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We introduce pairwise Stone spaces as a bitopological generalisation of Stone spaces – the

duals of Boolean algebras – and show that they are exactly the bitopological duals of

bounded distributive lattices. The category PStone of pairwise Stone spaces is isomorphic to

the category Spec of spectral spaces and to the category Pries of Priestley spaces. In fact, the

isomorphism of Spec and Pries is most naturally seen through PStone by first establishing

that Pries is isomorphic to PStone, and then showing that PStone is isomorphic to Spec. We

provide the bitopological and spectral descriptions of many algebraic concepts important in

the study of distributive lattices. We also give new bitopological and spectral dualities for

Heyting algebras, thereby providing two new alternatives to Esakia’s duality.

1. Introduction

It is widely considered that the origin of duality theory was Stone’s groundbreaking work

in the mid 1930s on the dual equivalence of the category Bool of Boolean algebras and

Boolean algebra homomorphisms and the category Stone of compact Hausdorff zero-

dimensional spaces, which became known as Stone spaces, and continuous maps. In 1937,

Stone extended this to the dual equivalence of the category DLat of bounded distributive

lattices and bounded lattice homomorphisms and the category Spec of what later became

known as spectral spaces and spectral maps (Stone 1937). Spectral spaces provide a
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generalisation of Stone spaces. Unlike Stone spaces, spectral spaces are not Hausdorff

(not even T1)
†, and as a result, are more difficult to work with. In 1970, Priestley described

another dual category of DLat by means of special ordered Stone spaces, which became

known as Priestley spaces, thus establishing that DLat is also dually equivalent to the

category Pries of Priestley spaces and continuous order-preserving maps (Priestley 1970).

Since DLat is dually equivalent to both Spec and Pries, it follows that the categories

Spec and Pries are equivalent. In fact, we can say more since Cornish (1975) (see also

Fleisher (2000)) tells us that Spec is actually isomorphic to Pries.

From the point of view of pointfree topology, it is more natural to work with spectral

spaces, as demonstrated in Johnstone (1982). In addition, spectral spaces just have a

topological structure, while Priestley spaces also have an order structure on top of

topology, thus their signature is more complicated than that of spectral spaces. However,

Priestley spaces arise more naturally in relation to logics, as Priestley spaces incorporate

the now widely used Kripke semantics. As a result, Priestley’s duality became rather

popular among logicians, and most dualities for distributive lattices with operators have

been performed in terms of Priestley spaces. Here we only mention Esakia duality for

Heyting algebras (Esakia 1974), which is a restricted version of Priestley duality‡.

Another way to represent distributive lattices is by means of bitopological spaces,

as demonstrated in Jung and Moshier (2006). In fact, bitopological spaces provide a

medium for establishing the isomorphism between Pries and Spec – for each Priestley

space (X, τ,�), there are two natural topologies associated with it: the upper topology

τ1 consisting of open upsets of (X, τ,�) and the lower topology τ2 consisting of open

downsets of (X, τ,�). Consequently, (X, τ1, τ2) is a bitopological space. Moreover, both

topologies τ1 and τ2 are spectral topologies: the Priestley topology τ is, in fact, the join of

τ1 and τ2, and the spectral space associated with (X, τ,�) is obtained from (X, τ1, τ2) by

simply forgetting τ2.

In this paper we provide an explicit axiomatisation of the class of bitopological spaces

obtained in this way. We call these spaces pairwise Stone spaces. On the one hand, pairwise

Stone spaces provide a generalisation of Stone spaces as each of the three conditions

defining a Stone space naturally generalises to the bitopological setting: compact becomes

pairwise compact; Hausdorff becomes pairwise Hausdorff; and zero-dimensional becomes

pairwise zero-dimensional. On the other hand, pairwise Stone spaces provide a medium for

moving from Priestley spaces to spectral spaces and vice versa, so Cornish’s isomorphism

of Pries and Spec can be established more naturally by first showing that Pries is

isomorphic to the category PStone of pairwise Stone spaces and bicontinuous maps, and

then showing that PStone is isomorphic to Spec. Another point is that the signature of

pairwise Stone spaces carries the symmetry present in Priestley spaces (and distributive

lattices), but hidden in spectral spaces. Moreover, the proof that DLat is dually equivalent

to PStone is simpler than the existing proofs of the dual equivalence of DLat with

Spec and Pries. Finally, the isomorphism of Pries, PStone, and Spec fits nicely within a

† In fact, a spectral space X is a Stone space if and only if X is T1.
‡ Note that Esakia’s work was independent of Priestley’s; a proof that Esakia spaces are (special) Priestley

spaces can be found in Esakia (1985, page 62).
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more general isomorphism of the categories of compact order-Hausdorff spaces, pairwise

compact pairwise regular bitopological spaces, and stably compact spaces described in

Gierz et al. (2003, Chapter VI-6) (see also Salbany (1984) and Lawson (1991)).

The dualities described above have many applications in logic and computer science. In

fact, the basic idea underlying the completeness results of (propositional) logics is based

on duality theory since the canonical model of a propositional logic is the dual of the

Lindenbaum–Tarski algebra of the logic. Duality theory also provides a framework for

understanding the relationship between denotational semantics of programs and program

logics. In particular, as shown in Abramsky (1991), the denotational semantics and

corresponding program logic are duals of each other. For a recent application of these

ideas to the π-calculus, see Bonsangue and Kurz (2007). For an application of duality

theory to regular languages, see Gehrke et al. (2008). For a variety of applications of

compact order-Hausdorff spaces, pairwise compact pairwise regular bitopological spaces,

and stably compact spaces in probabilistic systems, see the work of Jung and Moshier, and

their collaborators (Jung et al. 1997; Jung et al. 2001; Alvarez-Manilla et al. 2004; Jung

and Moshier 2006). Here we will only mention the fact that there is a dual equivalence

between these categories and the category of proximity lattices (Smyth 1992; Jung and

Sünderhauf 1996), which are a generalisation of distributive lattices, thus providing an

interesting generalisation of the duality for distributive lattices. We view our pairwise

Stone spaces as a particular case of pairwise compact pairwise regular bitopological

spaces, and our isomorphism of the categories of Priestley spaces, pairwise Stone spaces,

and spectral spaces as a particular case of the isomorphism of the categories of compact

order-Hausdorff spaces, pairwise compact pairwise regular bitopological spaces and stably

compact spaces.

One of the advantages of Priestley’s duality is that it is easy to describe many of the

algebraic concepts important for the study of distributive lattice by means of Priestley

spaces. In addition, we show that they have a natural dual description by means of pairwise

Stone spaces. We also give their dual description by means of spectral spaces, which at

times is less transparent than the order topological and bitopological descriptions.

Finally, we introduce the subcategories of PStone and Spec, which are isomorphic to

the category Esa of Esakia spaces and dually equivalent to the category Heyt of Heyting

algebras. This provides an alternative to Esakia’s duality in the setting of bitopological

spaces and spectral spaces.

Organisation of the paper

In Section 2, we recall some basic facts about bitopological spaces, introduce pairwise

Stone spaces and study their basic properties. In Section 3 we prove that the category

PStone of pairwise Stone spaces is isomorphic to the category Pries of Priestley spaces.

In Section 4 we prove that PStone is isomorphic to the category Spec of spectral spaces,

thereby establishing the fact that all three categories are isomorphic to each other. In

Section 5 we give a direct proof that the category DLat of distributive lattices is dually

equivalent to PStone, thereby providing an alternative to Stone’s and Priestley’s dualities. In

Section 6 we give the dual descriptions of many algebraic concepts important in the study
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of distributive lattices by means of Priestley spaces, pairwise Stone spaces and spectral

spaces. In particular, we give the dual descriptions of filters, prime filters, maximal filters,

ideals, prime ideals, maximal ideals, homomorphic images, sublattices, complete lattices,

McNeille completions and canonical completions. At the end of Section 6, we list all the

results we have obtained in one table, which can be viewed as a dictionary of duality

theory for distributive lattices, complementing the dictionary given in Priestley (1984).

Finally, in Section 7 we develop new bitopological and spectral dualities for Heyting

algebras, thereby providing an alternative to Esakia’s duality, and give a table similar to

the one given at the end of Section 6, which can be viewed as a dictionary of duality

theory for Heyting algebras.

2. Pairwise Stone spaces

Recall that a bitopological space is a triple (X, τ1, τ2), where X is a (non-empty) set and

τ1 and τ2 are two topologies on X. Ever since Kelly introduced them in Kelly (1963),

bitopological spaces have been the subject of intensive investigation by many topologists.

In particular, there has been a lot of research on the ‘correct’ generalisation of the basic

topological properties to the bitopological setting. A large number of results along these

lines have been collected in the recent monograph Dvalishvili (2005). For our purposes it

is important to find the correct generalisation of the concept of a Stone space. Therefore,

we are interested in the bitopological versions of compactness, Hausdorffness and zero-

dimensionality.

There are several ways to generalise a topological property to the bitopological setting.

Let (X, τ1, τ2) be a bitopological space and τ = τ1 ∨ τ2. For a topological property P , we

say that (X, τ1, τ2) is bi-P if both (X, τ1) and (X, τ2) are P , and we say that (X, τ1, τ2) is

join P if (X, τ) is P . For example, (X, τ1, τ2) is bi-T0, bi-T1, or bi-T2 if both (X, τ1) and

(X, τ2) are T0, T1, or T2, respectively; and (X, τ1, τ2) is join T0, join T1, or join T2 if

(X, τ) is T0, T1, or T2, respectively. However, for our purposes, neither bi-Stone nor join

Stone turns out to be the correct generalisation of the concept of a Stone space to the

bitopological setting.

Definition 2.1. Let (X, τ1, τ2) be a bitopological space.

(1) (Salbany 1974, Definition 2.1.1) We say (X, τ1, τ2) is pairwise T0 if for any two distinct

points x, y ∈ X, there exists U ∈ τ1 ∪ τ2 containing exactly one of x, y.

(2) (Salbany 1974, Definition 2.1.3) We say (X, τ1, τ2) is pairwise T1 if for any two distinct

points x, y ∈ X, there exists U ∈ τ1 ∪ τ2 such that x ∈ U and y /∈ U.

(3) (Salbany 1974, Definition 2.1.8) We say (X, τ1, τ2) is pairwise T2 or pairwise Hausdorff

if for any two distinct points x, y ∈ X, there exist disjoint U ∈ τ1 and V ∈ τ2 such that

x ∈ U and y ∈ V or there exist disjoint U ∈ τ2 and V ∈ τ1 with the same property.

Remark 2.2. We have chosen Salbany (1974) as our primary source of reference, although

the concepts of a pairwise T0 space and a pairwise T1 space had appeared earlier in the

literature.
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Remark 2.3. It would be more in the spirit of Definitions 2.1(1) and 2.1(2) if we defined

a pairwise T2 space as a bitopological space satisfying the following condition: for any

two distinct points x, y ∈ X there exist disjoint U,V ∈ τ1 ∪ τ2 such that x ∈ U and

y ∈ V . Obviously, if (X, τ1, τ2) is pairwise T2, then it satisfies the condition above, but

the converse is not true in general. Nevertheless, we will show below that in the realm of

pairwise zero-dimensional spaces the two conditions are equivalent.

For a bitopological space (X, τ1, τ2), let δ1 denote the collection of closed subsets of

(X, τ1) and δ2 denote the collection of closed subsets of (X, τ2). The next definition

generalises the notion of zero-dimensionality to bitopological spaces.

Definition 2.4 (Reilly 1973, page 127). We say a bitopological space (X, τ1, τ2) is pairwise

zero-dimensional if opens in (X, τ1) closed in (X, τ2) form a basis for (X, τ1) and opens in

(X, τ2) closed in (X, τ1) form a basis for (X, τ2); that is, β1 = τ1 ∩ δ2 is a basis for τ1 and

β2 = τ2 ∩ δ1 is a basis for τ2.

Note that if (X, τ1, τ2) is pairwise zero-dimensional, then β2 = {Uc | U ∈ β1} and

β1 = {Vc | V ∈ β2}. Moreover, both β1 and β2 contain � and X, and are closed with

respect to finite unions and intersections.

Lemma 2.5. Suppose (X, τ1, τ2) is pairwise zero-dimensional. Then the following conditions

are equivalent:

(1) (X, τ1) is T0.

(2) (X, τ2) is T0.

(3) (X, τ1, τ2) is pairwise T2.

(4) For any two distinct points x, y ∈ X, there exist disjoint U,V ∈ τ1 ∪ τ2 such that

x ∈ U and y ∈ V .

(5) (X, τ1, τ2) is join T2.

(6) (X, τ1, τ2) is bi-T0.

Proof.

