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SEMISIMPLICITY SETS FOR CYCLIC ELEMENTS IN SIMPLE LIE ALGEBRAS

A. ELASHVILI1, M. JIBLADZE1, AND V. KAC2

Abstract. This paper is a continuation of the theory of cyclic elements in semisimple Lie algebras,

developed by Elashvili, Kac and Vinberg. We classify semisimple cyclic elements in terms of various
nonassociative algebra structures on certain subspaces of the corresponding Lie algebra. The im-

portance of such classification stems from the fact that each such element gives rise to an integrable

hierarchy of Hamiltonian PDE of Drinfeld-Sokolov type.

1. Introduction

Let us recall that for an element a of a Lie algebra g, the adjoint action operator ad a : g → g is
given by

(ad a)x = [a, x], x ∈ g.

The element a is called semisimple if the operator ad a is diagonalizable, and nilpotent if ad a is a
nilpotent operator, i. e. if (ad a)n = 0 for some n.

Consider a semisimple finite-dimensional Lie algebra g. To each nilpotent element e ∈ g corresponds
a grading of g, i. e. a direct sum decomposition

g =

d⊕
j=−d

gj , where g±d 6= 0

of g with the property [gi, gj ] ⊆ gi+j . It is obtained as follows: by the Morozov–Jacobson theorem,
there exists an sl(2)-triple s = (e, h, f) for e, i. e. another nilpotent element f ∈ g such that [e, f ] = h
is semisimple and satisfies [h, e] = 2e and [h, f ] = −2f . One then defines gj := {x ∈ g | [h, x] = jx}.
The positive integer d is called the depth of the nilpotent element e.

Elements of the form e+F for F ∈ g−d are called cyclic elements for e. Classification of semisimple
cyclic elements is interesting by (at least) two different reasons. First, such elements can be used to
understand the structure of regular elements in Weyl groups [3,7,10]. Second, such elements give rise
to integrable Hamiltonian hierarchies of partial differential equations [1, 2].

2. Singular Sets of Nilpotent Elements

For a nilpotent e in a simple Lie algebra g, we call

Σg(e) = {F ∈ g−d | e+ F is not semisimple}

the singular set of e.
Our task is the description of these sets.
Our work is continuation of [3], where systematic classification of nilpotent elements from the above

point of view has been undertaken.
If there exists a semisimple cyclic element e+F , then the nilpotent e ∈ g is said to be of semisimple

type.
If e+ F is nilpotent for every F ∈ g−d, then e is of nilpotent type.
If none of these is true for e, then it is of mixed type.
Thus for elements of mixed or nilpotent types, the set Σg(e) coincides with the whole of g−d, and

the interesting case for us is that of e of semisimple type.
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In [3] nilpotents of each of these types have been completely described. One of the central notions
in that paper are the notion of a reducing subalgebra and of rank for a nilpotent e.

For an sl(2)-triple s for e as above, let Z(s) denote the centralizer of s under the action of the
adjoint group G of g.

Definition 2.1. A semisimple subalgebra q ⊆ g is called reducing for e, if it is normalized by s and
moreover Z(s)q−d is Zariski dense in g−d.

The rank rk e of e is the smallest possible dimension dim q−d for any reducing subalgebras q for e.
A nilpotent e ∈ g is called irreducible if it does not admit any reducing subalgebras different from g.

Note that in particular for an irreducible nilpotent e we have rk e = dim g−d.
For us, reducing subalgebras are crucial as they enable us to give description of the singular set

Σg(e) in terms of Σq(e), for smallest possible reducing subalgebras q for e. When e is of semisimple
type, it is irreducible in such q, so in a sense all kinds of singular sets can be described in terms
of singular sets for irreducible nilpotents. It turns out that there are very few cases of irreducible
nilpotents. These are as follows (k > 1):

