temporal logic “Always & Before” possesgj rich expressive pos-
sibilities.
One would hope that comments on these points (althoughtsRetdll enable

us to support the claim about attractiveness and usefubfessch a “nonstandard”
version of intuitionistic modal logic.

The Intuitionistic logic with propositional quantificatio (alias, the intuitionistic
2nd-order propositional logic)

gHC is obtained by adding to Heyting propositional calcui some form of
guantification on the propositional variables. One way éfoducing propositional
guantification into an intuitionistic propositional logito specify the characteristic
properties of quantification in the form of axioms and rulégerence and add them
to the list of the axioms and rules of inference of the Heyfngpositional calculus
HC. The merits of propositional quantification can be givien.example, by the fol-
lowing schemata of formula®p F(p) — F(q) andF(q) — Jp F(p), andrules of
inference

Fp) =G 4 G— Fp)
I F(p) — G G — Vp F(p)
These basic axioms and rules governing the quantifiersthtegwith usual axiomati-
zation of the Heyting calculus, give rise to the system gHG@tlecan be regarded as

the minimal system corresponding to tintuitionistic logic with propositional quan-
tification. Assume the following definition:

OF(q) :==Vp(pV (p — F(q)))

for every formulaF' of the Intuitionistic logic with propositional quantifigah gHC
(p is not free inF'). It is easy to verify that this operator satisfies all axiofml),
(m2), (m3) of the modalized Heyting Calculus mHC.

, Wherep is not free inG.

For example, using F'(q) — (pV (p — F(q))) (p not free inF’) we obtain

FF(q) — Vp(pV (p — F(q))),

i. e. F(q) — OF(q) (axiom (m1)) by the right rule of gHC. The axiom (m3), i. e.
Vp(pV (p— F(q))) — (pV (p — F(q))), is an instance of the left axiom of gHC.
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Thus we can identify mHC with a certafragmentof the gHC and consequently
consider the modalityd as an operator “intrinsically” definable in the Intuitiotiis
logic with propositional quantification.

Algebraic and topological models

Let X be a topological space. Recall thi is, by definition, the set of aliccu-
mulation(alias,limit) points of a subsefl of X. A point z is said to be dimit point
of the set4, if every neighborhood af contains a point ofd other thanz. The dual
operatorr (co-derivative) is defined as follows:A is the set of alfrontal pointsof a
subsetd of the spaceX. A point z is said to be a frontal point of a sdt if there is a
neighborhood/,. of = such that/,, C A U {z}. Itis not hard to verify that our “fa-
vorite example”, namely the Heyting algeli@X ) of all open sets of the topological
spaceX with the co-derivative operatar forms a frontal Heyting algebra. Indeed,
to prove thatrB C AU (A — B) for every A, B € H(X), suppose that ¢ A
butz € 7B. Then by definition of frontal points there exists a neigtoad U of
such thaty C B U {z}. Sincex ¢ A we seethaB U {z} C BU (X — A) and
UCBU(X —A). Hencer € I(BU (X — A)) = A — B, wherel denotes interior.

A topological space is callegcattered(Cantor) if it has no dense-in-itself non-
empty subset. It is known that each ordinatan be viewed as a scattered spE(e)
of all ordinals not exceeding, with its intrinsic, interval topology. The frontal Heyt-
ing algebraH (X ) corresponding toX = I'(«) as described above is a KM-algebra
for any ordinalae [ESA 00]. In an arbitrary topos (i. e. in a category-thearetni-
verse for intuitionistic mathematics) teabobject classifief = the object of truth val-
ues)(? carrying an internal Heyting algebra structure, is moreaveinternal frontal
Heyting algebra in a canonical way, which enables one tapné¢ in a topos, along
with ordinary intuitionistic connectives and quantifieedso themodal operatorr
[ESA 00]. Toposes whose subobject classifiers are fronttiesso calledscattered
toposes are categorical models of a quantifier extension of the Hrdaitionistic
logic KM [ESA 00].

ProposITION3. — A frontal Heyting algebrd H, 7) is a fronton if and only if every
polynomialt(z) in which the variabler occurs inside the scope ofpossesses a fixed
pointp € H: t(p) = p.

ProoFr. — (if ) Consider the polynomial.) = 7(.) — p, wherep € H. Since there
is a fixed pointg of ¢t theng = 7(¢) — p. Henceq < 7q — p andg A 7¢ < p. Since
q < 7q, we haveg < p, hencerq < rpandrp — p < 7¢ — p. Usingg = 7(q) — p
we obtaintp — p < gandrp — p < p.