(1)⇒(2): Suppose (X, τ1) is T0 and x, y are two distinct points of X. Then there exists

U ∈ τ1 containing exactly one of x, y. Without loss of generality, we may assume that

x ∈ U and y /∈ U. Since (X, τ1, τ2) is pairwise zero-dimensional, there exists V ∈ β1

such that x ∈ V ⊆ U. Therefore, Vc ∈ β2, y ∈ Vc and x /∈ Vc, so (X, τ2) is T0.

(2)⇒(3): Suppose (X, τ2) is T0 and x, y are two distinct points of X. Then there exists

U ∈ τ2 containing exactly one of x, y. Without loss of generality we may assume that

x ∈ U and y /∈ U. Since (X, τ1, τ2) is pairwise zero-dimensional, there exists V ∈ β2

such that x ∈ V ⊆ U. Then x ∈ V ∈ β2, y ∈ Vc ∈ β1, and V , V c are disjoint. Thus,

(X, τ1, τ2) is pairwise T2.

(3)⇒(4)⇒(5): This is obvious.

(5)⇒(6): Suppose (X, τ1, τ2) is join T2. We show that (X, τ1) is T0. Let x, y be two distinct

points of X. Since (X, τ1, τ2) is pairwise zero-dimensional and join T2, there exist

U1, U2 ∈ β1 and V1, V2 ∈ β2 such that x ∈ U1 ∩ V1, y ∈ U2 ∩ V2, and U1 ∩ V1 and

U2 ∩ V2 are disjoint. If y /∈ U1, there is U1 ∈ τ1 containing exactly one of x, y. If

y ∈ U1, we have y /∈ V1. Therefore, y ∈ U2 ∩ Vc
1 . Clearly, U2 ∩ Vc

1 ∈ β1. Moreover,
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x /∈ U2 ∩ Vc
1 as x /∈ Vc

1 . Thus, there exists U2 ∩ Vc
1 ∈ τ1 containing exactly one of x, y.

In either case, we separate x, y by a τ1-open set, so (X, τ1) is T0. The fact that (X, τ2)

is T0 can be proved similarly. Consequently, (X, τ1, τ2) is bi-T0.

(6)⇒(1): This is obvious.

On the other hand, (X, τ1, τ2) may be pairwise zero-dimensional and pairwise T2 without

either of τ1, τ2 even being T1, as the following simple example shows.

Example 2.6. Let X = {0, 1}, τ1 = {�, {1}, X} and τ2 = {�, {0}, X}. Then both τ1 and τ2
are the Sierpinski topologies on X, so both are T0, but not T1. Nevertheless, (X, τ1, τ2) is

pairwise zero-dimensional and pairwise T2.

The next definition generalises the notion of compactness to bitopological spaces.

Definition 2.7 (Salbany 1974, Definition 2.2.17). We say a bitopological space (X, τ1, τ2) is

pairwise compact if for each cover {Ui | i ∈ I} of X with Ui ∈ τ1 ∪ τ2, there exists a finite

subcover.

Remark 2.8. Salbany defines a bitopological space (X, τ1, τ2) to be pairwise compact if

(X, τ) is compact, where τ = τ1 ∨ τ2 (Salbany 1974, Definition 2.2.17). In our terminology

this means that (X, τ1, τ2) is join compact. But it is a consequence of Alexander’s Lemma

(which is a classical result in general topology) that the two notions of pairwise compact

and join compact coincide.

It is obvious that if (X, τ1, τ2) is pairwise compact, then both (X, τ1) and (X, τ2)

are compact; that is, (X, τ1, τ2) is bi-compact. On the other hand, it was observed in

Salbany (1974, page 17) that the converse is not true in general. We use σ1 and σ2 to

denote the collections of compact subsets of (X, τ1) and (X, τ2), respectively.

Proposition 2.9. A bitopological space (X, τ1, τ2) is pairwise compact if and only if δ1 ⊆ σ2

and δ2 ⊆ σ1.

Proof.

⇒: Suppose (X, τ1, τ2) is pairwise compact. We will show that δ1 ⊆ σ2. Let A ∈ δ1 and

A ⊆
⋃
{Ui | i ∈ I} with {Ui | i ∈ I} ⊆ τ2. Then the collection {Ui | i ∈ I} ∪ {Ac} is a

cover of X. Since Ac ∈ τ1 and (X, τ1, τ2) is pairwise compact, there exist i1, . . . , in ∈ I
such that Ui1 ∪ · · · ∪Uin ∪Ac = X. It follows that A ⊆ Ui1 ∪ · · · ∪Uin , so A ∈ σ2. Thus,

δ1 ⊆ σ2. The fact that δ2 ⊆ σ1 is proved similarly.

⇐: Suppose δ1 ⊆ σ2 and δ2 ⊆ σ1. To show that (X, τ1, τ2) is pairwise compact, let

{Ui | i ∈ I} ⊆ τ1 and {Vj | j ∈ J} ⊆ τ2 with
⋃
{Ui | i ∈ I} ∪

⋃
{Vj | j ∈ J} = X.

We set U =
⋃
{Ui | i ∈ I}. Clearly, U ∈ τ1 and U ∪

⋃
{Vj | j ∈ J} = X, so

Uc ⊆
⋃
{Vj | j ∈ J}. Since Uc ∈ δ1 and δ1 ⊆ σ2, we have Uc ∈ σ2. Therefore, there

exist j1, . . . , jn ∈ J such that Uc ⊆ Vj1∪· · ·∪Vjn . Set V = Vj1∪· · ·∪Vjn . Then U∪V = X,

so Vc ⊆ U =
⋃
{Ui | i ∈ I}. Since Vc ∈ δ2 and δ2 ⊆ σ1, we have Vc ∈ σ1. Therefore,

there exist i1, . . . , im ∈ I such that Vc ⊆ Ui1 ∪ · · · ∪ Uim . Clearly, the finite collection

{Vj1 , . . . , Vjn , Ui1 , . . . , Uim} is a cover of X. Thus, X is pairwise compact.
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We will now generalise the notion of a Stone space to a pairwise Stone space.

Definition 2.10. We say (X, τ1, τ2) is a pairwise Stone space if it is pairwise compact,

pairwise Hausdorff and pairwise zero-dimensional.

Remark 2.11. Proposition 2.9 means that in the definition of a pairwise Stone space,

pairwise Hausdorff can be replaced by any of the equivalent conditions of Lemma 2.5,

and pairwise compact can be replaced by δ1 ⊆ σ2 and δ2 ⊆ σ1.

We will use PStone to denote the category of pairwise Stone spaces and bi-continuous

maps: that is, maps that are continuous with respect to both topologies.

3. Priestley spaces and pairwise Stone spaces

Let (X,�) be a poset. Recall that A ⊆ X is an upset if x ∈ A and x � y imply

y ∈ A, and that A is a downset if x ∈ A and y � x imply y ∈ A. For Y ⊆ X, let

↑Y = {x | ∃y ∈ Y with y � x} and ↓Y = {x | ∃y ∈ Y with x � y}. We use Up(X) to

denote the set of upsets and Do(X) to denote the set of downsets of (X,�).

Let (X, τ,�) be an ordered topological space. We use OpUp(X) to denote the set of

open upsets, ClUp(X) to denote the set of closed upsets and CpUp(X) to denote the set of

clopen upsets of (X, τ,�). Similarly, we use OpDo(X) to denote the set of open downsets,

ClDo(X) to denote the set of closed downsets and CpDo(X) to denote the set of clopen

downsets of (X, τ,�). The next definition is well known.

Definition 3.1. An ordered topological space (X, τ,�) is a Priestley space if (X, τ) is

compact and whenever x �� y, there exists a clopen upset A such that x ∈ A and y �∈ A.

The second condition in the above definition is known as the Priestley separation axiom

(PSA for short). The next lemma is well known.

Lemma 3.2. Let (X, τ,�) be an ordered topological space.

(1) If (X, τ,�) is a Priestley space, then (X, τ) is a Stone space.

(2) If (X, τ,�) is a Priestley space, then ↑F and ↓F are closed for each closed subset F of

X.

(3) In a Priestley space, every open upset is a union of clopen upsets, every closed upset

is an intersection of clopen upsets, every open downset is a union of clopen downsets,

and every closed downset is an intersection of clopen downsets.

(4) In a Priestley space, clopen upsets and clopen downsets form a subbasis for the

topology.

(5) (X, τ,�) is a Priestley space if and only if (X, τ) is compact and for closed subsets F

and G of X, whenever ↑F ∩ ↓G = �, there exists a clopen upset A of X such that

F ⊆ A and G ⊆ Ac.

We will refer to condition (5) in the lemma as the strong Priestley separation axiom

(SPSA for short). We will use Pries to denote the category of Priestley spaces and

continuous order-preserving maps. We will show that the categories Pries and PStone
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are isomorphic. To this end, we will define two functors Φ : PStone → Pries and

Ψ : Pries→ PStone, which will set the required isomorphism.

For a topological space (X, τ), let � denote the specialisation order of (X, τ); that is,

x � y iff x ∈ Cl(y) iff (∀U ∈ τ)(x ∈ U implies y ∈ U).

It is well known that � is reflexive and transitive, and that � is antisymmetric iff (X, τ)

is T0.

Lemma 3.3. Let (X, τ1, τ2) be a bitopological space, �1 be the specialisation order of

(X, τ1), and �2 be the specialisation order of (X, τ2). If (X, τ1, τ2) is pairwise zero-

dimensional, then �1=�2.

Proof. Let (X, τ1, τ2) be pairwise zero-dimensional: that is, β1 = τ1 ∩ δ2 is a basis for τ1
and β2 = τ2 ∩ δ1 is a basis for τ2. Then, for each x, y ∈ X, we have:

x �1 y iff (∀U ∈ τ1)(x ∈ U implies y ∈ U)

iff (∀U ∈ β1)(x ∈ U implies y ∈ U)

iff (∀U ∈ β1)(y ∈ Uc implies x ∈ Uc)

iff (∀V ∈ β2)(y ∈ V implies x ∈ V )

iff (∀V ∈ τ2)(y ∈ V implies x ∈ V )

iff y �2 x.

For a pairwise Stone space (X, τ1, τ2), let τ = τ1 ∨ τ2 and �=�1 be the specialisation

order of (X, τ1).

Proposition 3.4. If (X, τ1, τ2) is a pairwise Stone space, then (X, τ,�) is a Priestley space.

Moreover:

(i) CpUp(X, τ,�) = β1.

(ii) OpUp(X, τ,�) = τ1.

(iii) ClUp(X, τ,�) = δ2.

(iv) CpDo(X, τ,�) = β2.

(v) OpDo(X, τ,�) = τ2.

(vi) ClDo(X, τ,�) = δ1.

Proof. Since (X, τ1, τ2) is pairwise compact, (X, τ1, τ2) is join compact, so (X, τ) is

compact. Also, as (X, τ1, τ2) is pairwise Hausdorff, it follows from Lemma 2.5 that (X, τ1)

is T0. Therefore, �=�1 is a partial order. We show that (X, τ,�) satisfies PSA. If x �� y,

then x ��1 y, so there exists U ∈ β1 such that x ∈ U and y �∈ U. Since �1 is the

specialisation order of (X, τ1), U is an �1-upset. Since U ∈ β1, we have Uc ∈ β2 ⊆ τ.

So both U and Uc are open in (X, τ), and thus U is clopen in (X, τ). Therefore, U is a

clopen upset of (X, τ,�), implying that (X, τ,�) satisfies PSA. Thus, (X, τ,�) is a Priestley

space.

(i) We have already shown that β1 ⊆ CpUp(X, τ,�). Let A ∈ CpUp(X, τ,�). We show

that A =
⋃
{U ∈ β1 | U ⊆ A}. The fact that

⋃
{U ∈ β1 | U ⊆ A} ⊆ A is obvious. Let

x ∈ A. Since A is an upset, for each y ∈ Ac we have x �� y. Therefore, x ��1 y, and as

β1 is a basis for (X, τ1), there exists Uy ∈ β1 such that x ∈ Uy and y �∈ Uy . It follows
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that Ac∩
⋂
{Uy | y ∈ Ac} = �. Thus, {Ac}∪{Uy | y ∈ Ac} is a family of closed subsets

of (X, τ) with empty intersection, and as (X, τ) is compact, there are U1, . . . , Un ∈ β1

with Ac ∩ U1 ∩ · · · ∩ Un = �. Therefore, x ∈ U1 ∩ · · · ∩ Un ⊆ A. Since β1 is closed

under finite intersections, we get that there is U ∈ β1 such that x ∈ U ⊆ A. Thus,

A =
⋃
{U ∈ β1 | U ⊆ A}. Now since A is a closed subset of a compact space, A is

compact, so it is a finite union of elements of β1, and thus A ∈ β1.

