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Funayama’s theorem revisited

Guram Bezhanishvili, David Gabelaia, and Mamuka Jibladze

Abstract. Funayama’s theorem states that there is an embedding e of a lattice L into
a complete Boolean algebra B such that e preserves all existing joins and meets in L
iff L satisfies the join infinite distributive law (JID) and the meet infinite distributive
law (MID). More generally, there is a lattice embedding e : L → B preserving all
existing joins in L iff L satisfies (JID), and there is a lattice embedding e : L → B
preserving all existing meets in L iff L satisfies (MID). Funayama’s original proof is
quite involved. There are two more accessible proofs in case L is complete. One was
given by Grätzer by means of free Boolean extensions and MacNeille completions,
and the other by Johnstone by means of nuclei and Booleanization.

We show that Grätzer’s proof has an obvious generalization to the non-complete
case, and that in the complete case the complete Boolean algebras produced by
Grätzer and Johnstone are isomorphic. We prove that in the non-complete case,
the class of lattices satisfying (JID) properly contains the class of Heyting algebras,
and we characterize lattices satisfying (JID) and (MID) by means of their Priestley
duals. Utilizing duality theory, we give alternative proofs of Funayama’s theorem
and of the isomorphism between the complete Boolean algebras produced by Grätzer
and Johnstone. We also show that unlike Grätzer’s proof, there is no obvious way to
generalize Johnstone’s proof to the non-complete case.

1. Introduction

Let L be a lattice. We recall that L satisfies the join infinite distributive law
(JID) if for each a ∈ L and S ⊆ L, whenever

∨
S exists, so does

∨{a∧s : s ∈ S}
and a ∧ ∨

S =
∨{a ∧ s : s ∈ S}.

Similarly, L satisfies the meet infinite distributive law (MID) if whenever
∧

S exists, so does
∧{a ∨ s : s ∈ S} and a ∨ ∧

S =
∧{a ∨ s : s ∈ S}.

Obviously, each lattice that satisfies either (JID) or (MID) is distributive.
A classic result in lattice theory is Funayama’s theorem [12] stating that there
is an embedding e of L into a complete Boolean algebra B that preserves
all existing joins and meets in L iff L satisfies both (JID) and (MID). Since
each complete Boolean algebra satisfies both (JID) and (MID), one direction
of Funayama’s theorem is obvious: if there is an embedding e of L into a
complete Boolean algebra B that preserves all existing joins and meets in L,
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then L satisfies both (JID) and (MID). Thus, the main challenge is in proving
the other direction of Funayama’s theorem, that if a lattice L satisfies both
(JID) and (MID), then there is an embedding e of L into a complete Boolean
algebra B such that e preserves all existing joins and meets in L.

We can state Funayama’s theorem more generally as follows. There is a
lattice embedding e of a lattice L into a complete Boolean algebra B that
preserves all existing joins in L iff L satisfies (JID), and there is a lattice
embedding e of a lattice L into a complete Boolean algebra B that preserves
all existing meets in L iff L satisfies (MID). Of course, the proofs of these two
statements are dual to each other, so it is sufficient to be able to prove only
one of the two, and we will mainly concentrate on the first one.

Funayama’s original proof is quite involved. In [14, Sec. II.4], Grätzer gave
a more accessible proof in case L is complete by showing that if L satisfies both
(JID) and (MID), then the embedding of L into its free Boolean extension B(L)
is a complete lattice embedding. Then taking the MacNeille completion B(L)
of B(L) produces a complete Boolean algebra and the embedding B(L) ↪→
B(L) preserves all existing joins and meets in B(L). Thus, the composition
L ↪→ B(L) ↪→ B(L) is a complete lattice embedding.

A different proof of Funayama’s theorem in case L is complete was given
in Johnstone [16, Sec. II.2]. Let L be a complete lattice satisfying (JID).
Then L is a frame. Therefore, the poset N(L) of all nuclei on L is also a
frame, and the embedding L ↪→ N(L) is a frame homomorphism. Let N(L)¬¬
be the Booleanization of N(L); that is, the Boolean frame of regular nuclei
on L. Thus, N(L)¬¬ is a complete Boolean algebra and the composition
L ↪→ N(L) � N(L)¬¬ is a frame embedding. If in addition L satisfies (MID),
then the embedding L ↪→ N(L)¬¬ is a complete lattice embedding.

In this paper, we show that Grätzer’s proof has an obvious generalization
to the case when L is not necessarily complete, thus providing an accessible
proof of Funayama’s theorem in its full generality. If L is complete, we show
that the complete Boolean algebras B(L) and N(L)¬¬ produced by Grätzer
and Johnstone, respectively, are isomorphic. This confirms a conjecture made
by Leo Esakia in the early 1990s. In the non-complete case, we show that
the class of lattices satisfying (JID) properly contains the class of Heyting
algebras, and we characterize lattices satisfying (JID) and (MID) by means of
their Priestley spaces. Utilizing duality theory, we give alternative proofs of
Funayama’s theorem and of the isomorphism between B(L) and N(L)¬¬. We
also show that unlike Grätzer’s proof, there is no obvious way to generalize
Johnstone’s proof to the non-complete case.