(only if) Using Lemma 1.5 of [SAM 76] it is not hard to prove that in gvéronton
(H, ) every polynomialt(.) in which the variabler occurs inside the scope of
possesses a fixed point. [
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It is not difficult to see that every Heyting algehiacan be “turned into” a frontal
one: we can just equipl with the trivial operatorr puttingrp = p for allp € H.
The situation with frontons is however different!

For every elemen of a Heyting algebradl consider the subset
{¢geH:q—=p<q}=F,
of the algebraH.
ProPOSITION4. — For everyp the sett", is a proper filter of the algebrdd .

PrRoOF. — 1) Letq be an element oF, andg < r. Sincer — p < ¢ — p and

g — p < gonehas < p < q. Hencer — p < r. 2) Supposing now that, r € F,

we show thaiy A r € F,. Sinceq,r € F, we haveq — p < g andr — p < 7,

henceg A (¢ = p) =q —pandrA(r - p)=r —p,i.e.(@qAp=q—p

and (b Ap =r — p. Notethaty Ar — p = ¢ — (r — p): using (b) we have
q—(r—p)=q—=Ap)=(@—=r)A(g—p)<qg—p.

Using (a) we obtaifig Ar) — p < g Ap < ¢. InasimilarwaygAr - p=r —
(g—p)=r—=qgAp=F—->gANr—p =F—gArANg <rAg<T.
Thus(r Ag) — p < gand(r Aq) — p < r, hence(r A q) — p < r A ¢g. Note that if
1l eF,iel—-p<l,thenT < L. [

An intrinsic (r-less) characterization of frontons is given by

PrROPOSITIONS. — A Heyting algebra admits a structure of a fronton if and only
if the filtersk), are principal for allp € H. Moreover such a structure is then unique.

PrRoOOF. — (only if) Let (H, 7) be a fronton. It is necessary to verify that every filter
F, (p € H) is principal. Sincerp — p < pandp < 7pone hagp — p < 7p, i. e.

mp € F, . Suppose that € F,,i.e.s — p < s. Thens V (s — p) < s; using axiom
(m3) we obtainrp < s V (s — p), hencerp < s. Thus we see that, = [7p).

(if) Suppose now that every filtét, (p € H) is principal. Consider the operator
7 : H — H which assigns to every elememtc H the elementp such thatt", =
[tp). Note that for everyy € H one hasg vV (¢ — p) € F,. Indeed we have
(Vg —p) —=p=(@q@—=p A({¢g—p —p =(q—p)Ap=p. Since
p<p—gq wehavep<qV(q—p). Thus(qV (g —p)) = p<qV(¢g—p)ie
qV (¢ — p) € F, foreveryq € H. Recall that if somg € F,, i.e.p < (¢ — p),
theng V (¢ — p) = ¢. In particularrp < 7q V (tq — p). Moreoverg — p < g, i. .
(g — p) ANp=q— pimplies

(KN pANg=q—p.

From the remark made above it follows that = A{q VvV (¢ — p) : ¢ € H}. It can
now be shown that the mapsatisfies the axioms (f1)—(f4). Indeed singe € F,,
i.e.7p — p < 7p, using &) we haverp — p < p (axiom f4). Sincep < ¢V (¢ — p)
for everyq, we obtainp < A{qV (¢ — p) : ¢ € H} = 7p (axiom f2). It is clear that
™=NA{qV(g—p):qe H} <qV (¢ — p) (axiom f3). Definition of the operator
7 implies directly the axiom f1. Thus the algel#, 7) is a fronton.
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Finally to show uniqueness, suppose ttidt 7') is a fronton. Using the axiom f3
we haverp < 7'qV(7'q — p); by (f4) one sees thalp — p = p, hencerp < 7/pVp.
From the axiom f2 we see thatp VV p = p, hencerp < 7'p. In a similar manner we
may obtaint’p < Tp. ThusTp = 7'p for everyp € H. [

All finite Heyting algebras, all Heyting algebras over wigiinded Kripke frames,
all Heyting algebradi(X) of open subsets of scattered spa&eéand consequently,
in particular, of ordinal spaces!) are frontons [ESA 00].wdoer most Heyting al-
gebras are not frontons! Note that although the Riegeriiigia lattice ( = the free
cyclic Heyting algebra) is a fronton (each filtey is principal),noother nontrivial free
finitely generated Heyting algebra has this property. Degpiat facteveryinterme-
diate logic is determined by its frontons. More precisetya#gebraic reformulation
of the well-known result of Kuznetsov [KUZ 85], underlies

PrRoOPOSITIONG ([MUR 85]). — Every variety of Heyting algebras is generated by
its frontons.

Relational semantics: transits

Let us call a Kripke framéW, <) atransit, if its reflexive closure< (i. e.x < y
< x =yorxz < y)is a partial order.