(ii) Since every open upset is the union of clopen upsets of (X, τ,�) and β1 is a basis for

(X, τ1), the result follows from (i).

(iii) Since closed upsets are intersections of clopen upsets of (X, τ,�), and clopen upsets

are elements of β1, closed upsets are intersections of elements of β1. Because β1 =

{Uc | U ∈ β2}, intersections of elements of β1 are intersections of complements of

elements of β2, so are complements of unions of elements of β2. As unions of elements

of β2 are elements of τ2, we obtain that closed upsets are complements of elements

of τ2, so are elements of δ2. Consequently, ClUp(X, τ,�) = δ2.

(iv) This is proved in a similar way to (i).

(v) This is proved in a similar way to (ii).

(vi) This is proved in a similar way to (iii).

Proposition 3.5. Suppose (X, τ1, τ2) and (X ′, τ′1, τ
′
2) are pairwise Stone spaces. If f :

(X, τ1, τ2) → (X ′, τ′1, τ
′
2) is bi-continuous, then f : (X, τ,�) → (X ′, τ′,�′) is continuous

and order preserving.

Proof. Since f is bi-continuous, the f inverse image of every element of τ′1 ∪ τ′2 is an

element of τ1 ∪ τ2. As τ′1 ∪ τ′2 is a subbasis for (X, τ′), it follows that f : (X, τ) → (X ′, τ′)

is continuous. Also, since the f inverse image of an element of τ′1 is an element of τ1
and �′=�′1, it follows that f : (X,�)→ (X ′,�′) is order preserving. Thus, f : (X, τ,�)→
(X ′, τ′,�′) is continuous and order preserving.

We define the functor Φ : PStone → Pries as follows. For (X, τ1, τ2) a pairwise Stone

space, we put Φ(X, τ1, τ2) = (X, τ,�), and for f : (X, τ,�) → (X ′, τ′,�′) a bi-continuous

map, we put Φ(f) = f. It follows from Propositions 3.4 and 3.5 that Φ is well defined.

For (X, τ,�) a Priestley space, let τ1 = OpUp(X, τ,�) and τ2 = OpDo(X, τ,�). Clearly,

τ1 and τ2 are topologies on X.

Proposition 3.6. If (X, τ,�) is a Priestley space, then (X, τ1, τ2) is a pairwise Stone space.

Moreover:

(i) β1 = CpUp(X, τ,�).

(ii) β2 = CpDo(X, τ,�).

(iii) �=�1=�2.

Proof. Since (X, τ) is compact and τ1 ∪ τ2 ⊆ τ, it follows that (X, τ1, τ2) is pairwise

compact. To show that (X, τ1, τ2) is pairwise Hausdorff, let x, y be two distinct points of

X. Since � is a partial order, we have x �� y or y �� x. In either case, by PSA, one of

the points has a clopen upset neighbourhood U not containing the other. Clearly, Uc

is a clopen downset. Therefore, U ∈ τ1 and Uc ∈ τ2 separate x and y. Thus, (X, τ1, τ2)

is pairwise Hausdorff. The fact that (X, τ1, τ2) is pairwise zero-dimensional follows from
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(i) and (ii), and the fact that open upsets are unions of clopen upsets and open downsets

are unions of clopen downsets (see Lemma 3.2(3)). Consequently, (X, τ1, τ2) is a pairwise

Stone space.

(i) For U ⊆ X, we have

A ∈ β1 iff A ∈ τ1 and Ac ∈ τ2
iff A ∈ OpUp(X, τ,�) and Ac ∈ OpDo(X, τ,�)

iff A ∈ CpUp(X,�).

Thus, β1 = CpUp(X,�).

(ii) This is proved in the same way as (i).

(iii) For x, y ∈ X, by PSA, we have

x � y iff (∀U ∈ OpUp(X, τ,�))(x ∈ U ⇒ y ∈ U)

iff (∀U ∈ τ1)(x ∈ U ⇒ y ∈ U)

iff x �1 y.

Thus, �=�1. The fact that �=�2 is proved similarly.

Proposition 3.7. If f : (X, τ,�) → (X ′, τ′,�′) is continuous and order preserving, then

f : (X, τ1, τ2)→ (X ′, τ′1, τ
′
2) is bi-continuous.

Proof. Because f is continuous and order preserving, U ∈ OpUp(X ′, τ′,�′) implies

f−1(U) ∈ OpUp(X, τ,�), and U ∈ OpDo(X ′, τ′,�′) implies f−1(U) ∈ OpDo(X, τ,�). By the

definition of the topologies,

OpUp(X, τ,�) = τ1

OpUp(X ′, τ′,�′) = τ′1

OpDo(X, τ,�) = τ2

OpDo(X ′, τ′,�′) = τ′2.

Thus, f : (X, τ1, τ2)→ (X ′, τ′1, τ
′
2) is bi-continuous.

Now we define Ψ : Pries → PStone as follows. For (X, τ,�) a Priestley space, we put

Ψ(X, τ,�) = (X, τ1, τ2), and for f : (X, τ,�)→ (X ′, τ′,�′) continuous and order preserving,

we put Ψ(f) = f. Propositions 3.6 and 3.7 ensure that Ψ is well defined.

Theorem 3.8. The functors Φ and Ψ establish an isomorphism between the categories

PStone and Pries.

Proof. We have already verified that Φ and Ψ are well defined. It is easy to see that

they are natural. Moreover, for each pairwise Stone space (X, τ1, τ2), by Proposition 3.4,

we have ΨΦ(X, τ1, τ2) = Ψ(X, τ,�) = (X,OpUp(X, τ,�),OpDo(X, τ,�)) = (X, τ1, τ2). Also,

for each Priestley space (X, τ,�), by Lemma 3.2(4) and Proposition 3.6, we have

ΦΨ(X, τ,�) = Φ(X, τ1, τ2) = (X, τ1 ∨ τ2,�1) = (X, τ,�).

Thus, Φ and Ψ establish an isomorphism between PStone and Priest.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 24 Mar 2015 IP address: 169.230.243.252

Bitopological duality for distributive lattices and Heyting algebras 369

4. Pairwise Stone spaces and spectral spaces

For a topological space (X, τ), we use E(X, τ) to denote the set of compact open subsets

of (X, τ). Recall that (X, τ) is coherent if E(X, τ) is closed under finite intersections and

forms a basis for the topology. Recall also that a subset A of X is irreducible if A = F ∪G,

with F,G closed, implies that A = F or A = G, and that (X, τ) is sober if every irreducible

closed subset of (X, τ) is the closure of a point. Clearly, a closed subset of X is irreducible

if and only if it is a join-prime element in the lattice of closed subsets of (X, τ). We will

use this fact in the proof of Proposition 4.2.

Definition 4.1 (Hochster 1969, page 43). A topological space (X, τ) is said to be a spectral

space if (X, τ) is compact, T0, coherent and sober.

Let (X, τ) and (X ′, τ′) be two spectral spaces. Recall (Hochster 1969, page 43) that

a map f : (X, τ) → (X ′, τ′) is a spectral map if U ∈ E(X ′, τ′) implies f−1(U) ∈ E(X, τ).

Clearly, every spectral map is continuous.

We use Spec to denote the category of spectral spaces and spectral maps. It follows

from Cornish (1975) that Spec is isomorphic to Pries. Thus, by Theorem 3.8, Spec is

isomorphic to PStone. Nevertheless, we will give a direct proof of this result since, on

the one hand, it will underline the utility of sobriety in the definition of a spectral space,

while, on the other hand, providing a more natural proof of Cornish’s result that Pries

and Spec are isomorphic by first establishing the intermediate isomorphisms of Pries and

PStone and PStone and Spec.

Proposition 4.2. If (X, τ1, τ2) is a pairwise Stone space, then (X, τ1) is a spectral space.

Moreover, E(X, τ1) = β1.

Proof. Since (X, τ1, τ2) is pairwise compact, it is immediate that (X, τ1) is compact. It

follows from Lemma 2.5 that (X, τ1) is T0. We show that E(X, τ1) = β1. By Proposition 2.9,

β1 = τ1 ∩ δ2 ⊆ τ1 ∩ σ1 = E(X, τ1). Conversely, suppose U ∈ E(X, τ1). Since β1 is a basis

for (X, τ1), we have U is the union of elements of β1. As U is compact, it is a finite

union of elements of β1, and thus belongs to β1 because β1 is closed under finite unions.

Therefore, E(X, τ1) = β1. It follows that E(X, τ1) is closed under finite intersections and

forms a basis for the topology. Therefore, (X, τ1) is coherent. To show that (X, τ1) is sober,

let F be a join-prime element in the lattice of closed subsets of (X, τ1). We show that

F is equal to the closure in (X, τ1) of a point of F . If this were not the case, then for

each x ∈ F there would exist y ∈ F such that y /∈ Cl1(x). Therefore, there would exist

Uy ∈ β1 such that y ∈ Uy and x /∈ Uy . Let Ux = Uc
y . Then x ∈ Ux ∈ β2, y /∈ Ux and F is

covered by the family {Ux | x ∈ F}. Since F ∈ δ1 ⊆ σ2, there exist x1, . . . , xn ∈ F such that

F ⊆ Ux1
∪ · · · ∪Uxn . As F is join-prime in δ1 and for each i we have Uxi ∈ β2 ⊆ δ1, there

exists k such that F ⊆ Uxk . On the other hand, the yk corresponding to xk belongs to F

and does not belong to Uxk , which gives a contradiction. Thus, there is x ∈ F such that

F = Cl1(x). Consequently, (X, τ1) is sober, and thus (X, τ1) is a spectral space.

Proposition 4.3. Let (X, τ1, τ2) and (X ′, τ′1, τ
′
2) be two pairwise Stone spaces. If f : (X, τ1,

τ2)→ (X ′, τ′1, τ
′
2) is bi-continuous, then f : (X, τ1)→ (X ′, τ′1) is spectral.
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Proof. Since f is bi-continuous, by Proposition 4.2, we have

U ∈ E(X ′, τ′1) ⇒ U ∈ β′1
⇒ U ∈ τ′1 ∩ δ′2
⇒ f−1(U) ∈ τ1 ∩ δ2

⇒ f−1(U) ∈ β1

⇒ f−1(U) ∈ E(X, τ1).

Therefore, f is spectral.

We define the functor F : PStone → Spec as follows. For a pairwise Stone space

(X, τ1, τ2), we put F(X, τ1, τ2) = (X, τ1), and for f : (X, τ1, τ2) → (X ′, τ′1, τ
′
2) bi-continuous,

we put F(f) = f. It follows from Propositions 4.2 and 4.3 that F is well defined. Note that

F is a forgetful functor, forgetting the topology τ2.

For (X, τ) a spectral space, let τ1 = τ and τ2 be the topology generated by the basis

Δ(X, τ) = {Uc | U ∈ E(X, τ)}.

Remark 4.4. Recall (see, for example, Gierz et al. (2003, Definition O-5.3)) that a subset

A of a topological space (X, τ) is saturated if it is an intersection of open subsets of (X, τ).

Recall also (see, for example, Kopperman (1995, Definition 4.4)) that the de Groot dual of

τ is the topology τ∗ whose closed sets are generated by compact saturated sets of (X, τ).

Since the compact saturated sets in a spectral space (X, τ) are exactly the intersections of

compact open sets, the topology generated by Δ(X, τ) is exactly the de Groot dual τ∗ of τ.

Proposition 4.5. If (X, τ) is a spectral space, then (X, τ1, τ2) is a pairwise Stone space.

Moreover:

(i) β1 = E(X, τ).

(ii) β2 = Δ(X, τ).

Proof. First we show that (X, τ1, τ2) is pairwise compact. For this it suffices to show

that any collection K ⊆ E(X, τ) ∪ Δ(X, τ) with the FIP (Finite Intersection Property) has

a non-empty intersection. We use δ = {F | Fc ∈ τ} to denote the collection of closed

subsets of (X, τ). Since Δ(X, τ) ⊆ δ, we have K ⊆ E(X, τ) ∪ δ. To show that
⋂
K �= �,

by Zorn’s Lemma, we extend K to a maximal subset M of E(X, τ) ∪ δ with the FIP. We

use C to denote the intersection of all τ-closed sets in M: that is, C =
⋂
{F | F ∈M ∩ δ}.

Since (X, τ) is compact, C ∈ δ is non-empty. Because E(X, τ) is closed under finite

intersections, it is easy to see that the collection M ∪ {C} has the FIP, and as M is

maximal, C ∈ M. We will now show that C is irreducible. Suppose C = A ∪ B and

A,B ∈ δ. If M ∪ {A} and M ∪ {B} do not have the FIP, then there exist A1, . . . , An ∈ M
with A1 ∩ · · · ∩An ∩A = � and B1, . . . , Bm ∈M with B1 ∩ · · · ∩ Bm ∩ B = �. This implies

that A1 ∩ · · · ∩ An ∩ B1 ∩ · · · ∩ Bm ∩ C = �, which gives a contradiction. Therefore, either

M ∪ {A} or M ∪ {B} has the FIP. Since M is maximal, either A ∈M or B ∈M. Because

of the choice of C , this implies that either C ⊆ A or C ⊆ B, so either C = A or C = B.