2. Free Boolean extensions, MacNeille completions,
and a generalization of Grätzer’s proof

Let L be a lattice. As we pointed out in the introduction, if there is a lattice
embedding e of L into a complete Boolean algebra B that preserves all existing
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joins in L, then as B satisfies (JID), so does L. (Dually if e preserves all existing
meets in L, then L satisfies (MID).) To prove the converse, let L be a lattice
satisfying (JID). Then L is a distributive lattice. But L may not be bounded.
As a first step, we add the missing bounds to L as follows. If L does not
have 1, then we add on top of L a decreasing chain C = {1 > c1 > c2 > · · · };
that is, we take the disjoint union of L and C and set a ≤ c for each a ∈ L and
c ∈ C. Dually, if L does not have 0, then we add below L an increasing chain
0 < d1 < d2 < · · · . In case L has neither 0 nor 1, we add both chains to L.
The resulting poset M is obviously a bounded distributive lattice. Moreover,
a subset of L has a join (resp. meet) in L iff it has it in M , and when these
two joins (resp. meets) exist, they coincide. Therefore, the embedding L ↪→ M

preserves all existing joins (and meets). In addition, since L satisfies (JID), so
does M . Thus, without loss of generality, we may assume that L is bounded.

Let BDL be the category of bounded distributive lattices and bounded lat-
tice homomorphisms and let BA be the category of Boolean algebras and
Boolean homomorphisms. Then it is well known that BA is a full subcat-
egory of BDL and that the embedding BA ↪→ BDL has a left adjoint (see,
e.g., [1, 7, 11, 13, 14, 18, 23]). This left adjoint sends each bounded distributive
lattice L to its free Boolean extension B(L), which can be constructed as fol-
lows. Let XL be the prime spectrum of L; that is, the set of prime filters of
L ordered by inclusion. For a ∈ L, let ϕ(a) = {x ∈ XL : a ∈ x}. Then ϕ

is a bounded lattice embedding of L into the bounded lattice of all up-sets of
XL. Let B(ϕ[L]) be the Boolean subalgebra of the powerset of XL generated
by ϕ[L]. The Boolean algebra B(ϕ[L]) is (isomorphic to) the free Boolean
extension B(L) of L. In fact, each bounded lattice homomorphism from L

to a Boolean algebra B extends uniquely to a Boolean homomorphism from
B(L) to B.

Lemma 2.1. Let L be a bounded distributive lattice, let B(L) be the free
Boolean extension of L, and let e : L ↪→ B(L) be the canonical lattice embed-
ding.

(1) If L satisfies (JID), then e preserves all existing joins in L.
(2) If L satisfies (MID), then e preserves all existing meets in L.

Proof. We only prove (1) as (2) is proved similarly. Let L satisfy (JID), S ⊆ L,
and

∨
L S exist. Let x ∈ B(L) be an upper bound of S in B(L). It is sufficient

to show that
∨

L S ≤ x. As x ∈ B(L), there exist a1, . . . , an, b1, . . . , bn ∈ L

such that x =
∧n

i=1(¬ai ∨ bi). Let s ∈ S. As x is an upper bound of S, we
have s ≤ ¬ai ∨ bi for each i. Therefore, s∧ ai ≤ bi for each i. Since L satisfies
(JID),

∨
L{s ∧ ai : s ∈ S} exists and

∨
L{s ∧ ai : s ∈ S} = ai ∧

∨
L S. Thus,

ai ∧
∨

L S ≤ bi for each i, so
∨

L S ≤ ¬ai ∨ bi for each i, and so
∨

L S ≤ x.
Consequently, e preserves all existing joins in L. �

Let B be a Boolean algebra. We recall (see, e.g., [1]) that the MacNeille
completion of B is a complete Boolean algebra B such that there is a Boolean
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embedding e : B ↪→ B that is join-dense in B (equivalently, e is meet-dense
in B). It is well known that the embedding e preserves all existing joins and
meets in B.

Remark 2.2. The explicit construction of B is by means of normal ideals of
B, where an ideal N of B is normal if Nul = N . (Here (−)u and (−)l are
the operations of taking the upper bounds and lower bounds, respectively.)
As was shown in [14, Exercises to Sec. II.4], normal ideals of B turn out to
be the regular elements of the frame of ideals of B. More precisely, let Idl(B)
be the frame of ideals of B, and let RIdl(B) be the Boolean frame of regular
elements of Idl(B); that is, those I ∈ Idl(B) that satisfy ¬¬I = I, where ¬I

is the pseudocomplement of I in Idl(B). Then RIdl(B) is isomorphic to B,
which can be seen by observing that N is a normal ideal of B iff N ∈ RIdl(B).

Theorem 2.3 (Funayama’s Theorem). Let L be a lattice.

(1) L satisfies (JID) iff there exists a lattice embedding e of L into a complete
Boolean algebra B that preserves all existing joins in L.

(2) L satisfies (MID) iff there exists a lattice embedding e of L into a complete
Boolean algebra B that preserves all existing meets in L.

(3) L satisfies (JID) and (MID) iff there exists an embedding e of L into a
complete Boolean algebra B that preserves all existing joins and meets
in L.