Thus any transit “automatically” gives rise to an ordinamuitionistic Kripke
frame (W, <) : in a definition of the forcing relatiof= let us single out two char-
acteristic items:

rEp—q iff vyx<y&ylFEp = yFq);
z = Op iff Vy(z <y = yFp).

The modalized Heyting calculus mHC is characterized by thesoof transits.

Proof-intuitionistic logic KM requires in additiononversely well-foundeansits
(i. e. those satisfying ascending chain condition).

Let (W, <) be a transit and le# be an arbitrary cone in it (i. e¢ € A and
x < yimpliesy € A); action of the modal operatdf on A can be described in the
following way: 0A = A U max(W — A), where the symbol “”" denotes the set-
theoretic difference operator anthx B denotes the set of all maximal points of a set
B,i.e.xz € max B iff -3y(y € B andz < y). Thus to each cond the operatof]
“builds”, as an “architectural” fronton, the set of maxingadints of its complement.
Such “behavior” of the modal operator has inspired our “faiterminology.

Few words about the canonical (descriptiveg frames. Let(H, 7) be any frontal
Heyting algebra, and Igi¥, C) be the descriptive frame of the Heyting algelifa
i. e. W is the set of all prime filters off ordered by the inclusion relation. Using
axioms of mHC it is not difficult to see that the additionalatén < induced oni//
by the modal operatatr, namely the relation
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MNzx<y << (YWweH)(tpex = pEy),
satisfies the following conditions:

1) If z < gy, thenz C y,
2)Ifzx Ccy(i.e.x Cyandx # y), thenz < y and
3) Reflexive closure of the relation coincides with the inclusion relation.

(1) Indeed, suppose thatC y andp € x. Sincep < 7p, one hasp € x and then by
definitionp € y. Thusx C y. (2) Suppose that C y (i. e.x C y andz # y), then
q € yandq ¢ x for someg. Suppose now that < y is nottrue,i.erp € zandp ¢ y
for somep. Sinceq ¢ x, we havey — p ¢ z, as otherwise we would have— p € y
(asz C y). Since moreovey € y, this would implyp € y, which contradicts our
assumptions. Thus we obtain¢ = andg — p ¢ x, henceq V¢ — p ¢ x; but
Op € z, and sincedp < ¢ V ¢ — p, we would havey VvV ¢ — p € x, contradiction.
Thus we have:r < y.

Thus, in the canonical frames the “modal” accessibilitatieh < is obtained from
the inclusion relatiorC by “removing the loops” from some points .

Temporal intuitionistic logic

As usual we will say that an operatér on a Heyting lattice/d is adjointto an
operatord if for any elements:, b € H one has®a < biff a < Ob.

Recall that existence of an adjoint implies its uniquenkssus adopt the follow-
ing
DEFINITION 7. — A Heyting algebra(H, O, <) equipped with operatorsl, < is

calledtemporal if (H,O) is a frontal Heyting algebra and the operatér is adjoint
to O.

In corresponding enriched calculi (let us mark them wittelet—tHC and tKM)
the adjoint operator3 (“Always”) and & (“Before”) have distinct “flavor” of temporal
connectives. For example, in the “temporal reading” of thippke semantic§W, <,
) definition of the forcing relatiom= looks like this:

M)z E Opiff (Vy)(z <y = y E p), i e.in future it will always holdp
(Always(p));
for the adjoint operator one has:

2)x E Opiff (Fy)(y < &y [ p), i. e. there already has been a precedenpfor
(Beforep)).

Thetemporal Heyting CalculugdiC is defined on the basis of mHC with additional
axioms for the “adjoint” modality>; namely

tl) p — OOp,
t2) ¢Op — p,



Downloaded by [University of Wollongong] at 13:14 17 June 2013

356 JANCL — 16/2006. Algebraic and relational deductivdgoo

t3) O(pVq) — OpV g,
t4) o1l — L

and an additional rule:

p—q
<>p—><>q'

REMARK. — Let (H,0O, <) be a temporal Heyting algebra and &V, C) be the
descriptive frame of the Heyting algebfa. Let < be the relation orfi/’ as above
(see ()) and define anewrelation R on W using the adjoint operato®: zRy iff
(Vp € H)(p € x = <p € y). ltis not difficult to see that Ry iff < y. Indeed
if xRy andOp € 2 thenOOp € y. SinceCOp < p we obtainp € y, thusz < y. If
x < yandp € x then sincep < OCp we obtainOOp € z. Usingz < y we have
Op € y. Thusx Ry.