Thus, C is irreducible. As (X, τ) is sober, C = Cl(x) for some x ∈ X. It is clear that x

belongs to all F ∈M ∩ δ since C ⊆ F for all such F . Moreover, for each U ∈M ∩E(X, τ),

we have U ∩ Cl(x) = U ∩ C �= �. Since U is open in (X, τ), this implies that x ∈ U.
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Therefore, x ∈
⋂
M, so x ∈

⋂
K , as K ⊆ M, so

⋂
K �= �. Consequently, (X, τ1, τ2) is

pairwise compact.

We show that β1 = E(X, τ) and β2 = Δ(X, τ), which shows that (X, τ1, τ2) is pairwise

zero-dimensional. By the definition of τ2, we have E(X, τ) ⊆ δ2, and thus E(X, τ) ⊆ β1.

Conversely, since (X, τ1, τ2) is pairwise compact, by Proposition 2.9, we have β1 = τ1∩δ2 ⊆
τ1 ∩ σ1 = E(X, τ). Therefore, β1 = E(X, τ). Moreover,

U ∈ Δ(X, τ) ⇐⇒ Uc ∈ E(X, τ) = β1 = τ1 ∩ δ2 ⇐⇒ U ∈ δ1 ∩ τ2 = β2.

Thus, β2 = Δ(X, τ).

Finally, we have assumed that (X, τ1) is T0, so, by Lemma 2.5, (X, τ1, τ2) is pairwise T2,

and thus a pairwise Stone space, which concludes the proof.

Proposition 4.6. Let (X, τ) and (X ′, τ′) be two spectral spaces. If f : (X, τ) → (X ′, τ′) is a

spectral map, then f : (X, τ1, τ2)→ (X ′, τ′1, τ
′
2) is bi-continuous.

Proof. Since f is spectral, f : (X, τ1)→ (X ′, τ′1) is continuous. Moreover, for U ∈ β′2 we

have Uc ∈ β′1. Therefore, f−1(U) = f−1((Uc)c) = f−1(Uc)c ∈ β2 since f−1(Uc) ∈ β1, as f is

spectral. Consequently, f : (X, τ2) → (X ′, τ′2) is continuous, so f : (X, τ1, τ2) → (X ′, τ′1, τ
′
2)

is bi-continuous.

Now we define the functor G : Spec → PStone as follows. For a spectral space (X, τ),

we put G(X, τ) = (X, τ1, τ2), and for f : (X, τ)→ (X ′, τ′) a spectral map, we put G(f) = f.

It follows from Propositions 4.5 and 4.6 that G is well defined.

Theorem 4.7. The functors F and G establish an isomorphism between the categories

PStone and Spec.

Proof. We have already verified that F and G are well defined. It is easy to see that they

are natural. Moreover, for each pairwise Stone space (X, τ1, τ2), we have GF(X, τ1, τ2) =

G(X, τ1) = (X, τ1, τ2), by Proposition 4.2. Also, for each spectral space (X, τ), we have

FG(X, τ) = F(X, τ1, τ2) = (X, τ1) = (X, τ). Thus, F and G establish an isomorphism

between PStone and Spec.

Putting Theorems 3.8 and 4.7 together proves that the three categories Pries, PStone

and Spec are isomorphic. As we pointed out in the introduction, this can be viewed as

a particular case of a more general result in Gierz et al. (2003, Chapter VI-6) showing

that the categories of compact order-Hausdorff spaces, pairwise compact pairwise regular

bitopological spaces and stably compact spaces are isomorphic. It would be interesting

to investigate how far the above isomorphisms can be pushed. In other words, what are

the largest categories of ordered topological spaces, bitopological spaces and sober spaces

that are still isomorphic?

5. Distributive lattices and pairwise Stone spaces

Since PStone is isomorphic to Spec and Spec is dually equivalent to DLat, it follows that

PStone is also dually equivalent to DLat. We will give an explicit proof of this result,

which will show that of the dual equivalences of DLat with Spec, Pries and PStone,
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the dual equivalence of DLat with PStone is the easiest to establish. Indeed, as we will

show below, the proof of compactness of the bitopoligical dual of a bounded distributive

lattice L does not require the use of Alexander’s Lemma, and is thus simpler than in the

Priestley case. Moreover, the complicated proof of sobriety of the dual spectral space of

L is completely avoided in the bitopological setting.

Let L be a bounded distributive lattice and X = pf(L) be the set of prime filters of L.

We define φ+, φ− : L→ ℘(X) by

φ+(a) = {x ∈ X | a ∈ x} and φ−(a) = {x ∈ X | a �∈ x}.

If we think of L as a Lindenbaum algebra and of a ∈ L as (an equivalence class of) a

formula, we can think of φ+(a) as the set of points that a is true at, and of φ−(a) as

the set of points that a is false at. It is easy to check that φ+(a) = φ−(a)c, and that the

following identities hold:

1+ : φ+(0) = �, 1− : φ−(0) = X,

2+ : φ+(1) = X, 2− : φ−(1) = �,

3+ : φ+(a ∧ b) = φ+(a) ∩ φ+(b), 3− : φ−(a ∧ b) = φ−(a) ∪ φ−(b),

4+ : φ+(a ∨ b) = φ+(a) ∪ φ+(b), 4− : φ−(a ∨ b) = φ−(a) ∩ φ−(b).

Let β+ = φ+[L] = {φ+(a) | a ∈ L}, β− = φ−[L] = {φ−(a) | a ∈ L}, τ+ be the topology

generated by β+, and τ− be the topology generated by β−.

Proposition 5.1. (X, τ+, τ−) is a pairwise Stone space.

Proof. We start by showing that (X, τ+, τ−) is pairwise Hausdorff. Suppose x �= y.

Without loss of generality, we may assume that x �⊆ y. Therefore, there exists a ∈ L with

a ∈ x and a /∈ y. Thus, x ∈ φ+(a) ∈ τ+ and y ∈ φ−(a) ∈ τ−. Since φ−(a) = φ+(a)c, φ+(a)

and φ−(a) are disjoint. Consequently, (X, τ+, τ−) is pairwise Hausdorff.

Next we show that (X, τ+, τ−) is pairwise compact. To do this it is sufficient to show

that for each cover of X by elements of β+ ∪ β−, there is a finite subcover. Suppose

X =
⋃
{φ+(ai) | i ∈ I} ∪

⋃
{φ−(bj) | j ∈ J} for some ai, bj ∈ L. Let Δ be the ideal

generated by {ai | i ∈ I} and ∇ be the filter generated by {bj | j ∈ J}. If Δ ∩ ∇ = �, then,

by the prime filter lemma, there is a prime filter x of L such that ∇ ⊆ x and x ∩ Δ = �.

Therefore, x ∈ φ+(bj) and x ∈ φ−(ai) for each j ∈ J and i ∈ I . Thus, x /∈ φ−(bj) and

x /∈ φ+(ai) for each j ∈ J and i ∈ I . Consequently, {φ+(ai) | i ∈ I} ∪ {φ−(bj) | j ∈ J} is

not a cover of X, which gives a contradiction. This shows that ∇ ∩ Δ �= �, so there exist

bj1 , . . . , bjn and ai1 , . . . , aim such that bj1 ∧ · · · ∧ bjn � ai1 ∨ · · · ∨ aim . Therefore,

φ+(bj1 ) ∩ · · · ∩ φ+(bjn) ⊆ φ+(ai1 ) ∪ · · · ∪ φ+(aim ),

implying that

φ−(bj1 ) ∪ . . . φ−(bjn ) ∪ φ+(ai1 ) ∪ · · · ∪ φ+(aim ) = X.

Therefore,

{φ+(ai1 ), . . . , φ+(aim ), φ−(bj1 ), . . . , φ−(bjn )}
is a finite subcover of

{φ+(ai) | i ∈ I} ∪ {φ−(bj) | j ∈ J},
so (X, τ+, τ−) is pairwise compact.
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We use δ+ to denote the set of closed subsets and σ+ to denote the set of compact

subsets of (X, τ+), with δ− and σ− defined similarly. We show that β+ = τ+ ∩ δ−. If

U ∈ β+, it is clear that U ∈ τ+. Moreover, since U = φ+(a) for some a ∈ L, we have

Uc = φ−(a), and thus Uc ∈ β−. Hence, U ∈ δ−, so U ∈ τ+ ∩ δ−, and thus β+ ⊆ τ+ ∩ δ−.

Conversely, let U ∈ τ+ ∩ δ−. Since (X, τ+, τ−) is pairwise compact, by Proposition 2.9,

U ∈ τ+∩σ+. As β+ is a basis for τ+, we have that U is a union of elements of β+. Because

U is compact, it is a finite such union, and thus an element of β+ since β+ is closed under

finite unions. Consequently, τ+ ∩ δ− ⊆ β+, so β+ = τ+ ∩ δ−. A similar argument shows

that β− = τ− ∩ δ+. It follows that (X, τ+, τ−) is pairwise zero-dimensional, so (X, τ+, τ−) is

a pairwise Stone space.

For a bounded lattice homomorphism h : L → L′, let fh : pf(L′) → pf(L) be given by

fh(x) = h−1(x). It is easy to check that fh is well defined.

Proposition 5.2. The map fh is bi-continuous.

Proof. Let a ∈ L. It is easy to verify that

f−1
h (φ+(a)) = φ+

′(ha)

f−1
h (φ−(a)) = φ−

′(ha).

Therefore, the inverse image of each element of β+ is in β+
′, and the inverse image of

each element of β− is in β−
′, so fh is bi-continuous.

This allows us to define the contravariant functor (−)∗ : DLat → PStone as follows.

For a bounded distributive lattice L, let L∗ = (X, τ+, τ−), where X = pf(L), τ+ is the

topology generated by the basis β+ = φ+[L], and τ− is the topology generated by the

basis β− = φ−[L]. For h ∈ hom(L,L′), let h∗ = h−1. It follows from Propositions 5.1

and 5.2 that the functor (−)∗ is well defined.

For a pairwise Stone space (X, τ1, τ2), it is easy to see that (β1,∩,∪,�, X) is a bounded

distributive lattice. (Note that (β2,∩,∪,�, X) is also a bounded distributive lattice dually

isomorphic to (β1,∩,∪,�, X).) If f : X → X ′ is a bi-continuous map, then for each U ∈ β′1,
we have U ∈ τ′1 ∩ δ′2. Since f is bi-continuous, f−1(U) ∈ τ1 ∩ δ2. Therefore, f−1(U) ∈ β1.

Moreover, it is clear that f−1 : β′1 → β1 is a bounded lattice homomorphism. We define

the contravariant functor (−)∗ : PStone → DLat as follows. For a pairwise Stone space

(X, τ1, τ2), let (X, τ1, τ2)
∗ = (β1,∩,∪,�, X), and for f ∈ hom(X,X ′), let f∗ = f−1. Hence

the functor (−)∗ is well defined.

Theorem 5.3. The functors (−)∗ and (−)∗ establish a dual equivalence between DLat and

PStone.

Proof. For a bounded distributive lattice L, we have L∗
∗ = φ+[L], so φ+ is a lattice

isomorphism from L to L∗
∗. For a pairwise Stone space (X, τ1, τ2), let ψ : X → X∗∗

be given by ψ(x) = {U ∈ X∗ | x ∈ U}. It is easy to see that ψ is well defined. Since

X is pairwise Hausdorff, ψ is 1–1. To see that ψ is onto, let P be a prime filter of

β1 and Q = {V ∈ β2 | Vc /∈ P }. It is easy to see that Q is a prime filter of β2, and
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that P ∪ Q has the FIP. Since X is pairwise compact and pairwise Hausdorff, there is

x ∈ X such that
⋂

(P ∪ Q) = {x}. Therefore, ψ(x) = P , so ψ is onto. Moreover, for

U ∈ β1, we have ψ−1(φ+(U)) = U ∈ β1 and ψ−1(φ−(U)) = Uc ∈ β2. Therefore, f is

bi-continuous. Furthermore, for U ∈ β1, because ψ is a bijection, ψ−1(φ+(U)) = U implies

ψ(U) = φ+(U), and ψ−1(φ−(U)) = Uc implies ψ(Uc) = φ−(U). Therefore, f is bi-open,

and thus f is a bi-homeomorphism from X to X∗∗. The proof that the functors (−)∗ and

(−)∗ are natural is standard. Consequently, (−)∗ and (−)∗ establish a dual equivalence

between DLat and PStone.

