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Abstract

We consider Dirichlet boundary value problem for Laplace—Beltrami Equation On Hypersurface ., when the Laplace—Beltrami
operator on the surface is described explicitly in terms of Giinter’s differential operators. Using the calculus of Giinter’s tangential
differential operators on hypersurfaces we establish Finite Element Method for the considered boundary value problem and obtain
approximate solution in explicit form.
© 2016 Ivane Javakhishvili Thilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Let.# be a C% smooth orientable surface in R? with Lipschitz boundary 8.7 given by an immersion
tiw— .7, ocCR? (1)
where w is open simple connected domain in R? with Lipschitz boundary dw and let # : . — o be the inverse
mapping
tob=Id: -, 6Ool=Id:w— o

Denote by v(y), y € .# the unit normal on . with the chosen orientation.
Giinter’s tangential derivatives Z; on . are defined by identities

'@j = a]_v](y)aU7 J=172’39 (2)

where 0, = 22:1 v 0k denotes the normal derivative.
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Tangential derivatives can be applied to the definition of Sobolev spaces Wf, () =H(S),teN,1<p<oo
on an £-smooth surface . (see [1,2])

H () =W (&) ={peD'(7) : VipeL,(¥), Ya eNj, || < t}. (3)

Equivalently, Wf, () is the closure of the space C*(.’) with respect to the norm

1/p
lp | W2 || = [Z 1Zae |Lp<5ﬂ)||p} :

| <€

The space Wf, () can also be understood in distributional sense: derivative ;¢ € Lo () means that there exists a
function in Ly () denoted by Z;¢ such that

@00 = @ T30 = [ oOTTGIde ¥y Lo

Space Wg () is a Hilbert space with the scalar product

(o, U)ff) = Z /y @;‘gp(y)@j‘ v(y)do. (4)

la|<¢

Under the space Wz_ ¢ () with a negative order —¢, ¢ € N, is understood, as usual, the dual space of distributions to
the Sobolev space Wg (&).
Denote by A o the Laplace—Beltrami operator on .

3
Ayo=) T7¢ VeeCX(P), 5)
j=1

Note, that if ¢ € Cg(jﬁ), ¥ € C'(), then due to Kelvin—Stokes theorem

3
(A0, V)7 =Y (D9j, DV)) 7 6)
j=1

From (6) immediately follows

Theorem 1. If . is a C' smooth surface in R3, then Laplace—Beltrami operator
—Ay Wi = W () (7)

is positive definite (see [3])

3

(—As0.0) 5 = > (Up. Zkp).7 = |Vy9|La(A)]* > 0
k=1

for Yo e Wi(7), ¢ #0. ®)

We consider the following Dirichlet boundary value problem for the Laplace—Beltrami equation

{Ayu(y) =f(y), ye.?,

ut(y) =0, yeds, ©)

where [ € Ly(¥).
From (6) follows variational formulation of (9):
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Find a vector ¢ € H(l) (&) that

3
D (o, D)y =—(f )y V¥ eHA() . (10)
k=1

Due to Theorem 1 and Poincaré inequality the sesquilinear form

3

alp. V) =Y (%o, D). (1)

k=1
is bounded and coercive in HJ(.%)
2

Mi|p[H' ()| = ale. ) = M|p[H'(#) Vo € Hy(S), (12)

for some M > 0, M > 0, therefore problem (10) possesses a unique solution by Lax—Milgram Theorem (see [4]).
Now we describe the discrete counterpart of the problem (cf. [5]).
Let X, be a family of finite dimensional subspaces approximating H!(.), i.e., such that Uy, X is dense in H! (7).
Consider Eq. (10) in the finite-dimensional space X,

algn, ) = f(n) Vi € Xy, (13)
where f(¥n) = —(f, ¥n)..

Theorem 2. Eq. (13) has the unique solution ¢, € Xy, for all h > 0. This solution converges in H' (.%) to the solution
pof (10)ash — 0.