This temporal enrichment tHC of the system mHC is a certagtispen of tem-
poral intuitionistic logics. In connection with computeatience applications of clas-
sical temporal logics with operators alluding to the “padet us mention the work
[LAR 95], where richness of expressive possibilities offslagical systems is stres-
sed. As for us here we will restrict ourselves to some remarkthe calculi tHC and
tKM one can express some useful properties both of the pthiermselvesgtage$
of the Kripke semantics and their global properties. FongXa, the following rule
is a propositional version of the first order principledgfscent inductioKLE 52]):
Vo [P(z) = Jy(y <z & P(y))] = —P(x).

A pointz € W of a descriptive Kripke mod€lW, <, =) is calledp-critical if on
the stager the formulap is notforced, but(Vy)(x <y = y |= p); we will say that
the pointz ( = prime filter or, if wished, prime intuitionistic theory3 tritical, if it is
p-critical for some propositional formula

An “adjoint” property is thecreativity property. We will say that a point € W' is
p-creative ifz = p but the formulap has not been forced on any earlier stage e.
for y < x). Thus the point: is creative if on the stageat least one new fact has been
established. In terms of the adjoint modakbythis can be expressed as follows: the
point z is creative if on stage certain formula is not just established (i.z.e = p)
but also itsprecedentlessness established too (i. e. it is not the case that ©p).

In general not all points of the model are critical or creatiVor example creativity
of the descriptive ordered model implies its well-foundesk Nevertheless there is
always “a sufficient amount” of critical and creative poimsdescriptive model$l’

of the calculus tKM: the séil, of all critical points of the modelV is topologically
densein W or, in order-theoretic terms, the set of critical points of @lopen ( =
formula-induced) set isofinalin it. a
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3. Exact embedding of the mHC-calculus into the modal systend4.Grz: an
algebraic consideration

In his famous 1932 short note Gédel described an interpoataf the Heyting
Calculus HC in the Lewis’s modal system S4. Godel's resuls ttakes the following
form:

(1) if HC - p, then S4- g(p),

where the modal formulg(p) is formed from the intuitionistic formula according to
Gddel's translation rules. In addition, Gddel conjectutteat the converse of (1) also
holds, that is

(2) HCF piff S4+ g(p).
This conjecture was later verified by McKinsey and Tarski [K1€4].

Solovay [SOL 76] characterized a modal system GL correspgrid formal prov-
ability in PA. The Gddel-Lob modal system GL (alias, the Rdaility logic) ade-
quately reflects behavior of the formalized Provabilitydicate in Peano Arithmetic
PA. GL is the result of adding the L6b axiom(Cp — p) — Op to K4. Solovay
defines ararithmetical realizationof modal formulas of the system GL and proves
its arithmetical completeness. Using more technical teology, we say that an
arithmetical realization of modal formulas is an assignirieto each atonp of an
arithmetic sentencg* which commutes with non-modal connectives gag)* =
Pr("p*7), wherePr(.) is the standard provability predicate for the Peano Aritticne
PA andrp* 7 is the code numeral gf*.

Arithmetical completeness GL [SOL 76]: GLI p iff under all arithmetical real-
izations* the sentencg* is provable in PA.

Grzegorczyk [GRZ 67] axiomatically defined a modal systenG82, which is a
proper normal extension of the system S4 and proved that i@ be embedded (via
the Godel translatiop) in the system S4.Grz, i. e.

(3) HCF p iff S4.Grzt g(p).
S4.Grz is the system that results when the schema
(Grz)O(O(p — Op) — p) — Op
is added to the modal system S4.

Itis appropriate to mention here that the system S4.Grzitaigest modal system
in which HC can be embedded by the Godel embeddi{&SA 79]); moreover, the
lattice Lat(HC) of all intermediate logics is isomorphicttee lattice Lat(S4.Grz) of
all normal extensions of the system S4.Grz (Blok-Esakid@g).9

Define a transformatios( = splitting may) of the set of modal formulas into itself
stipulating that commutes with Boolean connectives aiitip) = s(p) A Os(p).

It is appropriate to mention here a well-known fact which whgined indepen-
dently by Boolos, Goldblatt and Kuznetsov:
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S4.Grz+ p if and only if K4.Grzk- s(p).

We shall now define a proper normal extension K4.Grz of théesy&4 and ob-
serve that S4.Grz could be embedded (via the splitting shap the modal system
K4.Grz. K4.Grz is the system that results when the schema

(Grz)0(0(p — Op) — p) — Op
is added to the modal system K4.

K4.Grz axiomatizes those propertiesIof(.) that do not depend on the Gddel's
Diagonal Lemma. It is not hard to verify that GL ispgoper extension of K4.Grz.
Indeed for example a Boolean algebra with the identity dper@sO is a model for
K4.Grz but not for GL. Note also that the same example givesdahfor mHC but
not for KM.

The following proposition presents our key observation.
PROPOSITION8. — S4.Grz- p iff K4.Grzt s(p).