Remark 5.4. It is worth pointing out that as in the case of the spectral and Priestley

dualities, the dual equivalence between DLat and PStone is also induced by the schizo-

phrenic object 2 = {0, 1}. It has many lives: in DLat it is the two-element lattice; in Spec

it is the Sierpinski space with the spectral topology τ1 = {�, {1}, {0, 1}}; in Pries it is the

two-element ordered topological space with the discrete topology and the order � given

by x � y if and only if x = y or x = 0 and y = 1; finally, in PStone it is the two element

bitopological space with two Sierpinski topologies τ1 and τ2 = {�, {0}, {0, 1}}.

6. Duality

In this section we use the isomorphism of Pries, PStone, and Spec, and their dual

equivalence to DLat to obtain the dual description of many algebraic concepts that are

important in the study of distributive lattices. In particular, we give the dual descriptions

of filters, ideals, homomorphic images, sublattices, canonical completions and MacNeille

completions of bounded distributive lattices. We also give the dual description of complete

distributive lattices. The dual description of these concepts using Priestley spaces is known.

Some of these concepts have also been described by means of spectral spaces. We complete

the picture by giving the spectral description of the remaining concepts as well as describing

them all by means of pairwise Stone spaces. We give a table at the end of the section

that serves as a dictionary of duality theory for distributive lattices, complementing the

dictionary given in Priestley (1984).

6.1. Filters and ideals

We begin with the dual description of filters, prime filters and maximal filters, as well

as ideals, prime ideals and maximal ideals of bounded distributive lattices, by means of

Priestley spaces.

Let L be a bounded distributive lattice and let (X, τ,�) be the Priestley space of L.

Recall that the poset (Fi(L),⊇) of filters of L is isomorphic to the poset (ClUp(X),⊆) of

closed upsets of X, that the poset (Id(L),⊆) of ideals of L is isomorphic to the poset

(OpUp(X),⊆) of open upsets of X, and that the isomorphisms are obtained as follows.

With each filter F of L we associate the closed upset CF =
⋂
{ϕ(a) | a ∈ L} of X, and

with each closed upset C of X we associate the filter FC = {a ∈ L | C ⊆ ϕ(a)} of L.

Then F ⊆ G if and only if CF ⊇ CG, FCF = F and CFC = C . Therefore, (Fi(L),⊇) is

isomorphic to (ClUp(X),⊆). Also, with each ideal I of L we associate the open upset
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UI =
⋃
{ϕ(a) | a ∈ I} of X, and with each open upset U of X we associate the ideal

IU = {a ∈ L | ϕ(a) ⊆ U} of L. Then I ⊆ J if and only if UI ⊆ UJ , IUI
= I and UIU = U.

Thus, (Id(L),⊆) is isomorphic to (OpUp(X),⊆).

Let (X, τ1, τ2) be the pairwise Stone space corresponding to (X, τ,�). We have, by

Proposition 3.6, β1 = CpUp(X) and β2 = CpDo(X). Therefore, τ1 = OpUp(X) and τ2 =

OpDo(X), and so δ1 = ClDo(X) and δ2 = ClUp(X). Thus, (Fi(L),⊇) is isomorphic to (δ2,⊆)

and (Id(L),⊆) is isomorphic to (τ1,⊆). Let (X, τ1) be the spectral space corresponding to

(X, τ1, τ2). Then, clearly, (Id(L),⊆) is isomorphic to the poset of τ1-open sets. In order to

characterise (Fi(L),⊇) in terms of (X, τ1), recall that a subset A of a topological space is

saturated if it is an intersection of open subsets of the space; alternatively, A is saturated

if it is an upset in the specialisation order. We define A to be co-saturated if A is a union

of closed subsets; alternatively, A is co-saturated if it is a downset in the specialisation

order.

Let (X, τ,�) be a Priestley space, (X, τ1, τ2) be the corresponding pairwise Stone space

and (X, τ1) be the corresponding spectral space. Then it is clear that the following

conditions are equivalent for A ⊆ X:

(i) A is an upset of (X, τ,�).

(ii) A is a τ1-saturated subset of (X, τ1, τ2).

(iii) A is a τ2-co-saturated subset of (X, τ1, τ2).

(iv) A is a saturated subset of (X, τ1).

Similarly, the following conditions are equivalent for B ⊆ X:

(i) B is a downset of (X, τ,�).

(ii) B is a τ1-co-saturated subset of (X, τ1, τ2).

(iii) B is a τ2-saturated subset of (X, τ1, τ2).

(iv) B is a co-saturated subset of (X, τ1).

For a pairwise Stone space (X, τ1, τ2) and for i = 1, 2, let Si(X) denote the set of τi-

saturated sets and CSi(X) denote the set of τi-co-saturated sets. Then Up(X) = S1(X) =

CS2(X) and Do(X) = CS1(X) = S2(X). This gives us the following characterisation of

closed upsets and closed downsets of (X, τ,�).

Theorem 6.1. Let (X, τ,�) be a Priestley space, (X, τ1, τ2) be the corresponding pairwise

Stone space and (X, τ1) be the corresponding spectral space. The following conditions are

equivalent for C ⊆ X:

(1) C is a closed upset of (X, τ,�).

(2) C is a τ2-closed set of (X, τ1, τ2).

(3) C is a compact saturated set of (X, τ1).

Proof.

(1)⇔(2): As we have already observed, this follows from Proposition 3.6.

(1)⇒(3): Since C is an upset of X, C is saturated in (X, τ1). As C is closed in (X, τ) and

(X, τ) is Hausdorff, C is a compact subset of (X, τ). Therefore, C is also compact in

(X, τ1). Thus, C is compact and saturated in (X, τ1).
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(3)⇒(1): Since C is saturated in (X, τ1), C is an upset of X. We now show that C is

closed in (X, τ). Let x /∈ C . Then for each c ∈ C , we have c � x. Therefore, there is

a clopen upset Uc of X such that c ∈ Uc and x /∈ Uc. Thus, C ⊆
⋃
{Uc | c ∈ C}. By

Propositions 3.6 and 4.2, each Uc belongs to E(X, τ1). Since C is compact, there are

c1, . . . cn ∈ C such that C ⊆ Uc1 ∪ · · · ∪Ucn . But then we have V = Uc
c1
∩ · · · ∩Uc

cn
is a

clopen downset of X containing x and having the empty intersection with C , so C is

closed.

A similar argument gives us the following theorem.

Theorem 6.2. Let (X, τ,�) be a Priestley space, (X, τ1, τ2) be the corresponding pairwise

Stone space and (X, τ1) be the corresponding spectral space. The following conditions are

equivalent for D ⊆ X:

(1) D is a closed downset of (X, τ,�).

(2) D is a τ1-closed set of (X, τ1, τ2).

(3) D is a compact saturated set of (X, τ2).

For a pairwise Stone space (X, τ1, τ2) and i = 1, 2, let KSi(X) denote the set of compact

saturated subsets of X. Then the following characterisation of filters and ideals of a

bounded distributive lattice is an immediate consequence of the results obtained above.

Corollary 6.3. Let L be a bounded distributive lattice, (X, τ,�) be its Priestley space,

(X, τ1, τ2) be its pairwise Stone space and (X, τ1) be its spectral space. Then:

(1) (Fi(L),⊇) � (ClUp(X),⊆) = (δ2,⊆) = (KS1(X),⊆).

(2) (Id(L),⊆) � (OpUp(X),⊆) = (τ1,⊆).

Remark 6.4. Corollary 6.3(1) is a particular case of the celebrated Hofmann–Mislove

theorem. To see this, let X be a sober space. Recall that a filter F of the lattice τ of

open subsets of X is Scott open if for a family {Ui | i ∈ I} of open subsets of X, it

follows from
⋃
{Ui | i ∈ I} ∈ F that there exist i1, . . . , in ∈ I such that Ui1 ∪ · · · ∪Uin ∈ F .

We use SFi(τ) to denote the set of Scott open filters of τ. Then the Hofmann–Mislove

theorem states that (SFi(τ),⊇) is isomorphic to (KS(X),⊆). Observing that if X is spectral,

(SFi(τ),⊇) is actually isomorphic to (Fi(E(X)),⊇), we see that Corollary 6.3(1) expresses

the Hofmann–Mislove theorem in the particular case of spectral spaces.

Now we turn to the dual description of prime filters and prime ideals of L. Let (X, τ,�)

be the Priestley space of L. It is well known that a filter F of L is prime if and only if

CF = ↑x for some x ∈ X, and that an ideal I of L is prime if and only if UI = (↓x)c for

some x ∈ X. We will now give the dual description of prime filters and prime ideals of L

by means of pairwise Stone and spectral spaces of L.

Lemma 6.5. Let (X, τ,�) be a Priestley space, (X, τ1, τ2) be the corresponding pairwise

Stone space and (X, τ1) be the corresponding spectral space. Then for each A ⊆ X, we

have:

(1) Cl1(A) = ↓Cl(A).

(2) Cl2(A) = ↑Cl(A).
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Proof.

(1) We have Cl1(A) =
⋂
{B ∈ δ1 | A ⊆ B} =

⋂
{B ∈ ClDo(X) | A ⊆ B}. By Lemma 3.2(2),

↓Cl(A) is a closed downset, and clearly A ⊆ ↓Cl(A). Therefore, Cl1(A) ⊆ ↓Cl(A).

Conversely, suppose x /∈ Cl1(A). Then there is U ∈ τ1 such that x ∈ U and U∩A = �.

Since τ1 = OpUp(X), we have that U is an open upset of X. As U is open in (X, τ), it

follows from U ∩ A = � that U ∩Cl(A) = �. Because U is an upset, U ∩Cl(A) = �
implies U ∩ ↓Cl(A) = �. Thus, x /∈ ↓Cl(A), so Cl1(A) = ↓Cl(A).

(2) This part is proved similarly.

Let (X, τ1, τ2) be a bitopological space. Following Gierz et al. (2003, Definition O-5.3),

for A ⊆ X and i = 1, 2, we define the τi-saturation of A as Sati(A) =
⋂
{U ∈ τi | A ⊆ U}.

Obviously, Sat1(A) = ↑1A and Sat2(A) = ↑2A. This, together with Lemma 3.3, immediately

gives us the following corollary to Lemma 6.5.

Corollary 6.6. Let (X, τ,�) be a Priestley space, (X, τ1, τ2) be the corresponding pairwise

Stone space and (X, τ1) be the corresponding spectral space. Then for each closed set A

of (X, τ), we have:

(1) ↓A = Cl1(A) = Sat2(A).

(2) ↑A = Cl2(A) = Sat1(A).

In particular, for each x ∈ X we have:

(1) ↓x = Cl1(x) = Sat2(x).

(2) ↑x = Cl2(x) = Sat1(x).

Putting these results together, we get the following dual description of prime filters and

prime ideals of L.

Corollary 6.7. Let L be a bounded distributive lattice, (X, τ,�) be its Priestley space,

(X, τ1, τ2) be its pairwise Stone space and (X, τ1) be its spectral space. For a filter F of L,

the following conditions are equivalent:

(1) F is a prime filter of L.

(2) CF = ↑x for some x ∈ X.

(3) CF = Cl2(x) for some x ∈ X.

(4) CF = Sat1(x) for some x ∈ X.

Also, for an ideal I of L, the following conditions are equivalent:

(1) I is a prime ideal of L.

(2) UI = (↓x)c for some x ∈ X.

(3) UI = [Cl1(x)]
c for some x ∈ X.

(4) UI = [Sat2(x)]
c for some x ∈ X.

Another consequence of our results is the dual description of maximal filters and

maximal ideals of L. Let (X, τ,�) be the Priestley space of L. We use maxX and minX to

denote the sets of maximal and minimal points of X, respectively. It follows immediately

from the dual description of prime filters and prime ideals of L that a filter F of L is

maximal if and only if CF = {x}(= ↑x) for some x ∈ maxX, and that an ideal I of L is
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maximal if and only if UI = {x}c(= (↓x)c) for some x ∈ minX. This, together with the

above corollary, immediately gives us the following corollary.

Corollary 6.8. Let L be a bounded distributive lattice, (X, τ,�) be its Priestley space,

(X, τ1, τ2) be its pairwise Stone space and (X, τ1) be its spectral space. For a filter F of L,

the following conditions are equivalent:

(1) F is a maximal filter of L.

(2) CF = {x} for some x ∈ X with ↑x = {x}.
(3) CF = {x} for some x ∈ X with Cl2(x) = {x}.
(4) CF = {x} for some x ∈ X with Sat1(x) = {x}.
Also, for an ideal I of L, the following conditions are equivalent:

(1) I is a maximal ideal of L.