Proof. From the coercivity of sesquilinear form a immediately follows

ot e H' | < aton, o) = | (@)
e |lgn|H' ()| forall h. (14)

A

IA

Let ¢, be the unique solution of the homogeneous equation:

a(en, ¥p) =0 forall ¥y € Xp. (15)

Then (14) implies ||§0h |Hl(y ) H = 0 and consequently, ¢, = 0. Therefore Eq. (13) has a unique solution. From (14)
it follows also that

lonE')* < z—f|\<ﬂh|H1<5”> -

Hence sequence {||¢p [H'(.#)||} is bounded and we can extract a subsequence {¢y,, } which converges weakly to some
¢ € H'(Y).

Let us take an arbitrary ¥ € H'(.%) and for each & > 0 choose ¥, € X, such, that ¥, — v in H'(.%). Then
from (13) we have

a(p. ¥) = f(¥), V¥ e H().
Hence, ¢ solves (10). Note, that since (10) is uniquely solvable, each subsequence {¢, } converges weakly to the same
solution ¢, and consequently the whole sequence {¢},} also converges weakly to ¢. Now let us prove that it converges
in the space H' ().
Indeed, due to (14) we have
cillgn — @lI* < latpn — @, on — )| < lalpn, on — ) — a(@, ¢n — ¢)|
= c1lf(gn) —alen. @) — f(on — )| = c1lf(9) —ale, 9)| =0,

which completes the proof. [
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We can choose spaces X, in different ways. As an example let us describe the discretization method based on the
representation of the surface . as a network of the triangle-shaped elements.

Let (Uy, %) be a parametrization of .. Here %, : U, C R2 — .7 are injective differentiable mappings
(diffeomorphisms) of open sets Uy, of R? into . such that Uy %« (Uo) = &

Let i > 0. We call &, a triangulation of . if .¥ is represented as . = U7y ce/a> Where the sets .7, possess the
following properties:

1. Each ), is a subset of some xy,, (Up, ) and T, := }f(;y] (7y) C Uy, is a triangle.

2.0 T, = »xy ! () and Ty = x5 1(F5) are subsets of the same Uy, then their intersection can be only a common
vertex or a side.

3. Sides of the triangles }f;yl () do not exceed h.

Denote by .4 the set of nodes of the triangulation &, i.e. the set of all points x, (Pg) € ., where Pg are vertices
of the triangles T,,. Let ¢ : 45 — R be any mapping of .4 into R, then it can be easily proved that there exists
function v; € H!(.) such that:

1. r N Vr = é‘ .
2. The restriction of vy o x%, on Ty, is an affine function: vy o xy(x1, X2) = a1x1 + axxy + as.
Denote by X}, the set of all such functions, corresponding to the triangulation &j,. The set X, consists of the piecewise-
linear functions and therefore | J, X}, is dense in H'/2(.7)3.

We can replace the triangle-shaped elements in the above-described network by quadrilateral, hexagonal or other
type polygonal elements.

In particular, consider a case, when w = U, in the above parametrization is a square part of R?

wo={x,x):0<x1<1,0<x <1}, {(w) =Y.

Allocate N2 nodes Pj=G/(N+1, j/(N+1),ij=1,...,Nono.

Letag, k=1,..., N be piecewise linear functions defined on segment [0, 1] as follows:
k—1
0, 0<x= ,
N +1
N+ 1) k—1 k—1 - k
- 5 <X=—-—
TN+ N+ N1
ar(x) = k+1 k k+1 (16)
N+D|—— , —— < —,
( +)(N+1 )N 1 T SN
k+1
0, + <x <1,
N +1
j=k7' 5N7
and denote by ¢;;, i, j =1, ..., N functions
@ij(x1, x2) = a;j(xaj(x2), i,j=1,...,N, (x1, x) € 0. (17

Evidently, ¢;; are continuous functions, which take their maximal value ¢;;(P;;) = 1 at point P;; and vanish outside
the set

<1,0<

wij=wﬂ{(x1,x2)10§ X2 —

'51}, (18)

l
TTNT Tl

consequently, they belong to H'! (w) and are linearly independent (see [6]).