Moreover, the system K4.Grz is theast normal extensioaf K4 for which this
proposition is true.

This observation was inspired by an intimate connectiostigg between K4.Grz-
and S4.Grz-algebras (see below, Main Lemma).

Before proceeding further let us focus attention on cernpaiovability interpre-
tation of the modal system K4.Grz. We assume that the readamiiliar with the
conception of the Provability as a modality, i. e. as a mogmdratord acting on
propositional formulas. Suppose we modify the notion ofhanetical realization by
amending a recursive clause for the Boxnamely:(Op)* = (A — p*) A Pr(Tp*7),
where the parametet is a given sentence in the language of Peano arithmetic PA.

With algebraic nomenclature at hand, this notion of “refneéion” is easily trans-
latable into the language of GL-algebras. (8t A, vV, —, L, 0O) be an arbitrary GL-
algebra (for example, the Lindenbaum Sentence algebraApaide € B; we de-
fine a new (polynomially definable) modal operatgron the Boolean algebra B by
le]p := (e — p) A Op for everyp € B. (The notion ofpolynomialused here is
simply that from universal algebra: polynomials are fumes arising from constant
functions and the identity function by means of the Booleparations and3d). We
note some observations regarding this reincarnation. dno(B, [¢]) the Boolean
algebraB endowed with the operatd¢] and note that the modal algel(i&, [¢]) is a
K4-algebra, satisfying additional conditide]([e](p — [e]p) — p) < [e]p, i. e. the
algebra(B, [¢]) is a K4.Grz-algebra We note some particular cases which illustrate
the general picture:

1. If e = L then the modal operatd«] coincides withJ;

2.1f e = =L then|e]p represents the “demonstrability” predicddem(™p*7) =
p* A Pr(Tpx7) and the algebréB, [e]) is a S4.Grz-algebra;
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3.If e # L ande < —0O.l then the modal versiomO 1l — —-O-0O1 of the
Godel's Second incompleteness theorem iswilid in the algebrd B, [e]) while the
Lob axiom isrefutable

4.If e # 1 ande < O, then a modal version of the Gddel's Second incomplete-
ness theorem iefutablein the algebrd B, [¢]).

We recall the relevant definition of some notions concermilygbraic semantics
of certainclassicalmodal systems.

In Appendix |. Derivative algebraf the paper [MCK 44], McKinsey and Tarski
initiated an investigation of the fundamental topologimaération of derivation from a
purely algebraic (and/or modal) point of view. On p.182 ofjKl 44] the authors say:
“Like the topological operation of closure, other topologl operations can be treated
in an algebraic way. This may be especially interesting gard to those operations
which are not definable in terms of closure... An especiatlyartant notion is that of
the derivative of a point sed which will be denoted byA”.

Thus, Derivative algebra&B : A, V,—,d) are Boolean algebras with an unary
operationd, which captures algebraic properties of the topologicaldgon. Recall
thatd A is, by definition, the set of ahccumulation(alias,limit) points of a subsett
of a topological spac&’, where a point: is said to be a limit point of a set, if every
neighborhood of: contains a point ofi other thane.

DEFINITION 9. — We say that a Boolean algebra is a Derivative algebrawith
respect to the operatiod, if
1oL =1,

2)5(aVb) =daV db,
3) dda < aV da.

REMARK. — It must be pointed out that wereakenthe definition of Derivative
algebra [MCK 44] slightly; namely, we postulate the corutiti(3) instead obda <
da. We justify this weakening by noting that there are topatagspaces, in which the
conditiondda < da is not valid (for example, spaces with anti-discrete topology).

With the operatob is associated a dual operatofco-derivative) defined bya :=
—d-a, i. €. TA is the set of all frontal points of a subsétof a topological spac«.
Using the usual intuitively obvious relations between gltesand derivative operations
in topological spaces thelosureof a set can be defined in terms of tHerivative
namely,c A = AU JA. If we introduce a corresponding definition into derivative
algebra (namely® a := a V da), we can easily show that the derivative algeti8ad)
becomes a closure algeht&, C) with respect to the operatiadi just defined. Note
that theinterior operator can be defined as follow$a := a A Ta.

We will use whichever ob (resp.,C) andr (resp.,I) is rhetorically the most
convenient. As an immediate consequence of the definitior Bave a corollary.

COROLLARY 10. — In any Derivative algebrg B, §) the operatorC satisfies the
well-known Kuratowski axioms:
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1)a < Ca,
2)Ca=CCa,
3)C(aVb)=CaVCh,
HCL=1.

We recall that an elemente B is calledopenif a < 7a (i. €.1a = a) andclosed
if 0a < a (i. e.Ca = a). The following simple Lemma will be useful below.