(2) UI = {x}c for some x ∈ X with ↓x = {x}.
(3) UI = {x}c for some x ∈ X with Cl1(x) = {x}.
(4) UI = {x}c for some x ∈ X with Sat2(x) = {x}.

6.2. Homomorphic images

It is well known (see, for example, Priestley (1984, Corollary 2.5)) that homomorphic

images of a bounded distributive lattice L are in 1–1 correspondence with closed subsets

of the Priestley space (X, τ,�) of L. We will now give the dual description of homomorphic

images of L in terms of the pairwise Stone space and spectral space of L.

Lemma 6.9. Let (X, τ,�) be a Priestley space and (X, τ1, τ2) be its corresponding pairwise

Stone space. The following conditions are equivalent for C ⊆ X.

(1) C is closed in (X, τ,�).

(2) C is compact in (X, τ,�).

(3) C is pairwise compact in (X, τ1, τ2).

Proof.

(1)⇔(2): This is obvious since (X, τ) is compact and Hausdorff.

(2)⇒(3): This is straightforward.

(3)⇒(2): It follows from (3) that each cover {Ui | i ∈ I} of C , with Ui ∈ τ1 ∪ τ2, has a

finite subcover. The result then follows from Alexander’s Lemma.

For a topological space (X, τ) and a subset Y of X, let τY denote the subspace topology

on Y : that is, τY = {U ∩ Y | U ∈ τ}.

Definition 6.10. Let (X, τ) be a spectral space. We say a subset Y of X is a spectral subset

of X if (Y , τY ) is a spectral space and U ∈ E(X, τ) implies U ∩ Y ∈ E(Y , τY ).

Theorem 6.11. Let (X, τ1, τ2) be a pairwise Stone space and (X, τ1) be its corresponding

spectral space. The following conditions are equivalent for Y ⊆ X:

(1) Y is pairwise compact in (X, τ1, τ2).

(2) Y is a spectral subset of (X, τ1).
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Proof.

(1)⇒(2): Since Y is pairwise compact, by Theorem 6.9, Y is closed in the corresponding

Priestley space (X, τ,�). We use �Y to denote the restriction of � to Y . Then

(Y , τY ,�Y ) is a Priestley space. By Propositions 3.6 and 4.2, (Y , τY1 ) is a spectral

space. Let U ∈ E(X). Again using Propositions 3.6 and 4.2, we get U ∈ CpUp(X, τ,�).

Therefore, U ∩ Y ∈ CpUp(Y , τY ,�Y ), and thus U ∩ Y ∈ E(Y , τY1 ), so Y is a spectral

subset of (X, τ1).

(2)⇒(1): Let Y be a spectral subset of (X, τ1) and

Δ(Y , τY1 ) = {Y −U | U ∈ E(Y , τY )}.

We show that τY2 is the topology generated by Δ(Y , τY1 ). To do this we show that

E(Y , τY1 ) = {U ∩ Y | U ∈ E(X, τ1)}. Since Y is a spectral subset,

{U ∩ Y | U ∈ E(X, τ1)} ⊆ E(Y , τY1 ).

Conversely, suppose U ∈ E(Y , τY1 ). Then there is V ∈ τ1 such that U = V ∩ Y . Since

V ∈ τ1, we have V =
⋃
{Vi | i ∈ I} for some family {Vi | i ∈ I} ⊆ E(X, τ1). Then

U =
⋃
{Vi | i ∈ I} ∩ Y =

⋃
{Vi ∩ Y | i ∈ I}.

Since U is compact and Vi ∩ Y are open in (Y , τY1 ), there exist i1, . . . , in ∈ I such that

U = (Vi1 ∩ Y ) ∪ · · · ∪ (Vin ∩ Y ) = (Vi1 ∪ · · · ∪ Vin ) ∩ Y .

Let W = Vi1 ∪ · · · ∪ Vin . Since E(X, τ1) is closed under finite unions, W ∈ E(X, τ1).

Therefore, U = W ∩ Y for some W ∈ E(X, τ1). Thus, E(Y , τY1 ) ⊆ {U ∩ Y | U ∈
E(X, τ1)}, so E(Y , τY1 ) = {U ∩ Y | U ∈ E(X, τ1)}. Consequently,

Δ(Y , τY1 ) = {Y −U | U ∈ E(Y , τY1 )}
= {Y − (V ∩ Y ) | V ∈ E(X, τ1)}
= {Y − V | V ∈ E(X, τ1)}.

So τY2 is the topology generated by Δ(Y , τY1 ). Now, since (Y , τY1 ) is a spectral space,

by Proposition 4.5, (Y , τY1 , τ
Y
2 ) is pairwise compact. It then follows that Y is pairwise

compact in (X, τ1, τ2).

Putting the above results together, we get the following dual description of homomorphic

images of L by means of all three dual spaces of L.

Corollary 6.12. Let L be a bounded distributive lattice, (X, τ,�) be its Priestley space,

(X, τ1, τ2) be its pairwise Stone space, and (X, τ1) be its spectral space. Then there is a 1–1

correspondence between:

(i) homomorphic images of L;

(ii) closed subsets of (X, τ,�);

(iii) pairwise compact subsets of (X, τ1, τ2); and

(iv) spectral subsets of (X, τ1).

Proof. From Priestley (1984, Corollary 2.5), we know that homomorphic images of L

are in 1–1 correspondence with closed subsets of (X, τ,�). Lemma 6.9 and Theorem 6.11
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Fig. 1.

imply that closed subsets of (X, τ,�) are in 1–1 correspondence with pairwise compact

subsets of (X, τ1, τ2), which are in 1–1 correspondence with spectral subsets of (X, τ1). The

result then follows.

We conclude this subsection by giving an example of a subset Y of a spectral space

(X, τ) such that (Y , τY ) is a spectral space, but where there exists U ∈ E(X, τ) such that

U∩Y /∈ E(Y , τY ). Therefore, the condition ‘U ∈ E(X, τ) implies U∩Y ∈ E(Y , τY )’ cannot

be omitted from Definition 6.10.

Example 6.13. Let (X, τ) be the ordinal ω+ 1 = ω ∪ {ω} with the interval topology. Then

each n ∈ ω is an isolated point of X and ω is the only limit point of X. For x, y ∈ X, we

set x � y if and only if x = y or x = 0 and y = ω (see Figure 1). It is easy to verify that

(X, τ,�) is a Priestley space. Let (X, τ1, τ2) be the corresponding pairwise Stone space and

(X, τ1) be the corresponding spectral space. We let Y = X−{ω}. Then (Y , τY1 ) is a spectral

space. On the other hand, U = X − {0} is compact open in (X, τ1), but U ∩ Y = ω − {0}
is not compact in (Y , τY ). Therefore, Y is not a spectral subset of (X, τ1).

6.3. Sublattices

The dual description of bounded sublattices of a bounded distributive lattice by means of

its Priestley space can be found in Adams (1973), Cignoli et al. (1991) and Schmid (2002).

We will rephrase it in our terminology. Recall that a quasi-order Q on a set X is a

reflexive and transitive relation on X. We say the pair (X,Q) is a quasi-ordered set. For a

quasi-ordered set (X,Q), we say A ⊆ X is a Q-upset of X if x ∈ A and xQy imply y ∈ A.

Definition 6.14. Let X be a topological space and Q be a quasi-order on X. We say Q is

a Priestley quasi-order on X if for each x, y ∈ X with xQ�y there exists a clopen Q-upset

A of X such that x ∈ A and y /∈ A.

Theorem 6.15 (Schmid 2002, Theorem 3.7). Let L be a bounded distributive lattice and

(X, τ,�) be the Priestley space of L. Then there is a dual isomorphism between the poset

(SL,⊆) of bounded sublattices of L and the poset (QX,⊆) of Priestley quasi-orders on X

extending �.

Proof sketch. For S ∈ SL, we define QS on X by

xQSy iff x ∩ S ⊆ y ∩ S.

Then QS ∈ QX , and S ⊆ K implies QK ⊆ QS for each S,K ∈ SL. Therefore, S �→ QS is an

order-reversing map from SL to QX . For Q ∈ QX , let

SQ = {a ∈ L | φ(a) is a Q-upset of X}.
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Then SQ is a bounded sublattice of L, and Q ⊆ R implies SR ⊆ SQ for each Q,R ∈ QX .

Thus, Q �→ SQ is an order-reversing map from QX to SL. Moreover, SQS = S and QSQ = Q

for each S ∈ SL and Q ∈ QX . It follows that the order-reversing maps S �→ QS and

Q �→ SQ are inverses of each other. Consequently, (SL,⊆) is dually isomorphic to (QX,⊆).

We will now characterise Priestley quasi-orders extending � by means of pairwise Stone

spaces and spectral spaces.

Definition 6.16. Let (τ1, τ2) and (τ′1, τ
′
2) be two bitopologies on X. We say that (τ1, τ2) is

finer than (τ′1, τ
′
2) and that (τ′1, τ

′
2) is coarser than (τ1, τ2) if τ′1 ⊆ τ1 and τ′2 ⊆ τ2.

Lemma 6.17. Let (X, τ,�) be a Priestley space and (X, τ1, τ2) be the corresponding pairwise

Stone space. Then the poset (QX,⊆) of Priestley quasi-orders on X is dually isomorphic

to the poset (ZX,⊆) of pairwise zero-dimensional bi-topologies on X coarser than (τ1, τ2).

Proof. For a Priestley quasi-order Q on X, let τQ1 be the set of open Q-upsets and τ
Q
2

be the set of open Q-downsets of X. Clearly, (τQ1 , τ
Q
2 ) is a bitopology on X coarser than

(τ1, τ2). Moreover, βQ1 = τ
Q
1 ∩δ

Q
2 is exactly the set of clopen Q-upsets of X and βQ2 = τ

Q
2 ∩δ

Q
1

is exactly the set of clopen Q-downsets of X. Since Q is a Priestley quasi-order, clopen

Q-upsets are a basis for open Q-upsets and clopen Q-downsets are a basis for open Q-

downsets. Therefore, (τQ1 , τ
Q
2 ) is pairwise zero-dimensional. For two Priestley quasi-orders

Q and R on X, we show Q ⊆ R implies τR1 ⊆ τ
Q
1 and τR2 ⊆ τ

Q
2 . Let U ∈ τR1 . Then U is an

open R-upset of X. Since Q ⊆ R, we have that U is also a Q-upset of X. Thus, U ∈ τQ1 .

We can prove that τR2 ⊆ τ
Q
2 similarly. It follows that Q �→ (τQ1 , τ

Q
2 ) is an order-reversing

map from QX to ZX .

Let (τ′1, τ
′
2) be a pairwise zero-dimensional bitopology on X coarser than (τ1, τ2). We

define Q(τ′1 ,τ
′
2)

to be the specialisation order of τ′1. Since (τ′1, τ
′
2) is pairwise zero-dimensional,

Q(τ′1 ,τ
′
2)

is the dual of the specialisation order of τ′2. Because Q(τ′1 ,τ
′
2)

is a specialisation order,

it is clear that Q(τ′1 ,τ
′
2)

is a quasi-order. From τ′1 ⊆ τ1 it follows that Q(τ′1 ,τ
′
2)

extends the

specialisation order of τ1. Consequently, Q(τ′1 ,τ
′
2)

extends �. We now show that Q(τ′1 ,τ
′
2)

is a

Priestley quasi-order. If xQ�(τ′1 ,τ
′
2)
y, there exists U ∈ τ′1 such that x ∈ U and y /∈ U. Since

(τ′1, τ
′
2) is pairwise zero-dimensional, we may assume that U ∈ β′1. Therefore, U is clopen

in τ. Clearly, each U ∈ τ′1 is a Q(τ′1 ,τ
′
2)
-upset. Thus, there exists a clopen Q(τ′1 ,τ

′
2)
-upset U of

X such that x ∈ U and y /∈ U. For (τ′1, τ
′
2), (τ

′′
1 , τ
′′
2) ∈ ZX , we show (τ′1, τ

′
2) ⊆ (τ′′1 , τ

′′
2) implies

Q(τ′′1 ,τ
′′
2)
⊆ Q(τ′1 ,τ

′
2)
. Let xQ(τ′′1 ,τ

′′
2)
y. Then x ∈ U implies y ∈ U for each U ∈ τ′′1. Therefore,

x ∈ U implies y ∈ U for each U ∈ τ′1. Thus, xQ(τ′1 ,τ
′
2)
y. It follows that (τ′1, τ

′
2) �→ Q(τ′1 ,τ

′
2)

is

an order-reversing map from ZX to QX .