Proof. It suffices to prove (1) as (2) is proved similarly and (3) follows from
(1) and (2). For (1), it is sufficient to show that if L satisfies (JID), then
there exists a complete Boolean algebra B and a lattice embedding e : L → B

that preserves all existing joins in L. As we already pointed out, we may
assume without loss of generality that L is bounded. Let B(L) be the free
Boolean extension of L, and let B(L) be the MacNeille completion of B(L). By
Lemma 2.1(1), the lattice embedding L ↪→ B(L) preserves all existing joins in
L, and it is well known that the Boolean embedding B(L) ↪→ B(L) preserves all
existing joins (and meets) in B(L). Thus, the composition L ↪→ B(L) ↪→ B(L)
is a lattice embedding preserving all existing joins in L. �

When L is complete, Theorem 2.3 yields Grätzer’s proof of Funayama’s
theorem. Theorem 2.3 also has an obvious corollary for Heyting algebras. It
is well known that if L is complete, then L satisfies (JID) iff L is a Heyting
algebra (dually, L satisfies (MID) iff L is a co-Heyting algebra). It is easy to see
that one direction of this correspondence also holds when L is not complete.
Namely, if L is a Heyting algebra, then L satisfies (JID), and dually, if L

is a co-Heyting algebra, then L satisfies (MID). However, there exist lattices
satisfying (JID) that are not Heyting algebras, as well as lattices satisfying
(MID) that are not co-Heyting algebras. This is demonstrated in the next
example.
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Example 2.4. Let L be the lattice depicted in Figure 1. It is obvious that L

is not a Heyting algebra. For example, ¬a0 does not exist in L. On the other
hand, L satisfies (JID) because no non-trivial infinite joins exist in L.

0

a0 b1

a1 b2

a2

c2

c1

1

L

Figure 1

Dualizing this example produces a lattice L satisfying (MID) that is not a
co-Heyting algebra.

We conclude this section by the following obvious consequence of Theo-
rem 2.3.

Corollary 2.5. Let L be a lattice.

(1) If L is a Heyting algebra, then there exists a lattice embedding e of L into
a complete Boolean algebra B that preserves all existing joins in L.

(2) If L is a co-Heyting algebra, then there exists a lattice embedding e of L

into a complete Boolean algebra B that preserves all existing meets in L.
(3) If L is a bi-Heyting algebra, then there exists an embedding e of L into

a complete Boolean algebra B that preserves all existing joins and meets
in L.

3. Nuclei, Booleanization, and Johnstone’s proof

We recall that a nucleus on a meet-semilattice M is a map j : M → M

satisfying
a ≤ ja, jja = ja, j(a ∧ b) = ja ∧ jb,

for all a, b ∈ M . We will be mostly interested in nuclei on Heyting algebras
and frames. If j is a nucleus on a frame L, then the set Lj = {a ∈ L : ja = a}
of its fixed points is a frame and j : L → Lj is an onto frame homomorphism
whose right adjoint is the inclusion Lj ↪→ L [16, Sec. II.2].
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For a frame L, let N(L) be the set of all nuclei on L. If we order N(L)
pointwise, then it is well known that N(L) is a frame and that a 
→ a∨ (−) is
a frame embedding of L into N(L) [16, Sec. II.2]. We call j ∈ N(L) regular if
¬¬j = j, where ¬¬ is taken in N(L). It is well known [16, Sec. II.2] that the
set N(L)¬¬ of all regular nuclei on L is a Boolean frame (complete Boolean
algebra). Following the terminology of Banaschewski and Pultr [2], we call
N(L)¬¬ the Booleanization of N(L).

Johnstone [16, Sec. II.2] proves that if L is a frame, then the composition
L ↪→ N(L) � N(L)¬¬ is a frame embedding. In addition, the embedding
L ↪→ N(L) preserves arbitrary meets iff L satisfies (MID). As N(L)¬¬ is
closed under arbitrary meets in N(L), the composition L ↪→ N(L) � N(L)¬¬
preserves all meets in L iff L satisfies (MID). Therefore, the composition L ↪→
N(L) � N(L)¬¬ is a complete lattice embedding iff L satisfies both (JID) and
(MID). This yields another proof of Funayama’s theorem for complete lattices.

We show that the complete Boolean algebras N(L)¬¬ and B(L) are isomor-
phic, thus showing that the Grätzer and Johnstone proofs of Funayama’s the-
orem for complete L, although different, produce the same complete Boolean
algebra in which there is a frame embedding of L.

Theorem 3.1. For each frame L, the complete Boolean algebras B(L) and
N(L)¬¬ are isomorphic.

Proof. Following [16, Sec. II.2], for a ∈ L, let ca = a∨ (−) and ua = a → (−).
By [16, Sec. II.2], ca, ua ∈ N(L) and are each other’s complements in N(L).
Therefore, ca, ua belong to the center of N(L). As the center of N(L) is
contained in N(L)¬¬, we have ca, ua ∈ N(L)¬¬. In fact, as shown in [16,
Sec. II.2], the map h : L → N(L)¬¬ given by h(a) = ca is a frame embedding.
(This is in essence Johnstone’s proof of Funayama’s theorem for frames.) As
B(L) is the free Boolean extension of L and N(L)¬¬ is a (complete) Boolean
algebra, the frame embedding h : L → N(L)¬¬ extends to a unique Boolean
homomorphism h : B(L) → N(L)¬¬, which can be defined as follows. For
x ∈ B(L), there exist a1, . . . , an, b1, . . . , bn ∈ L such that x =

∧n
i=1(¬ai ∨ bi).