LEMMA 11. — In any Derivative algebrd B, §) one hasra < bV I(—b V a).

PROOF. — Using monotonicity ofr, a < —bV a impliesta < 7(-bVa) < bV
T(=bVa) = (bV-bVa)A(bVT(-bVa)) = bV[(-bV a) AT(-bV a)] = bVI(-bVa).
Thus we havera < bV I(—=bV a). [

Derivative algebras are algebraic models of a slightly veeakl version wK4 of
the modal system K4; namely, wK4 = Kp-A Op — OOp, where the system K
(named after Kripke) is the minimal normal modal logic whag@®ms are all Boolean
tautologies and all expressions of the farrtp — ¢) — (Op — Og) and whose rules
are modus ponens and necessitation. The diandoasl usual means the duall— of
0.

Recall that a relational semantics for the system K is basethe notion of a
Kripke frame, that is, a pairX, R) whereX is a nonempty set (“of possible worlds”)
andR is a binary relation onX (“accessibility relation”). A valuation is a functiofi
assigning to each propositional letiea subsef (p) of X (“the set of worlds in which
p is true”). The valuation is then extended to all formulasthi@ obvious definitions
for Boolean connectives, together withe f(<$p) iff 3y € X such thatz Ry and
y € f(p). Aformulap is valid in (X, R) iff f(p) = X. For detailed exposition
of Modal Logic we refer the reader to the comprehensive te#lfCHA 97] or to
any other source on Modal Logic. Relational semantics fersystem wK4 is based
on the notion of Kripke frame with aveakly transitiveaccessibility relation. This
terminology was inspired by the following “historic” disssion:“This is continuation
of the discussion initiated in the papers XXIV 185(1,2). gitesof disagreements on
the way, the polemic ends with all parties agreeing thatorotf weak-transitivity of
a relation R, characterized by # y & xRy & yRz = xRz must be distinguished
from that of strong transitivity, characterized byRy & yRz = xzRz" (Church,
[CHU 60]).

The reason for our favoring of the system wK4 and weak-ttaityias follows.

PrRoOPOSITION12 ([ESA 01]). —

(a) Relational completeness of wK4: wK4 iff p is valid ineveryweakly transitive
Kripke frame;

(b) Topological completeness of wK4: wiK4p iff p is valid in everytopological
space; in other words, wK4 is the Logic of topological spag@sder reading the
diamond-modality> as thederivativeoperation).
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For the system K4 we need to impose saerictionon topological spaces. Re-
call that X is said to be &'4-spaceif every singleton subset oX is an intersection
of an open and a closed subset. This separation axiom, uttesby Aull and Thron
[AUL 62], proved to play important role in the context of ia#-equivalence of topo-
logical spaces.

Recall that the system K4 is obtained by addifyg— OOp to K as a new axiom
schema.

PrROPOSITION13 ([ESA 04]). — Topological completeness of K4: K4p iff p is
valid in everyT4-space

Recall that a topological spacg is calledirresolvable(Hewitt) if each pair of its
dense subsets has nonempty intersection. A space is saghierdditary irresolv-
able (HI-space, for short) if each subspaceXfis irresolvable. Various aspects of
Hl-spaces have been investigated in [BEZ 03]. It is appedprio mention here the
following related interesting result which may be found@AB 05]:

Topological completeness K4.Grz: for every formula, K4.Grzt piff pis valid
in every HI-space; in other words, K4.Grz is the Modal Loditopological HI-spaces
(under reading the diamond modalityas the derivative operatia¥).

In what follows we need the following simple, but useful, ebation.

Main Lemma

A K4-algebra(B, ¢) satisfies the equation
(@) da = (da — §(6a — a)), 1. e.(B,0) € K4.Grz
iff the corresponding S4-algeb(a, C) satisfies the equation
(b)Ca=(Ca—C(Ca—a)),i.e.(B,C)eS4.Grz
(where, as above; a := a V da).
For the sake of completeness we present a proof.

PROOF. — Taking into account monotonicity of the operatérand C it is only
necessary to verify that the following conditions are eglgnt:

(¢) da < d(a— 6(da — a))
and
(d)Ca < C(a—C(Ca —a)).
(«) We eliminate step by step the closure oper&tan the condition (d).

1.Ca—a=-aA(aVda)=-aAda.
2.a—C(Ca—a)=a—((da —a) Vi(da —a))
=a—(da—a)—0(da—a))=a—3d(a—a)A(—baVa)=a—5(0a—a).
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Thus the condition (d) is equivalent to the condition
(d*)aVia < (a—6d(da—a))Vila—d(da—a)).

Applying monotonicity and additivity of the derivative ajagor§ we obtainda Vv
00a < d(a—d6(da —a)) V dd(a — 6(da — a)). From the K4-axiomida < da, we see
thatda < §(a — §(da — a)).

