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Abstract. We investigate partial differential equations on hypersurfaces writ-
ten in the Cartesian coordinates of the ambient space. In particular, we gen-
eralize essentially Lions’ Lemma, prove Korn’s inequality and establish the
unique continuation property from the boundary for Killing’s vector fields,
which are analogues of rigid motions in the Euclidean space. The obtained
results, the Lax-Milgram lemma and some other results are applied to the
investigation of the basic Dirichlet and Neumann boundary value problems
for the Lamé equation on a hypersurface.
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Introduction

Partial differential equations (PDEs) on hypersurfaces and corresponding bound-
ary value problems (BVPs) appear rather often in applications: see [Ha1, §72]
for the heat conduction by surfaces, [Ar1, §10] for the equations of surface flow,
[Ci1], [Ci3],[Ci4], [Ko2], [Go1] for thin flexural shell problems in elasticity, [AC1]
for the vacuum Einstein equations describing gravitational fields, [TZ1, TW1] for
the Navier-Stokes equations on spherical domains and spheres, [MM1] for minimal
surfaces, [AMM1] for diffusion by surfaces, as well as the references therein. Fur-
thermore, such equations arise naturally while studying the asymptotic behavior of
solutions to elliptic boundary value problems in a neighborhood of conical points
(see the classical reference [Ko1]).
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By a classical approach differential equations on surfaces are written with the
help of covariant and contravariant frames, metric tensors and Christoffel symbols.
To demonstrate a difference between a classical and the present approaches, let us
consider an example. A surface S can be given by a local immersion

Θ : ω → S , ω ⊂ Rn−1 , (0.1)

which means that the derivatives
{
gk := ∂kΘ

}n−1
k=1

, constituting the covariant
frame in the space of tangent vector fields to the surface V (S ), are linearly in-
dependent. In equivalent formulation that means the Gram matrix GS (X ) =
[gjk(X )]n−1×n−1, gjk := 〈gj , gk〉 has the inverse G−1S (X ) = [gjk(X )]n−1×n−1,
gjk := 〈gj , gk〉, where {gk}n−1k=1 is the contravariant frame and is biorthogonal to
the covariant frame 〈gj , gk〉 = δjk, j, k = 1, . . . , n− 1. Hereafter

f〈U ,V 〉 :=
n∑

j=1

U0
j V

0
j , U = (U0

1 , . . . , U
0
n)
 ∈ Rn, V = (V 0

1 , . . . , V
0
n )
 ∈ Rn

denotes the scalar product. The Gram matrix GS (X ) is also called covariant
metric tensor and is responsible for the Riemannian metric on S .

The surface divergence and gradients in classical differential geometry (in
intrinsic parameters of the surface S ) read as follows:

divS U :=
[
detGS

]−1/2 n∑
j=1

∂j

{[
detGS

]1/2
U j
}
,

∇S f =
n−1∑
j,k=1

(gjk∂jf) ∂k, U =
n−1∑
j=1

U jgj

(0.2)

(see [Ta2, Ch. 2, § 3]). The intrinsic parameters enable generalization to arbitrary
manifolds, not necessarily immersed in the Euclidean space Rn.

A derivative ∂S
U : C1(S ) → C1(S ) along some tangential vector field

U ∈ V (S ) is called covariant if it is a linear automorphism of the space of
tangential vector fields

∂S
U : V (S ) −→ V (S ). (0.3)

The covariant derivative of a tangential vector field V =
∑n−1

j=1 V
jgj ∈ V (S )

along a tangential vector field U =
∑n−1

j=1 U
jgj ∈ V (S ) is defined by the formula

∂S
U V := πS ∂UV :=

n−1∑
j,k,m=1

[
U jV kΓm

jk + δjkU j∂jV
m
]
gm, (0.4)

where Γm
jk(x) are the Christoffel symbols

Γm
jk(x) := 〈∂kgj(x), g

m(x)〉 =
n−1∑
q=1

gmq

2
[
∂kgjq(x) + ∂jgkq(x)− ∂qgjk(x)

]
:= Γm

kj(x) . (0.5)