Then h(x) =
∧n

i=1(¬cai
∨ cbi

). If h(x) = 1, then cai
≤ cbi

for each i, so ai ≤ bi

for each i, yielding x = 1. Therefore, h is 1–1, and so up to isomorphism, B(L)
is a Boolean subalgebra of N(L)¬¬. (In fact, B(L) is isomorphic to a Boolean
subalgebra of the center of N(L).) By [16, Sec. II.2], each j ∈ N(L) is a join
of nuclei of the form ca ∧ ub, so each j is a join of nuclei of the form ca ∧ ¬cb.
This means that up to isomorphism B(L) is join-dense in N(L), hence up to
isomorphism, B(L) is a join-dense subalgebra of N(L)¬¬. Thus, N(L)¬¬ is
isomorphic to the MacNeille completion B(L) of B(L). �

Consequently, in case L is complete, Grätzer’s proof of Funayama’s theorem
can be summarized by the diagram: L ↪→ B(L) ↪→ B(L), while Johnstone’s
proof can be summarized by the diagram: L ↪→ N(L) � N(L)¬¬. Although
the constructions are different, by Theorem 3.1, the complete Boolean algebras
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produced in both cases are isomorphic. This confirms a conjecture made by
Leo Esakia in the early 1990s.

4. Dual characterization of lattices satisfying (JID) and (MID)
and Funayama’s theorem

In this section, we characterize lattices satisfying (JID) and (MID) by means
of their Priestley spaces. This yields alternative proofs of Funayama’s theo-
rem and Theorem 3.1 by means of Priestley duality. We conclude the paper
by showing that unlike Grätzer’s proof, Johnstone’s proof has no obvious gen-
eralization to the non-complete case.

We assume the reader’s familiarity with Stone duality for Boolean algebras
[26] and Priestley duality for bounded distributive lattices [20, 21]. We recall
that the Priestley space of a bounded distributive lattice L is constructed as
follows: Let XL be the prime spectrum (the set of prime filters) of L ordered
by inclusion. For a ∈ L, recall that ϕ(a) = {x ∈ XL : a ∈ x}, and generate the
topology on XL by the basis {ϕ(a)−ϕ(b) : a, b ∈ L}. Then XL is the Priestley
space of L. Also, the bounded distributive lattice of a Priestley space X is the
lattice LX of clopen up-sets of X.

Esakia duality for Heyting algebras [8] is a restricted version of Priestley
duality. We recall that an Esakia space is a Priestley space X in which the
down-set ↓U of each clopen U ⊆ X is clopen, and that the constructions of
the Esakia space of a Heyting algebra and of the Heyting algebra of an Esakia
space are the same as in Priestley duality.

Remark 4.1. The Priestley space XL of the lattice L of Example 2.4 is
depicted in Figure 2, where the only limit point is {1, c1, . . . }; all other points
are isolated. Clearly, XL is not an Esakia space because ↑a0 is an isolated
point of XL, hence the singleton {↑a0} is clopen in XL, but its down-set is not
clopen in XL.

{1}
↑c1

{1, c1, . . . }
↑a0

↑b2

↑b1

XL

Figure 2
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From now on, in order to use Priestley duality freely, we restrict ourselves
to bounded distributive lattices. If L is not bounded, then as we already
saw, without loss of generality we may always add bounds to L. Recall that
BDL is the class of bounded distributive lattices. Let JID be the class of
bounded lattices satisfying (JID) and let HA be the class of Heyting algebras.
Then HA � JID � BDL. Consequently, Priestley spaces corresponding to
bounded lattices satisfying (JID) satisfy a condition that is weaker than the
Esakia condition. To describe this condition, we first recall several conditions
equivalent to the Esakia condition. The next lemma can be extracted from [11,
Sec. III.1], but since the extraction requires a little effort and also since [11] is
in Russian, we give a full proof of it.

Lemma 4.2. The following are equivalent for a Priestley space X:

(1) X is an Esakia space.
(2) The closure of each up-set is an up-set.
(3) The closure of each open up-set is an up-set.

Proof. (1)⇒(2): Let U be an up-set, x ∈ U , and x ≤ y. If y /∈ U , then as X

is a Stone space, there exists a clopen set V such that y ∈ V and V ∩ U = ∅.
As X is an Esakia space, ↓V is clopen. Since x ≤ y and y ∈ V , we have
x ∈ ↓V . As V ∩U = ∅ and U is an up-set, ↓V ∩U = ∅. Thus, we have an open
neighborhood ↓V of x that does not intersect U . This means that x /∈ U . The
obtained contradiction proves that y ∈ U , so U is an up-set.