(=) We notice thata — a < da impliesd(da — a) < dda < da. Thus we have
4(da — a) < da and—da < —d6(da — a). Multiplying both sides through by we
obtain

(€)a—da < a—d(da —a).

The formula (e) together with (c) implieg Vv (a — da) < (a — §(da —a)) V é(a —
0(da—a)). Using the equatiota V (a — da) = a V da, we haver V da < (a —6(da—
a)) V é(a — d(da — a)), i. e. the condition (8 which is equivalent to (d). [

Let us return to the variety fHA.

Let (B : A,V,—,d) be an arbitrary Derivative algebra afil = {a € B : a <
Ta}.

Itis easy to show thatH : A, V,—, 1) is a Heyting algebra, whetg : A, V) is
a sublattice of the Boolean latti¢& : A, V), andp — ¢ =1(—pV q) forp,q € H.

Notice that ifp € H thentp € H. Indeed, supposg € H, i. e.p < 7p; by
monotonicity ofr we haverp < 7(rp),i.e.7p € H.

THEOREM 14. — The above algebréH : A,V,—, L, 1) is a frontal Heyting alge-
bra.

PROOF. — To see tha({H, ) is a frontal Heyting algebra it is only necessary to
verify that the axiom (3)yp < ¢ V (¢ — p) is satisfied. By the Lemma 11 we see that
this axiom is simply an instance ot < bV I(-b V a) fora,b € H. ]

Thus we associate with every Derivative algebBs ¢) a frontal Heyting algebra
(H, ) of all open elements ofB,d). We call the algebrdH, 7) the Heyting core
(H-core, for short) of (B,d). This assignment of the Heyting co(é/, ) to each
Derivative algebrd B, d) can be expanded to yieldfanctor F' from the category of
derivative algebras DA to the category of frontal Heytingeddras fHA. Indeed, it is
easy to see that restriction of a homomorphism of Derivatlgebras to H-cores is a
frontal homomorphism.

DEFINITION 15. — Let (B, ) be a Derivative algebra and I€iH, 7) be its H-core.
We say that B, ¢) is astencilDerivative algebra (or simply, atenci) if the Boolean
part B of (B,d) is generated (as a Boolean algebra) by the sulidet. e. every
element o3 is a finite Boolean combination of elementdbf

In the following theorem we show that every frontal Heytingedora can (and
henceforth will) be identified with the Heyting core of a sibtike Derivative algebra.



Downloaded by [University of Wollongong] at 13:14 17 June 2013

Modalized Heyting calculus 363

This theorem is a modest generalization of a related reEMt&insey and Tarski
concerning closure algebras [MCK 46].

We obtain a representation for arbitrary frontal Heytinggdira; this representation
is functorial and is extended to a full duality.

THEOREM 16. — Let(H, 7) be a frontal Heyting algebra. There exists a Derivative
algebra (B, 7*) such that(H, 7) is (isomorphic to) the Heyting core 6B, 7*) and
T*p=rpforp € H.

PrROOF. — First of all we note that for every Heyting algebtathere exists a map
7 : H — H such that the algebr@H, 7) is a frontal Heyting algebra. Thus if we
settp = p for all p € H then we see that our “modal packing” is conservative over
the variety of Heyting algebras. We know that for every Haytalgebra there exists
an Interior algebrdB(H ), I) containing (an isomorphic copy off as the sublattice
of all its open elements, and generated as a Boolean alggbtieelsetH. Such
algebragB(H),1) are calledstencil algebragESA 79]. Note that every element
of the stencil algebrdB(H),I) can be represented in the forn= A;(—p; V ¢;)
for suitablep;,¢; € H and besideda = A;(p; — ¢;). Furthermore [ESA 85]
the algebra B(H),I) is a K4.Grz-algebra, i. e. the interior operalosatisfies the
additional equationI(—I(—a V Ia) vV Ia) = Ia (cf. the “dual equationCa =
(Ca — C(Ca — a)) of the main lemma).

Now we define an operater* on the algebra3(H) in terms of operator$ and
7 by means of the equality*a = 71a (for a € B(H)). Itis not hard to see that
the Boolean algebra becomes a Derivative algebra with cespéne operator™ just
defined. It is clear from the definition ef that*p = rp for everyp € H. [

LEMMA 17. — In the stencil algebrdB(H ), 7*) the following relation between the
interior operatorI and the derivative* holds:

Ila=aAT*a.