We show that Q(τ
Q
1 ,τ

Q
2 ) = Q and (τ

Q(τ′
1
,τ′
2
)

1 , τ
Q(τ′

1
,τ′
2
)

2 ) = (τ′1, τ
′
2) for each Q ∈ QX and (τ′1, τ

′
2) ∈

ZX . Indeed, xQ(τ
Q
1 ,τ

Q
2 )y if and only if (∀U ∈ τQ1 )(x ∈ U ⇒ y ∈ U), which is equivalent to

xQy since Q is a Priestley quasi-order. Thus, Q(τ
Q
1 ,τ

Q
2 ) = Q. Moreover, U ∈ τ

Q(τ′
1
,τ′
2
)

1 if and only

if U is an open Q(τ′1 ,τ
′
2)
-upset of X. Clearly, U ∈ τ′1 implies U is an open Q(τ′1 ,τ

′
2)
-upset of X.

Conversely, let U be an open Q(τ′1 ,τ
′
2)
-upset of X. We show that U =

⋃
{V ∈ τ′1 | V ⊆ U}.

Clearly,
⋃
{V ∈ τ′1 | V ⊆ U} ⊆ U. Let x ∈ U. Since U is a Q(τ′1 ,τ

′
2)
-upset, for each y ∈ Uc
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we have xQ�(τ′1 ,τ
′
2)
y. Therefore, there exists Vy ∈ τ′1 such that x ∈ Vy and y /∈ Vy . Since β′1

is a basis for τ′1, we may assume that Vy ∈ β′1. Thus,
⋂
{Vy | y ∈ Uc} ∩ Uc = �. Since

Uc and each Vy is closed in τ and τ is compact, there exist V1, . . . , Vn ∈ β′1 such that

V1 ∩ · · · ∩ Vn ∩ Uc = �. So x ∈ V1 ∩ · · · ∩ Vn ⊆ U, and thus U ⊆
⋃
{V ∈ τ′1 | V ⊆ U}.

Consequently, U ∈ τ′1. This implies that τ
Q(τ′

1
,τ′
2
)

1 = τ′1. A similar argument shows that

τ
Q(τ′

1
,τ′
2
)

2 = τ′2. Thus, (τ
Q(τ′

1
,τ′
2
)

1 , τ
Q(τ′

1
,τ′
2
)

2 ) = (τ′1, τ
′
2). It follows that the order-reversing maps

Q �→ (τQ1 , τ
Q
2 ) and (τ′1, τ

′
2) �→ Q(τ′1 ,τ

′
2)

are inverses of each other. Hence, (QX,⊆) is dually

isomorphic to (ZX,⊆).

Definition 6.18. Let τ be a spectral topology on X, and τ′ be a coherent topology on X

coarser than τ. We say τ′ is strongly coherent if the set E(X, τ′) of compact open subsets

of (X, τ′) is equal to the set τ′ ∩ σ of open subsets of (X, τ′) that are compact in (X, τ).

Lemma 6.19. Let (X, τ1, τ2) be a pairwise Stone space and (X, τ1) be the corresponding

spectral space. Then the poset (ZX,⊆) of pairwise zero-dimensional bitopologies (τ′1, τ
′
2) on

X coarser than (τ1, τ2) is isomorphic to the poset (SCX,⊆) of strongly coherent topologies

τ′1 on X coarser than τ1.

Proof. Let (τ′1, τ
′
2) be a pairwise zero-dimensional bitopology on X coarser than (τ1, τ2).

Then τ′1 is a topology on X coarser than τ1. Let β′1 = τ′1 ∩ δ′2. We will show that

E(X, τ′1) = β′1 = τ′1 ∩ σ1. Let U ∈ E(X, τ′1). Since β′1 is a basis for τ′1, we have that U is

the union of elements of β′1 contained in U. As U is compact in (X, τ′1), we have that

U is a finite union of elements of β′1, so U is an element of β′1, and thus E(X, τ′1) ⊆ β′1.

Now let U ∈ β′1. Because (X, τ1, τ2) is pairwise compact, δ2 ⊆ σ1. Therefore, δ′2 ⊆ δ2 ⊆ σ1,

so β′1 ⊆ τ′1 ∩ δ′2 ⊆ τ′1 ∩ σ1. Finally, let U ∈ τ′1 ∩ σ1. Since U ∈ τ′1 and E(X, τ′1) is a basis

for τ′1, we have that U is the union of elements of E(X, τ′1) contained in U. Because

U ∈ σ1 and τ′1 ⊆ τ1, we have that U is a finite union of elements of E(X, τ′1). Therefore,

U ∈ E(X, τ′1), so τ′1 ∩ σ1 ⊆ E(X, τ′1). Hence, E(X, τ′1) = β′1 = τ′1 ∩ σ1, implying that τ′1 is a

strongly coherent topology. For (τ′1, τ
′
2), (τ

′′
1 , τ
′′
2) ∈ ZX , if (τ′1, τ

′
2) ⊆ (τ′′1 , τ

′′
2), it is obvious that

τ′1 ⊆ τ′′1. It follows that (τ′1, τ
′
2) �→ τ′1 is an order-preserving map from ZX to SCX .

For a strongly coherent topology τ′1 on X coarser than τ1, let τ′2 be the topology

generated by the basis Δ(X, τ′1) = {Uc | U ∈ E(X, τ′1)}. We use δ′1 to denote the set of

closed subsets of (X, τ′1) and δ′2 to denote the set of closed subsets of (X, τ′2). We set

β′1 = τ′1 ∩ δ′2 and β′2 = τ′2 ∩ δ′1. We now show that β′1 = E(X, τ′1) and β′2 = Δ(X, τ′1). It

follows from the definition that E(X, τ′1) ⊆ β′1. Conversely,

β′1 = τ′1 ∩ δ′2 ⊆ τ′1 ∩ δ2 ⊆ τ′1 ∩ σ1 = E(X, τ′1).

Therefore, β′1 = E(X, τ′1). Also:

U ∈ Δ(X, τ′1) iff Uc ∈ E(X, τ′1)

iff Uc ∈ β′1
iff Uc ∈ τ′1 ∩ δ′2
iff U ∈ δ′1 ∩ τ′2
iff U ∈ β′2.
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Thus, β′2 = Δ(X, τ′1). Consequently, β′1 is a basis for τ′1 and β′2 is a basis for τ′2, and so

(τ′1, τ
′
2) is pairwise zero-dimensional. For τ′1, τ

′′
1 ∈ SCX , we now show that τ′1 ⊆ τ′′1 implies

(τ′1, τ
′
2) ⊆ (τ′′1 , τ

′′
2). Let U ∈ Δ(X, τ′1). Then Uc ∈ E(X, τ′1). Therefore, Uc ∈ τ′1 ∩ σ1 ⊆ τ′′1 ∩ σ1,

so Uc ∈ E(X, τ′′1). Thus, U ∈ Δ(X, τ′′1), so Δ(X, τ′1) ⊆ Δ(X, τ′′1), and thus τ′2 ⊆ τ′′2. It then

follows that τ′1 �→ (τ′1, τ
′
2) is an order-preserving map from SCX to ZX .

Finally, if (τ′1, τ
′
2) ∈ ZX , then E(X, τ′1) = β′1, so Δ(X, τ′1) = β′2, and thus the composition

ZX → SCX → ZX is an identity. Moreover, it is clear that the composition SCX → ZX →
SCX is also an identity, so (ZX,⊆) is isomorphic to (SCX,⊆).

Putting Theorem 6.15 and Lemmas 6.17 and 6.19 together, we obtain the following dual

description of bounded sublattices of L by means of all three dual spaces of L.

Corollary 6.20. Let L be a bounded distributive lattice, (X, τ,�) be the Priestley space

of L, (X, τ1, τ2) be the pairwise Stone space of L and (X, τ1) be the spectral space of

L. Then the poset (SL,⊆) of bounded sublattices of L is dually isomorphic to the poset

(QX,⊆) of Priestley quasi-orders on X extending �, and is isomorphic to the poset (ZX,⊆)

of pairwise zero-dimensional bitopologies on X coarser than (τ1, τ2), and to the poset

(SCX,⊆) of strongly coherent topologies on X coarser than τ1.

6.4. Canonical completions, MacNeille completions and complete lattices

In the theory of completions of lattices, or more generally of posets, the MacNeille and

canonical completions play a prominent role. Let L be a lattice. Recall that a subset S of

L is join-dense in L if for each a ∈ L we have a =
∨

(↓a ∩ S), and that S is meet-dense

in L if for each a ∈ L we have a =
∧

(↑a ∩ S). Recall also that the MacNeille completion

of L is a unique up to isomorphism complete lattice L together with a lattice embedding

η : L→ L such that η[L] is both join-dense and meet-dense in L. Furthermore, we recall

that the canonical completion of L is a unique up to isomorphism complete lattice Lσ

together with a lattice embedding ζ : L→ Lσ such that:

(i) for each filter F and ideal I of L, it follows from F ∩ I = � that
∧
ζ[F] ��

∨
ζ[I];

(ii) the set KL = {
∧
ζ[S] | S ⊆ L} of closed elements of Lσ is join-dense in Lσ; and

(iii) the set OL = {
∨
ζ[S] | S ⊆ L} of open elements of Lσ is meet-dense in Lσ .

For a Priestley space (X, τ,�), following Harding and Bezhanishvili (2004, Section 3),

we define two maps D : OpUp(X) → ClUp(X) and J : ClUp(X) → OpUp(X) by D(U) =

↑Cl(U) and J(K) = (↓(IntK)c)c for U ∈ OpUp(X) and K ∈ ClUp(X). Then, from Harding

and Bezhanishvili (2004, Lemma 3.4), we have that D and J form a Galois connection

between (OpUp(X),⊆) and (ClUp(X),⊇). We use RgOpUp(X) to denote the set of fixpoints

of J ◦ D: that is, RgOpUp(X) = {U ∈ OpUp(X) | JDU = U}. The next theorem is well

known. The first half of it can be found in Harding and Bezhanishvili (2004, Theorem 3.5),

and the second half in Gehrke and Jónsson (1994, Section 2).

Theorem 6.21. Let L be a bounded distributive lattice and (X, τ,�) be the Priestley space

of L. Then L is isomorphic to RgOpUp(X) and Lσ is isomorphic to Up(X).
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Let L be a bounded distributive lattice, (X, τ,�) be the Priestley space of L, (X, τ1, τ2)

be the pairwise Stone space of L and (X, τ1) be the spectral space of L. Since Up(X) =

S1(X) = CS2(X), we immediately obtain the following dual description of the canonical

completion of L.

Theorem 6.22. Let L be a bounded distributive lattice, (X, τ,�) be the Priestley space of

L, (X, τ1, τ2) be the pairwise Stone space of L and (X, τ1) be the spectral space of L. Then

Lσ is isomorphic to Up(X) = S1(X) = CS2(X).

Let L be a bounded distributive lattice, (X, τ,�) be the Priestley space of L and (X, τ1, τ2)

be the pairwise Stone space of L. Since OpUp(X) = τ1, ClUp(X) = δ2, D(U) = Cl2(U) and

J(U) = Int1(U) for U ⊆ X, we get that Cl2 : τ1 → δ2 and Int1 : δ2 → τ1 form a Galois

connection between (τ1,⊆) and (δ2,⊇), so the MacNeille completion L of L is isomorphic

to the fixpoints of Int1 ◦ Cl2, which we denote by RgOp12(X).

Let (X, τ1) be the spectral space corresponding to the pairwise Stone space (X, τ1, τ2).

Then δ2 = KS1(X) and Cl2(U) = Sat1Cl(U) for U ⊆ X. Let S1 = Sat1 ◦ Cl. Then

S1 : τ1 → KS1(X) and Int1 : KS1(X) → τ1 form a Galois connection between (τ1,⊆) and

(KS1(X),⊇), so the MacNeille completion L of L is isomorphic to the fixpoints of Int1◦S1,

which we denote by SatOp1(X). Consequently, we obtain the following dual description

of the MacNeille completion of L.

Theorem 6.23. Let L be a bounded distributive lattice, (X, τ,�) be the Priestley space of

L, (X, τ1, τ2) be the pairwise Stone space of L and (X, τ1) be the spectral space of L. Then

L is isomorphic to RgOpUp(X) = RgOp12(X) = SatOp1(X).

The bitopological description of L provides a nice generalisation of the characterisation

of the MacNeille completion of a Boolean algebra B by means of the regular open subsets

of the Stone space (X, τ) of B. Recall that the regular open subsets of (X, τ) are exactly

the fixpoints of the composition of the maps Cl : τ → δ and Int : δ → τ. When working

with a pairwise Stone space (X, τ1, τ2), we consider the fixpoints of the composition of

the maps Cl2 and Int1 between τ1 and δ2, respectively. Therefore, whenever τ1 = τ2, the

pairwise Stone space (X, τ1, τ2) becomes the Stone space (X, τ), where τ = τ1 = τ2. So

τ1 = τ, δ2 = δ, Cl2 = Cl, Int1 = Int, and the fixpoints of Int1 ◦ Cl2 are exactly the regular

open subsets of (X, τ). As a corollary, we get the well-known dual description of the

MacNeille completion of a Boolean algebra:

Corollary 6.24. Let B be a Boolean algebra and X be the Stone space of B. Then the

MacNeille completion B of B is isomorphic to the regular open subsets RgOp(X) of X.