Table 1: Irreducible nilpotents of semisimple type

# g orbit depth rank Z(s)|g−d
1k sl(2k + 1) [2k + 1] 4k 1 1

2k sp(2k) [2k] 4k − 2 1 1

3k so(2k + 1) [2k + 1] 4k − 2 1 1
4k so(4k + 4) [2k + 3, 2k + 1] 4k + 2 2 1
5 G2 G2 10 1 1
6 F4 F4 22 1 1
7 F4 F4(a2) 10 2 π2

8 E6 E6(a1) 16 1 1
9 E7 E7 34 1 1

10 E7 E7(a1) 26 1 1
11 E7 E7(a5) 10 3 π3

12 E8 E8 58 1 1
13 E8 E8(a1) 46 1 1
14 E8 E8(a2) 38 1 1
15 E8 E8(a4) 28 1 1
16 E8 E8(a5) 22 2 π2

17 E8 E8(a6) 18 2 σ2

18 E8 E8(a7) 10 4 σ4

The last column of the table shows that in all these cases the group Z(s)|g−d is finite: here
πn, resp. σn−1 denotes the permutation representation, resp. the n − 1-dimensional irreducible
subrepresentation, of the symmetric group Sn.

Thus for irreducible e, only ranks 6 4 occur, and in these cases it turns out that we have

Theorem 2.2. For an irreducible nilpotent e with rk e = r, the singular set Σg(e) is a union of

exactly r(r+1)
2 distinct r − 1-dimensional linear subspaces of g−d.

Moreover for any given irreducible e the singular set Σg(e) can be explicitly determined.

Example 2.3. Let g be the simple Lie algebra of type D2k, i. e. isomorphic to the algebra so(4k) of
4k × 4k skew-symmetric matrices with the Lie bracket given by commutators of matrices. Let e be
a nilpotent corresponding to the partition (2k + 1, 2k − 1), i. e. the one which acts on the standard
4k-dimensional representation of g via the matrix with two Jordan blocks, of sizes 2k+ 1 and 2k− 1.
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For this e we have dim g−d = 2, and in the root vector basis (F1, F2) of g−d the set Σg(e) consists of
three lines given by scalar multiples of F2, F1 + F2 and F1 − F2 respectively.

Example 2.4. Let g be of type E7 and

e := e1000
0

00 + e0001
0

11 + e0001
1

10 + e0011
1

00 + e0011
0

10 + e0111
0

00 + e0111
1

11

be the nilpotent with label E7(a5). Here a letter e with subscripts denotes a root vector corresponding
to a root given by the linear combination of simple roots with coefficients indicated in the subscript.

In this case dim g−d = 3 and the image of the singular set Σg(e) in the projective plane is as
follows:

x1 = x3

x2 = ω̄x1 + ωx3

x2 = ωx1 + ω̄x3

x2 = x1 + x3

x1 = ω̄x3

x1 = ωx3

[1:−1:1]

[ω̄:−1:ω]

[ω:−1:ω̄]

[0:1:0][1:2:1]

[ω̄:2:ω]

[ω:2:ω̄]

where ω is the third root of 1. That is, a cyclic element

c := e+ x1f1234
2

21 + x2f1234
2

31 + x3f1234
2

32

fails to be semisimple if and only if the corresponding point [x1 : x2 : x3] of the projective plane lies
in the indicated set.

Example 2.5. As a last example, let g be of type E8 and e a nilpotent with label E8(a7). Then
dim g−d = 4, and Σg(e) is the union of 10 3-dimensional subspaces. For a particular choice of e, these
subspaces are given by the equations x1 + x2 + x3 + x4 = 0, xi + xj = xk + x4 and xi ± xj = 0,
with {i, j, k} = {1, 2, 3}. Projectivization of these subspaces gives a configuration of ten planes in the
projective 3-space that looks as follows:
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The authors are indebted to Noam Elkies for finding a particularly tractable parametrization of
this configuration which helped them to identify it [4].

In the remaining (non-irreducible) cases, the space g−d contains a copy of one of the above singular
sets Σq(e) for some reducing subalgebra q ⊆ g, in which e becomes irreducible, while the whole
singular set Σg(e) in g−d can be described in terms of the image of Σq(e) under the action of Zg(s)
on g−d.