Denote by Xy the linear span of the functions ¢;; o ¥, i, j =1,..., N. The space Xy is N 2_dimensional space
contained into H' (.%).

Consider Eq. (13) in the space X .

alp, ¥) = f(¥) V¥ € Xy. (19)
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We sought the solution ¢ € Xy of Eq. (19) in the form

N
Y= Z Cij vij, (20)
i, j=1
where C;; are unknown coefficients. Substituting ¢ in (19) and replacing ¥ successively by ¢;;, i, j =1,..., N, we
get the equivalent system of N linear algebraic equations

N
Z A Cij = fu, kI=1,...,N, Q21
ij=1

where
Ajjr = a(‘ﬂij» ‘Pkl)a fir = flo). (22)

Matrix A = A(;jq is the Gram’s matrix of the positive semidefinite bilinear form a, therefore it is a nonsingular
matrix and Eq. (21) has a unique solution.
N
—1
¢ = (A) i j) (kD) Dij fkl- (23)
k

i,j.k, =1

To calculate explicitly Ak and fi note, that

-@m(pij(y) = 8ym§0ij()7) + Vn18v§0ij(y)
2 3
D 0,00 () (amﬂ,m +om Y vzazﬁ,,(y))

p=1 =1
2
= Y 00, D (). (24)
p=1
Ajjg = a(‘Pija §0kl>
2 3
= Z /y (0,91 (@ () (3811 (P () Z%nl?p(y)gmﬁq(y)da, (25)
p.g=1": m=1
Jfu=—(f, o)y = — /y fO) o (y)do. (26)

Changing variables y = ¢(x), x = ¥ (y) on right side of (25) and taking into account, that supp (81,@,-]- (x)) = wjj
we get

2 3
A=Y / (o) (B P11 (1)) > D p (£ (1) Do P4 (£ (x)) [0 ()l x, @7
p.q=1"@ijt 1@k m=1
S =— F @) gri(c(x)o’ (x)|dx (28)
Wk

where |o/(x)| is a surface element of .
o’ (x)] = 1819 (x) x 3209 (x)].
From (16)—(19), (27)—~(28) we obtain explicit expressions of A;y and fi;, 1 <1i, j, k, [, < N

Ajiy =0, if i<k—lork<i—1lor j<l—1orl<j—1,
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J+l

N+1 N+1 j+1 i+1 J
=+ - a7) ol - ) (e - 555)
Akt = ( +1* Z/ / dp1 X2 N1 + dp2| X1 Nl g1\ X2 N+l

p,q=1% N+1 N+1

. 3
o (- 5] D u?y (€N TndyE W (W,

ifk=i+1, [=j+]1,
i+1

LAY e j—1 i+1 j—1
Akt = (N+1) Z/ /,71 (N+1—x2>+8p2(—N+1—xl)][8q1<x2——N+l)

p,q=1% N+1 N+1

+ 82 (1 - N+1)] Z.@ 25 (0) Ty (E (D]’ ()ldx,

1 J+L . . .
LRSS o) i ICTCE SR PRI Y) (e
(5 - )] " N Ty CONIo

—_

3

if k=i+1, =,
it+1

A = (N + D) i /ZVH /ijlil[gpl(liflll _x2> +8p2<1i/111 _xl)][g‘”(Ni-l _xz)

p.q=1Y N+1 N+1

. 3
+ 802 (x1 — )]Z D0 p(§ () Ty (5 (Do () dx,

ifk=i4+1, I=j—1,

2 i Jt+l . . 7
4 NT1 1 j+1 i—1 J
Ajjit = (N +1) E:uﬁq // PM(N+1_XQ+JM<N+1_XO]Pw(N+1_xa

A = (N + 1) z [N_ﬂ / il = )+ = ) [ (e - 2
+oa(n - 7)) 5 TGN Ty I O,
m=1
+(N+1 le /N+l /N{Hl (lifL-i-]l —xz) + 5p2<x1 - %)][%1(% - x2)