(2)⇒(3): This is obvious.
(3)⇒(1): Let U be clopen. As X is a Priestley space, ↓U is closed, so

it is sufficient to show that ↓U is open. We have X − ↓U is an open up-
set. By (3), X − ↓U is an up-set. As U ∩ (X − ↓U) = ∅ and U is open,
U ∩ X − ↓U = ∅. As X − ↓U is an up-set, this implies ↓U ∩ X − ↓U = ∅.
Therefore, X − ↓U ⊆ X −↓U , so X −↓U = X − ↓U . Thus, X −↓U is closed,
so ↓U is open, and so X is an Esakia space. �

Remark 4.3. A condition equivalent to condition (2) of Lemma 4.2 is that the
interior of each down-set is a down-set, and a condition equivalent to condition
(3) is that the interior of each closed down-set is a down-set.

Remark 4.4. Dual spaces of co-Heyting algebras are Priestley spaces satisfy-
ing that U clopen implies ↑U is clopen [9, 10]. We call these spaces co-Esakia
spaces. An argument dual to the proof of Lemma 4.2 then gives that for a
Priestley space to be a co-Esakia space is equivalent to either of the following
two conditions: (i) the closure of each down-set is a down-set (equivalently,
the interior of each up-set is an up-set); (ii) the closure of each open down-set
is a down-set (equivalently, the interior of each closed up-set is an up-set).

Let X be a Priestley space and let S ⊆ X. Following [15], we let

JS = X − ↓(X − intS) and DS = ↑S.
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It is easy to see [15] that JS is the largest open up-set contained in S and
DS is the smallest closed up-set containing S. Using this notation, being an
Esakia space means that if U is an open up-set, then DU = U .

Definition 4.5. Let X be a Priestley space.

(1) We call X a J-space if for each open up-set U , whenever DU is clopen,
DU = U .

(2) We call X an M-space if for each closed up-set F , whenever JF is clopen,
JF = intF .

(3) We call X a JM-space if X is both a J-space and an M-space.

Obviously, the condition defining a J-space weakens the condition defining
an Esakia space. (Similarly, the condition defining an M-space weakens the
condition defining a co-Esakia space. If we call a Priestley space a bi-Esakia
space whenever it is both an Esakia space and a co-Esakia space, then the con-
dition defining a JM-space weakens the condition defining a bi-Esakia space.)
We show that the conditions of Definition 4.5 give dual characterizations of
bounded lattices satisfying (JID) and (MID).

Theorem 4.6. Let L be a bounded distributive lattice and let XL be the Priest-
ley space of L.

(1) L satisfies (JID) iff XL is a J-space.
(2) L satisfies (MID) iff XL is an M-space.
(3) L satisfies (JID) and (MID) iff XL is a JM-space.

Proof. (1): First suppose that XL is a J-space. Let a ∈ L, S ⊆ L, and
∨

S exist in L. It is sufficient to show that a ∧ ∨
S is a least upper bound

of {a ∧ s : s ∈ S}. Let u be an upper bound of {a ∧ s : s ∈ S}. Then
ϕ(a) ∩ ϕ(s) ⊆ ϕ(u) for each s ∈ S. Therefore, ϕ(a) ∩ ⋃{ϕ(s) : s ∈ S} ⊆ ϕ(u).
We let U =

⋃{ϕ(s) : s ∈ S}. Then U is an open up-set of XL and ϕ(a)∩U ⊆
ϕ(u). So U ⊆ (XL − ϕ(a)) ∪ ϕ(u). As (XL − ϕ(a)) ∪ ϕ(u) is clopen, this
implies U ⊆ (XL − ϕ(a)) ∪ ϕ(u), so ϕ(a) ∩ U ⊆ ϕ(u). Since

∨
S exists in L,

by [21, Prop. 15] (see also [22, Thm. 1.5] or [4, Lem. 2.3.1]), ϕ(
∨

S) = DU ,
so DU is clopen. As XL is a J-space, DU = U . Thus, ϕ(a) ∩ DU ⊆ ϕ(u),
implying that ϕ(a ∧ ∨

S) ⊆ ϕ(u). This yields a ∧ ∨
S ≤ u. Consequently,

a ∧ ∨
S =

∨{a ∧ s : s ∈ S}, and so L satisfies (JID).
Conversely, suppose that L satisfies (JID). Let U be an open up-set of XL

such that DU is clopen. We must show that DU = U . If not, then there exists
x ∈ DU − U . Therefore, there exists y ∈ U with y ≤ x. As x /∈ U , we have
x /∈ ↓x ∩ U . Since XL is a Priestley space, there exists a clopen up-set ϕ(a)
such that x ∈ ϕ(a) and ϕ(a) ∩ ↓x ∩ U = ∅. As U is an open up-set, there is
S ⊆ L such that U =

⋃{ϕ(s) : s ∈ S}. Since DU is clopen, by [21, Prop. 15]
(see also [22, Thm. 1.5] or [4, Lem. 2.3.1]),

∨
S exists and ϕ(

∨
S) = DU . As

L satisfies (JID),
∨{a ∧ s : s ∈ S} exists and a ∧ ∨

S =
∨{a ∧ s : s ∈ S}.
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Clearly, x ∈ ϕ(a) ∩ DU , so x ∈ ϕ(a ∧ ∨
S). On the other hand,

ϕ(
∨{a ∧ s : s ∈ S}) = D

⋃{ϕ(a) ∩ ϕ(s) : s ∈ S}
= D(ϕ(a) ∩ U) ⊆ D(ϕ(a) ∩ U) = ↑(ϕ(a) ∩ U).