3. “Explanation” of Singular Sets by Algebra Structures

It is also possible to understand more conceptually why exactly are the singular sets of the form
that we found. For this aim, we equip the space g−d with additional structure.

First,

(x, y)e :=
〈
(ad e)dx, y

〉
where 〈·, ·〉 is the Killing form on g, defines a nondegenerate Z(s)-invariant symmetric bilinear form
on g−d.

Second, when d is even (which happens precisely if e is not of nilpotent type), the formula

x ?
e
y := [(ad e)

d
2 x, y]

defines a bilinear operation on g−d. This operation is skew-commutative if d/2 is even and commutative
if d/2 is odd. Moreover the above symmetric bilinear form is invariant for this operation, in the sense
that

(x ?
e
y, z)e = (x, y ?

e
z)e

holds for any x, y, z ∈ g−d.
It then turns out that

Theorem 3.1. The singular set Σg(e) is the union of all proper ?
e
-subalgebras of the algebra (g−d, ?

e
).

In each of the cases then, the algebra (g−d, ?
e
) can be identified with interesting well known algebras.

First, when d is divisible by 4 then it turns out that this algebra is a direct sum of an abelian algebra
(with zero multiplication), some simple Lie algebras, and a simple 7-dimensional Maltsev algebra of
imaginary octonions under the commutator operation [x, y] = xy − yx [8, 9].

In the case d = 2 it has been known for a long time that using the operation ?
e

one may obtain

all simple Jordan algebras. It turns out that more generally, for even d not divisible by 4 the algebra
(g−d, ?

e
) is Jordan provided e is of semisimple type and not irreducible. Whereas if e is irreducible,
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then one obtains one of the family of commutative algebras Cλ(n) given by the basis p1, . . . , pn with
the multiplication table

p2
i = pi, pipj = λ(pi + pj), i 6= j.

These algebras are known in the literature related to representations of sporadic finite simple groups,
to Hessian algebras appearing in differential geometry, and to the theory of vertex algebras [5, 6].

For example, in 2.3 we get the algebra C1−k(2), in 2.4 it is C− 1
3
(3), and in 2.5 it is C− 1

3
(4).

The algebras Cλ(n) are mostly not Jordan, but satisfy quartic identities

〈a, b, c〉 d− 〈a, d, c〉 b = (ab)(cd)− (ad)(bc)

and

〈a, bd, c〉+ 〈b, cd, a〉+ 〈c, ad, b〉 = 0,

where 〈x, y, z〉 denotes the associator (xy)z − x(yz). The latter identity can be also written in the
form

[La,Lb] Lc +[Lb,Lc] La +[Lc,La] Lb = 0,

where Lx denotes the multiplication operator, Lx(y) = xy. Note the close resemblance with the Jordan
identity, which is equivalent to

〈ab, d, c〉+ 〈bc, d, a〉+ 〈ca, d, b〉 = 0,

or in terms of the multiplication operators,

[Lab,Lc] + [Lbc,La] + [Lca,Lb] = 0.

These algebras then give an explanation of the particular form of singular sets Σg(e), in view of
3.1. Indeed, all algebras Cλ(n) that occur in our case contain exactly 2n − 1 nonzero idempotents,
and all of their subalgebras are spanned by linearly independent subsets of idempotents. For example,
the algebra C1−k(2) from 2.3 has exactly three nonzero idempotents, and its subalgebras are the
one-dimensional ones spanned by one of them, which explains why in 2.2 exactly three 1-dimensional
subspaces occur when dim g−d = 2. Similarly, when dim g−d = 3, every maximal proper subalgebra of
C− 1

3
(3) is spanned by two linearly independent idempotents and contains three of them, which gives

six distinct subalgebras, while for dim g−d = 4, any three linearly independent idempotents of C− 1
3
(4)

span a 3-dimensional subalgebra that contains seven of the idempotents, which gives ten 3-dimensional
subalgebras in total, according to the projectivized picture in 2.5 where points correspond to 1-
dimensional subalgebras, lines to 2-dimensional subalgebras and planes to 3-dimensional subalgebras.
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