1 3
+o( 7 = )| 22 GG ) Dty €Dl )ld,

=1

I

S

i+

2 I . . .
T P ) oG o) (e )
+(N+1) Z/, /1(11'1 3p1(x2 NI + 8,2 N1 xl) a7 2

p.q=1* N+1
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)] D Tt ) Tty (o (),
m=1

+5q2(N—+1—x1
it —x1)][8,,1(j+1 —xz)

N+1

Jt+

i+l 1
N+ [ NFT j+1

(e =)+
; 11[1’1 ) o\ N

|
HRRIP B S DR Gy
(3 — )] 5 By ON TP, ol
m=1
if k=i, 1=,
j—1 ) +3p2(x1 — ]i]:_ll>][8ql(N+ 1 —x2>

L N
N+ D [5(—
N+ D Z/;l /M TN

p,q=1Y N¥I1
-@mﬂp(g(x))-@mﬂq (C(x))|(7/(x)|dx,

ool )

Ajjrg =

i [M]

o )]

N+1
m=1
2 11\./111 N+r1 j—1
N+ D' [301 (77 = 2) + 90a(
+( +)2_:/#/ﬂ Ip1 NT1 © +5p2N+1
p,q=1% N+i N+I
i+1\] < )
to02(n1 = 557 ) | 22 D@D T2y @l ld.
m=1
if k=i, [=j—1,
2 L . . .
ES U A ES| j—1 i—1 j—1
S S (=
i = N+ D Z/QI /f;‘l N +op(n N+ ‘”(N+1 2

p.q=1
o (s = 11)] 2 ) Gl W,
m=1
)l )

2 i J+1 .
NI [ NI [8 ( _J- 1 ) P (x
PN T r2 N+ 1

ifk=i—1, =],
2 i _J . . .
o 4 VA [ _J-t i1 _
A = (N + 1) 2_: /i_l /,;1 [5,,1()@ N+1)+51’2()‘1 N+1>][8q‘(x2 N+1>
p.q=1"Y N¥I N+I
i 3
li
+ 8 (1 - N—+1>]m:1 D0 p(E (N Ty E (XDl (0,
if k=i—1, l=j—1,
N[N k—1 1
_ 2 . B _ B /
fio = —ov? [ /7 (31 = 7 (32 = 3 ) FCCnIo )l
N+1 N+1
k+1 l
B 5 [N [N k+1 _ _ [—1 ,
N+ 1) /L /N (3 = 1) (52 = 35 )€l Wl
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, (¥ [ k—1\/1+1
—v e [N [T (0= ) (e ) Feie wlds
pEa i e

N+1/\N+1
kel
k+1 I+1 )
—<N+1)2/N+ [ v ) (g ) f €l wldx.

As an application of the aforementioned boundary value problem we can consider stationary state of heat conduc-
tion by an isotropic media, governed by the Laplace equations and constrained by classical Dirichlet-Neumann mixed
boundary conditions for the Laplace equation in the layer domain 2¢ := . x (—e¢, ¢) of thickness 2¢, where ./ C €
is a smooth subsurface of a closed hypersurface % with smooth nonempty boundary 9.7

Apep(y, 1) = f(y, 1), (1) €. x (—¢,¢), (29)
ety =g 1), (1) €dS x(—¢0), (30)
@) (v, £e) =¢(y), ye.Z, (31)

where

4
Agep =Y Do+ Ao = Ayg+ 070 + A0
j=1

and %”} is a Weingarten matrix

HUL) =2 (2)],,,. Xe (32)

nxn

It can be proved that when the thickness 2¢ of the layer domain (2° with the mid-surface %, tends to zero, this
boundary-value problem “converges” in the sense of " convergence to the following Dirichlet boundary value prob-
lem for Laplace—Beltrami equation on .¥

Agze(y) = fo(y) yes,

9T (1) = g(t,0), T€d, (33)

where

1 1
fo) = f(,0) = (37 G)(y, 0) — 5[q+(y) + q_(y)]z[(azG)(y, 0) = (3G)(y, 0] (34)

and G (x, t) is a continuation of the boundary data g(y, t), (v, t) € 9.¥ X (—¢, €), from the boundary into the domain
(x,1) € £2¢.
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