But ↓x ∩ ϕ(a) ∩ U = ∅ implies x /∈ ↑(ϕ(a) ∩ U). So, x /∈ ϕ(
∨{a ∧ s : s ∈ S}),

which yields a ∧ ∨
S �= ∨{a ∧ s : s ∈ S}. The obtained contradiction proves

that DU = U . Thus, XL is a J-space.
(2): This can be proved by an argument dual to (1).
(3): This follows from (1) and (2). �

Remark 4.7. Theorem 4.6 can be used to give an alternative proof of the
nontrivial implication in Funayama’s theorem by means of Priestley duality.
Indeed, let L satisfy (JID) and without loss of generality assume that L is
bounded. Let XL be the Priestley space of L. By Theorem 4.6, XL is a
J-space. Let S ⊆ L be such that

∨
L S exists. We let U be the open up-set

⋃{ϕ(s) : s ∈ S}. Then ϕ(
∨

L S) = DU , so DU is clopen, and as XL is a
J-space, DU = U . Therefore, U is clopen. Since B(L) is isomorphic to the
Boolean algebra of clopen subsets of XL, U being clopen implies the join of the
image of S in B(L) exists and is equal to U . Thus, the canonical embedding
ϕ : L ↪→ B(L) preserves all existing joins in L. A similar argument gives that
if L satisfies (MID), then XL is an M-space, and so ϕ preserves all existing
meets in L. Thus, if L satisfies both (JID) and (MID), then XL is a JM-space,
and so ϕ preserves all existing joins and meets in L. Taking the MacNeille
completion of B(L) then completes the proof.

Remark 4.8. Priestley spaces can be viewed from the bitopological point of
view [5, 17, 19, 21]. (There is a large intersection among the results of [19]
and [5]. Unfortunately, we were unaware of [19] when we wrote [5].) Each
Priestley space carries the topology τ1 of open up-sets and the topology τ2 of
open down-sets, and the Priestley topology τ is the join of these two topologies.
In this setting, J is the interior in the topology τ1 and D is the closure in the
topology τ2. From this perspective, being an Esakia space means that if U is
τ1-open, then the τ2-closure coincides with the τ -closure; and being a J-space
means that for each τ1-open U , if τ2-closure of U is τ -open, then it coincides
with the τ -closure of U . Similarly, being a co-Esakia space means that if U

is τ2-closed, then the τ1-interior coincides with the τ -interior; and being an
M-space means that for each τ2-closed F , if τ1-interior of F is τ -closed, then
it coincides with the τ -interior of F .

Next we show how to use duality theory to obtain an alternative proof of
Theorem 3.1. As frames are complete Heyting algebras, we will use Esakia
duality. It is well known (see, e.g., [4, 15, 22]) that a Heyting algebra A is
complete iff in its Esakia space the closure of each open up-set is clopen.
Following the nomenclature in Priestley spaces [21], we call an Esakia space
X extremally order-disconnected if the closure of each open up-set is clopen.
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It follows that a Heyting algebra is a frame iff its Esakia space is extremally
order-disconnected.

We recall the dual characterization of nuclei on Heyting algebras given in [6].
Let X be an Esakia space. A closed subset S of X is a subframe of X if for each
clopen U of X, the set ↓(U∩S) is clopen in X. Let A be a Heyting algebra and
let X be its Esakia space. If j is a nucleus on A, then the Esakia space of Aj can
be identified with the subframe Sj = {x ∈ X : j−1[x] = x} of X. Conversely,
if S is a subframe of X, then the induced partial order on S turns it into an
Esakia space, and the lattice homomorphism S ∩ (−) : LX → LS has a right
adjoint rS given by rS(U) = X −↓(S−U). The composite jS = rS ◦ (S ∩ (−))
is then a nucleus on LX . Therefore, the assignments j 
→ Sj and S 
→ jS

establish an order-reversing one-to-one correspondence between nuclei on A

and subframes of X. We show that if X is an extremally order-disconnected
Esakia space, then each regular closed subset of X is a subframe of X.

Lemma 4.9. Let X be an extremally order-disconnected Esakia space. If F

is a regular closed subset of X, then ↓F is clopen.

Proof. As F is closed, so is ↓F . Since X is extremally order-disconnected, the
closure of each open up-set is clopen. This is equivalent to the statement that
the interior of each closed down-set is clopen. Therefore, int ↓F is clopen. But
F ⊆ ↓F , so int F ⊆ int ↓F , and so int F ⊆ int ↓F . As F is regular closed,
int F = F . Since int ↓F is clopen, int ↓F = int ↓F . So int F ⊆ int ↓F implies
F ⊆ int ↓F . As X is an Esakia space, by Remark 4.3, the interior of each
closed down-set is a down-set. Therefore, int ↓F is a down-set, so F ⊆ int ↓F
implies ↓F ⊆ int ↓F , and so ↓F is open. Thus, ↓F is clopen. �
Lemma 4.10.
(1) Let A be a Heyting algebra, a ∈ A complemented, and b ∈ A regular.