PrROOF. — Using the definitionr*a = 71a and the axiom (2p < 7p of frontal
Heyting algebras we obtaii: < 71a, consequentlya < aATIa,i.e.la < anT*a.
Thus it only remains to verify that A 7%a < Ia,i. e.a A 71a < La. Substituting
Ia for p andI(—a V Ia) for ¢ in the axiom (3)rp < ¢V (¢ — p) yieldstla <
I(-aVIa)VI(=I(-aVIa)VIa). Using the Grz-axiom(—I(-aVIa)VIia) =1a
we obtainrTa < I(—aVIa)VIa. Sincel(-aVIa) < —aVIawe haverla < —aVla.
Multiplying both sides through by we obtaina A 71a < a A (—ma V1a) = Ia. Thus
a A Tla < Ta. Moreover itis clear that for every € B, a < 7*a iff a € H. ]

THEOREM 18. — The stencil derivative algebréB(H), 7*) is a K4.Grz-algebra,
that is, the derivative algebras of the fo@(H ), 7*) satisfy the conditions

(@) a < T 7*a
and
(b) 6*a = 6*a — 0*(6*a — a).
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PROOF. — To see that (aJj*a < 7*7*a holds for alla € B(H) we notice that
7:H — H,i.e.tIla < I(r1a). Using the axiom (m2) of the definition 1 we obtain
I71a < 7(I71a), hencerla < 7I71aq, i. e.7*a < 7*7*a. (b) Recall that the
Interior algebra B(H), 1) is a S4.Grz-algebra. Since our Derivative algebra is also a
K4-algebraanda = a A 7*a (Lemma 17), the Main Lemma applies. ]

Thus we associate with every frontal Heyting algefia ) a Derivative algebra
(B(H),7*). The following lemma shows that this assignment of the “Baol em-
brace"B(H) to every Heyting algebra/ can be expanded to yield a funciGrfrom
the category of frontal Heyting algebras fHA to the categoirerivative algebras
DA.

LEMMA 19. — Let (Hy,71), (H2,72) be frontal Heyting algebras and : H; —
H, a frontal homomorphism (i. e. a Heyting algebra homomonphi®mmuting with
“modal loads” 1, 7. There exists a unique extensibh : B(H;) — B(Hz) of h to
a homomorphism of Derivative algebras fréB(H), 1) to (B(Hz), 75 ).

PROOF. — We know ([BLO 75], see also [ESA 85]) that there exists agumi ex-
tensionh™ of h to a homomorphism of the corresponding Interior algebresnf
(B(Hy),1;) to (B(H2),15). It follows from the definition of the operater® and the
fact thath is a frontal homomorphism, that"ra = 75 h+a for everya € B(H). m

Now note that for a frontal algebréH, ) the corresponding stencil algebra
G(H,7) = (B(H),7*) has a universal property of being the “best possible” Deriva
tive algebra obtainable froniH,7), in the following sense: there is an embed-
ding H — B(H) identifying (H,7) with the Heyting core of(B(H),7*) such
that for any other Derivative algebrgB’, ') and any fHA homomorphisny :
(H,7) — F(B’,7") to the Heyting core of B’,7’) there is a unique extension
f*: (B(H), ™) — (B’,7') of f to a Derivative algebra homomorphism.

In category-theoretic terms this means that the fundicasdG constructed above
form an adjoint pair, with left adjoint to 7. Moreover the fact that the fHAH, 1)
is isomorphic to the Heyting core ¢f(H,7) = (B(H),7*) means in this language
that the adjunction structure unit natural transformaiiéh ) — FG(H, ) is an
isomorphism. It is a well known fact in abstract categoryotlyethat this happens if
and only if the functoiGG is a full embedding and in this case the adjoint pair
F restricts to an equivalence between fHA and the full imagd'of. e. the full
subcategory of DA consisting of stencil algebras.

COROLLARY 20. — The equational category of frontal Heyting algebras (resp.
frontons) is equivalent to the category of stencil Derivatalgebras (resp. stencil
GL-algebras).

Using the composite of the Gddel translatipand of the splitting mapwe induc-
tively define a translatiog# from formulas of the modalized Heyting Calculus mHC
to formulas of the modal system K4.Grz settiigp) = p A Op if p is a propositional
variable;# commutes with, v, L, O and

#(p — q) = (#p — #q9) NO(F#p — #4q).
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With the above algebraic considerations in mind it is notharsee validity of the
following

COROLLARY 21. — mHCF p iff K4.GrzF- #p.

Itis easy to see that as a by-product of this corollary weiplata exact embedding
of the Heyting Calculus HC into the modal system K4.Grz.

Finally let us note that this corollary can be further stitheged: the lattice
Lat(mHC) of all extensions of mHC is isomorphic to the lagticat(K4.Grz) of all
normal extensions of the modal system K4.Grz. However, afppbthis result re-
quires additional considerations as the above algebraihimery does not suffice for
it.
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