Then a ∨ b is regular.
(2) Let X be a topological space, C ⊆ X clopen, and U ⊆ X regular open.

Then C ∪ U is regular open.
(3) Let X be a topological space, C ⊆ X clopen, and F ⊆ X regular closed.

Then C ∩ F is regular closed.

Proof. (1): We have ¬¬(a ∨ b) = ¬(¬a ∧ ¬b) = ¬a → ¬¬b = ¬a → b as b is
regular. Since a is complemented, so is ¬a. Therefore, ¬a → b = ¬¬a ∨ b =
a ∨ b. Thus, ¬¬(a ∨ b) = a ∨ b, and so a ∨ b is regular.

(2): This follows from (1) by taking A to be the (complete) Heyting algebra
of open subsets of X.

(3): This is the dual statement of (2). �
Proposition 4.11. Let X be an extremally order-disconnected Esakia space.
Then each regular closed subset of X is a subframe of X.

Proof. Let S be a regular closed subset of X and let U be clopen in X. By
Lemma 4.10(3), S ∩ U is regular closed in X. By Lemma 4.9, ↓(S ∩ U) is
clopen in X. Thus, S is a subframe of X. �
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For an Esakia space X, let S(X) be the poset of subframes of X ordered
by inclusion. If X is the Esakia space of a Heyting algebra A, then S(X)
is dually isomorphic to N(A) [6, Thm. 30]. If A is a frame, then N(A) is a
frame [16, Sec. II.2]. Therefore, if X is extremally order-disconnected, then
S(X) is dually isomorphic to the frame N(A), so S(X) is a complete lattice
satisfying (MID). In particular, S(X) is a co-Heyting algebra, so possesses co-
implication, which we denote by ←. We also denote co-negation by ∼. Clearly,
for F ∈ S(X), we have ∼ F = X ← F . By analogy with N(A), we call an
element F of S(X) regular if ∼∼ F = F .

Proposition 4.12. Let L be a frame and X its Esakia space. Then regular
closed subsets of X are precisely the regular elements of S(X).

Proof. Let S ∈ S(X). We show that ∼ S = X − S. We have X − S is the
smallest among those closed subsets F of X for which S∪F = X. As X − S is
regular closed, by Proposition 4.11, X − S ∈ S(X). Therefore, ∼ S = X − S.
Thus, S is a regular element of S(X) iff S = ∼∼ S iff S = X − X − S iff
S = intS iff S is regular closed. �

We are ready to give an alternative proof of Theorem 3.1.

Theorem 4.13. For a frame L, the MacNeille completion B(L) of B(L) is
isomorphic to the complete Boolean algebra N(L)¬¬ of regular elements of
N(L).

Proof. Let X be the Esakia space of L. Then B(L) is isomorphic to the
Boolean algebra of clopen subsets of X. Therefore, the MacNeille completion
B(L) of B(L) is isomorphic to the complete Boolean algebra RC(X) of regular
closed subsets of X. (This well-known fact about Boolean algebras can for
example be found in [24].) As N(L) is dually isomorphic to S(X), the Boolean
algebra N(L)¬¬ of regular elements of N(L) is isomorphic to the Boolean
algebra of regular elements of S(X). By Proposition 4.12, the latter is RC(X).
Thus, B(L) is isomorphic to N(L)¬¬. �

We can also obtain a dual characterization of when N(L) is a Boolean
algebra.

Theorem 4.14. Let L be a frame and let X be the Esakia space of L. Then
N(L) is Boolean iff S(X) = RC(X).

Proof. We have N(L) is Boolean iff N(L) = N(L)¬¬. By the dual isomorphism
between N(L) and S(X) and by Proposition 4.12, this happens iff S(X) =
RC(X). �

Remark 4.15. A purely algebraic characterization of when N(L) is Boolean
was given in [3]. In [25], it was shown that if L is the frame of open subsets of
a T0-space X, then N(L) is Boolean iff X is scattered. To these, Theorem 4.14
adds a characterization of when N(L) is Boolean in terms of the Esakia space
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of L. In [6, Cor. 33.1], it is stated erroneously that N(L) is Boolean iff S(XL)
is the Boolean algebra of clopen subsets of XL. The mistake comes from the
fact that although clopen subsets of XL give rise to complemented elements
of N(L), there exist nuclei on L such that their corresponding subframes are
not clopen. Of course, by Theorem 4.14, they are regular closed.

We conclude the paper by showing that unlike Grätzer’s proof, Johnstone’s
proof has no obvious generalization to the non-complete case. If L is not
complete, then it is known that N(L) may not even be a lattice. For a simple
such example, let L be the linearly ordered lattice shown in Figure 3 together
with its dual space XL.

0

a1

a2

b2

b1

1

{1}

L XL

↑b1

↑b2

{1, b1, b2, . . . }

↑a3

↑a2

↑a1

Figure 3

As L is linearly ordered, L is a Heyting algebra, so XL is an Esakia space.
By [6, Thm. 30], the poset N(L) of nuclei of L is dually isomorphic to the poset
S(XL) of subframes of XL. To describe S(XL), let X+ denote the “upper part”
and let X− denote the “lower part” of XL; that is, X+ = {↑a1, ↑a2, ↑a3, . . . }
and X− = {{1}, ↑b1, ↑b2, . . . }. We also let ω = {1, b1, b2, . . . }. Clearly ω is
the only limit point of XL, all other points of XL are isolated, and XL is the
one-point compactification of X+ ∪ X−.

Lemma 4.16. Let S ⊆ XL. Then S ∈ S(XL) iff S is finite and ω /∈ S, or
S ∩ X+ is infinite and ω ∈ S.

Proof. First, suppose that S is finite and ω /∈ S. Then S is clopen, so S ∈
S(XL). Next, suppose that S∩X+ is infinite and ω ∈ S. Then S is closed. Let
U be clopen in S. If U ∩X+ = ∅, then U is a finite subset of X−. Therefore,
↓U is also a finite subset of X−, so is clopen in XL. If U ∩ X+ �= ∅, let s be
the largest element of U ∩ X+. Then ↓U = ↓s is clopen in XL. In either case
we see that S ∈ S(XL).

Conversely, suppose S ∈ S(XL). As S is closed, if ω /∈ S, then S must
be finite, so S is finite and ω /∈ S. Suppose that ω ∈ S. If S ∩ X+ is finite,
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say S ∩ X+ = {s1, . . . , sn}, then U = S − {s1, . . . , sn} is clopen in S, whereas
↓U = X− ∪ {ω} is not clopen in XL, which contradicts that S ∈ S(XL).
Therefore, S ∩ X+ is infinite and ω ∈ S. �

Proposition 4.17. Let L and XL be as in Figure 3.

(1) S(XL) is not a ∧-semilattice, so S(XL) is not a lattice.
(2) N(L) is not a ∨-semilattice, so N(L) is not a lattice.

Proof. (1): Let A1, A2 be any infinite disjoint subsets of X+; let S1 = A1 ∪
{ω} ∪X−, and let S2 = A2 ∪ {ω} ∪X−. By Lemma 4.16, S1, S2 ∈ S(XL). On
the other hand, S1 ∩ S2 = {ω} ∪ X− /∈ S(XL). In fact, the set {T ∈ S(XL) :
T ⊆ S1, S2} consists of all finite subsets of X−, and so {S1, S2} does not have a
greatest lower bound in S(XL). Thus, S(XL) is not a ∧-semilattice, so S(XL)
is not a lattice.

(2): As N(L) is dually isomorphic to S(XL) (see [6, Thm. 30]), this follows
from (1). �

This shows that if L is not complete, then the definition of N(L)¬¬ is prob-
lematic because ¬a may not exist for some a ∈ N(L). We could nevertheless
try to define N(L)¬¬ as the set of those a ∈ N(L) for which ¬¬a exists in
N(L) and a = ¬¬a. In terms of S(XL), this means that S(XL)∼∼ could be
defined as those S ∈ S(XL) for which ∼∼ S exists in S(XL) and S = ∼∼ S.
Unfortunately, so defined N(L)¬¬ and S(XL)∼∼ may still not be lattices, let
alone Boolean algebras. Indeed, consider the sets S1 and S2 from the proof of
Proposition 4.17. It is easy to see that ∼ S1 = (X+−A1)∪{ω}, so ∼ S1 exists
in S(XL) and ∼∼ S1 = S1. Similarly, ∼ S2 exists in S(XL) and ∼∼ S2 = S2.
Therefore, S1, S2 ∈ S(XL)∼∼. But, as we have already seen, S1 ∧ S2 does
not exist in S(XL), and the same argument shows that S1 ∧ S2 does not ex-
ist in S(XL)∼∼. Thus, S(XL)∼∼ is not a lattice. So neither is N(L)¬¬. In
particular, the complete Boolean algebra RC(XL) of regular closed subsets of
XL is not isomorphic to S(XL)∼∼. In fact, S(XL) is properly contained in
RC(XL). To see this, as XL is the one-point compactification of XL − {ω},
it is clear that S ∈ RC(XL) iff S is closed and S is infinite or ω /∈ S. That
S(XL) ⊆ RC(XL) now follows from Lemma 4.16. On the other hand, as
X− ∪ {ω} ∈ RC(XL) − S(XL), this inclusion is proper.

All this indicates that there is no obvious generalization of Johnstone’s proof
of Funayama’s theorem to the non-complete case.

Remark 4.18. Nevertheless, there is a possibility of embedding Heyting al-
gebras into Boolean algebras so that all existing joins and finite meets are
preserved by means of regular operators of Wilson [27]. We recall that given a
Heyting algebra A, a map r : A → A is a regular operator if r(a → b) = a → rb

for all a, b ∈ A. Wilson [27] shows that if A is a frame, then the set R(A)
of regular operators on A is a complete Boolean algebra which is isomorphic
to N(N(A))¬¬. If A is not complete, then R(A) is still a Boolean algebra
and the embedding of A into R(A) preserves all existing joins and finite meets
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in A. However, R(A) may fail to be complete. For example, if A is a non-
complete Boolean algebra, then R(A) is isomorphic to A. Moreover, even
if A is complete, R(A) may be strictly larger than N(A)¬¬. Furthermore,
this method does not work for lattices satisfying (JID) that are not Heyting
algebras because regular operators cannot be defined for these lattices.
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