Since L is a complete lattice if and only if L is isomorphic to L, it follows from the

construction of L that L is complete if and only if in the dual Priestley space (X, τ,�)

of L we have RgOpUp(X) = CpUp(X) (see Priestley (1972, Proposition 16) and Harding

and Bezhanishvili (2004, page 948)). Such Priestley spaces were called extremally order

disconnected in Priestley (1972, page 521). This, together with Theorem 6.23, immediately

gives us the following dual description of complete distributive lattices.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 24 Mar 2015 IP address: 169.230.243.252

Bitopological duality for distributive lattices and Heyting algebras 385

DLat Pries PStone Spec

filter closed upset τ2-closed set compact saturated set

ideal open upset τ1-open set open set

prime filter ↑x Cl2(x) Sat(x)

prime ideal (↓x)c [Cl1(x)]
c [Cl(x)]c

maximal filter ↑x = {x} Cl2(x) = {x} Sat(x) = {x}

maximal ideal (↓x)c = {x}c [Cl1(x)]
c = {x}c [Cl(x)]c = {x}c

homomorphic image closed subset pairwise compact subset spectral subset

subalgebra Q ∈ QX (τ′1 , τ
′
2) ∈ ZX τ′ ∈ SCX

canonical completion Up(X) S1(X) = CS2(X) S(X)

MacNeille completion RgOpUp(X) RgOp12(X) SatOp(X)

complete lattice RgOpUp(X) = CpUp(X) β1 = RgOp12(X) E(X) = SatOp(X)

Table 1. Dictionary for DLat, Pries, PStone and Spec.

Theorem 6.25. Let L be a bounded distributive lattice, (X, τ,�) be the Priestley space of

L, (X, τ1, τ2) be the pairwise Stone space of L and (X, τ1) be the spectral space of L. Then

the following conditions are equivalent:

(1) L is complete.

(2) RgOpUp(X) = CpUp(X).

(3) RgOp12(X) = β1.

(4) SatOp1(X) = E(X, τ1).

Table 1 gathers together the dual descriptions of the different algebraic concepts for

bounded distributive lattices that we have obtained in this section by means of their

Priestley spaces, pairwise Stone spaces and spectral spaces. This can be thought of as a

dictionary of duality theory for bounded distributive lattices, complementing the dictionary

given in Priestley (1984).

7. Duality for Heyting algebras

A reasonably natural subclass of the class of distributive lattices is the class of Heyting

algebras, which plays an important role in the study of superintuitionistic logics. The first

duality for Heyting algebras was developed in Esakia (1974). It is a restricted version of

Priestley’s duality. In this section we develop duality for Heyting algebras by means of

pairwise Stone spaces and spectral spaces, thus providing the bitopological and spectral

alternatives to the Esakia duality.

Recall that a Heyting algebra is a bounded distributive lattice (A,∧,∨, 0, 1) with a binary

operation →: A2 → A such that for all a, b, c ∈ A, we have

c � a→ b if and only if a ∧ c � b.
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We use Heyt to denote the category of Heyting algebras and Heyting algebra homo-

morphisms. For a topological space (X, τ), we use Cp(X) to denote the set of clopen

subsets of X.

Definition 7.1. Let (X, τ,�) be a Priestley space. We say (X, τ,�) is an Esakia space if

A ∈ Cp(X) implies ↓A ∈ Cp(X).

Let (X,�) and (X ′,�′) be two posets. Recall that a map f : X → X ′ is a p-morphism if

it is order preserving and for each x ∈ X and x′ ∈ X ′, it follows from f(x) � x′ that there

is y ∈ X such that x � y and f(y) = x′. For two Esakia spaces (X, τ,�) and (X ′, τ′,�′),
we say a map f : X → X ′ is an Esakia morphism if it is a continuous p-morphism. We

use Esa to denote the category of Esakia spaces and Esakia morphisms. Then we have

the following theorem, which was established in Esakia (1974).

Theorem 7.2. Heyt is dually equivalent to Esa.

In fact, the same functors establishing the dual equivalence of DLat and Pries restricted

to Heyt and Esa, respectively, establish the required dual equivalence. In order to describe

the pairwise Stone spaces and spectral spaces dual to Heyting algebras, it is sufficient to

characterise those pairwise Stone spaces and spectral spaces that correspond to Esakia

spaces. As an immediate consequence of Lemma 6.9 and Theorem 6.11, we get the

following lemma.

Lemma 7.3. Let (X, τ,�) be a Priestley space, (X, τ1, τ2) be the corresponding pairwise

Stone space, and (X, τ1) be the corresponding spectral space. The following conditions are

equivalent for Y ⊆ X:

(1) Y is clopen in (X, τ,�).

(2) Y and Y c are pairwise compact in (X, τ1, τ2).

(3) Y and Y c are spectral subsets of (X, τ1).

Let (X, τ1, τ2) be a pairwise Stone space. We say Y ⊆ X is pairwise clopen if both Y

and Y c are pairwise compact in (X, τ1, τ2). We use PC(X) to denote the set of pairwise

clopen subsets of (X, τ1, τ2).

Definition 7.4. Let (X, τ1, τ2) be a pairwise Stone space. We say (X, τ1, τ2) is a bitopological

Esakia space if A ∈ PC(X) implies Cl1(A) ∈ PC(X).

For a pairwise Stone space (X, τ1, τ2), recall that δ1 denotes the collection of closed

subsets of (X, τ1), that δ2 denotes the collection of closed subsets of (X, τ2), that β1 = τ1∩δ2

and that β2 = τ2 ∩ δ1.

Theorem 7.5. Let (X, τ1, τ2) be a pairwise Stone space. Then (X, τ1, τ2) is a bitopological

Esakia space if and only if for each A ∈ β1 and B ∈ β2 we have Cl1(A ∩ B) ∈ β2.

Proof. Let (X, τ,�) be the Priestley space corresponding to (X, τ1, τ2). Now suppose

(X, τ1, τ2) is a bitopological Esakia space, A ∈ β1 and B ∈ β2. Then A ∈ δ2 and Ac ∈ δ1.

Therefore, both A and Ac are closed in (X, τ,�). A similar argument shows that both

B and Bc are closed in (X, τ,�). Hence, both A ∩ B and (A ∩ B)c = Ac ∪ Bc are
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closed in (X, τ,�). By Lemma 6.9, both A ∩ B and (A ∩ B)c are pairwise compact in

(X, τ,�), implying that A ∩ B ∈ PC(X). Since (X, τ1, τ2) is a bitopological Esakia space,

we have Cl1(A ∩ B) ∈ PC(X). By Lemma 7.3, Cl1(A ∩ B) is clopen in (X, τ,�). Moreover,

since � is the specialisation order of (X, τ1), we have that Cl1(A ∩ B) is a downset of

(X, τ,�). Therefore, Cl1(A ∩ B) ∈ CpDo(X). By Proposition 3.4, CpDo(X) = β2. Hence,

Cl1(A ∩ B) ∈ β2.

Conversely, suppose (X, τ1, τ2) is a pairwise Stone space and for each A ∈ β1 and

B ∈ β2, we have Cl1(A ∩ B) ∈ β2. Let A ∈ PC(X). By Lemma 7.3, A is clopen in (X, τ,�).

Since CpUp(X) ∪ CpDo(X) is a subbasis for τ, and A is compact in (X, τ), we have

A = (U1 ∩V1)∪ · · · ∪ (Un ∩Vn) for some U1, . . . , Un ∈ CpUp(X) and V1, . . . , Vn ∈ CpDo(X).

By Proposition 3.4, CpUp(X) = β1 and CpDo(X) = β2. Therefore, for each i = 1, . . . , n, we

have Cl1(Ui ∩ Vi) ∈ β2. Thus,

Cl1(A) = Cl1[(U1 ∩ V1) ∪ · · · ∪ (Un ∩ Vn)]
= Cl1(U1 ∩ V1) ∪ · · · ∪ Cl1(Un ∩ Vn) ∈ β2 = CpDo(X).

This implies that Cl1(A) is clopen in (X, τ,�), so, by Lemma 7.3, Cl1(A) ∈ PC(X).

Therefore, (X, τ1, τ2) is a bitopological Esakia space.

From now on we will say a pairwise Stone space is a bitopological Esakia space if it

satisfies the condition of Theorem 7.5.

Theorem 7.6. Let (X, τ,�) be a Priestley space and (X, τ1, τ2) be the corresponding pairwise

Stone space. Then (X, τ,�) is an Esakia space if and only if (X, τ1, τ2) is a bitopological

Esakia space.

Proof. The result follows because Cp(X) = PC(X) and from the fact that Cl1(A) = ↓A
for A ∈ PC(X).

In order to characterise morphisms between bitopological Esakia spaces, we recall the

following characterisation of p-morphisms.

Lemma 7.7 (Esakia 1985, pages 17 and 18). Given two posets (X,�) and (X ′,�′) and a

map f : X → X ′, the following conditions are equivalent:

(1) f is a p-morphism.

(2) For each x ∈ X, we have f(↑x) = ↑f(x).
(3) For each x′ ∈ X ′, we have f−1(↓x′) = ↓f−1(x′).

Definition 7.8. Let (X, τ1, τ2) and (X ′, τ′1, τ
′
2) be two bitopological Esakia spaces. We

say a map f : X → X ′ is a bitopological Esakia morphism if f is bi-continuous and

f(Cl2(x)) = Cl′2(f(x)) for each x ∈ X.

Let (X, τ,�) and (X ′, τ′,�′) be two Esakia spaces, (X, τ1, τ2) and (X ′, τ′1, τ
′
2) be the

corresponding bitopological Esakia spaces and f : X → X ′ be bi-continuous. By

Corollary 6.6, for each x ∈ X, we have ↑x = Cl2(x) and ↓x = Cl1(x). Therefore, by

Lemma 7.7, f is an Esakia morphism if and only if f is a bitopological Esakia morphism

if and only if f is bi-continuous and f−1(Cl1(x
′)) = Cl1(f

−1(x′)).
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We use BEsa to denote the category of bitopological Esakia spaces and bitopological

Esakia morphisms. Clearly, BEsa is a proper subcategory of PStone. Moreover, putting

the above results together, we get the following theorem.

Theorem 7.9. The categories Esa and BEsa are isomorphic. Consequently, Heyt is dually

equivalent to BEsa.

Let (X, τ) be a spectral space. We say Y ⊆ X is a doubly spectral subset of (X, τ) if

both Y and Y c are spectral subsets of (X, τ). We use DS(X) to denote the set of doubly

spectral subsets of X.

Definition 7.10. Let (X, τ) be a spectral space. We say (X, τ) is a spectral Esakia space if

A ∈ DS(X) implies Cl(A) ∈ DS(X).

Theorem 7.11. Let (X, τ1, τ2) be a pairwise Stone space and (X, τ1) be the corresponding

spectral space. Then (X, τ1, τ2) is a bitopological Esakia space if and only if (X, τ1) is a

spectral Esakia space.

Proof. By Lemma 7.3, we have PC(X) = DS(X), and the result follows.

For two spectral Esakia spaces (X, τ) and (X ′, τ′), we say a map f : X → X ′ is a spectral

Esakia morphism if f is spectral and f(Sat(x)) = Sat′(f(x)).

Let (X, τ1, τ2) and (X ′, τ′1, τ
′
2) be two bitopological Esakia spaces and (X, τ1) and (X ′, τ′1)

be the corresponding spectral Esakia spaces. By Corollary 6.6, for each x ∈ X, we have

Cl2(x) = Sat1(x) and Cl1(x) = Sat2(x). Therefore, a bi-continuous map f : X → X ′ is

a bi-Esaki morphism if and only if f is a spectral Esakia morphism if and only if f is

spectral and f−1(Cl1(x
′)) = Cl1(f

−1(x′)).

We use SpecE to denote the category of spectral Esakia spaces and spectral Esakia

morphisms. Clearly, SpecE is a proper subcategory of Spec. Moreover, putting the results

obtained above together, we get the following theorem.

Theorem 7.12. The categories Esa, BEsa and SpecE are isomorphic. Consequently, Heyt

is also dually equivalent to SpecE.

Remark 7.13. We pointed out in Remark 5.4 that the duality between DLat and the

categories Pries, PStone and Spec can be obtained through the schizophrenic object 2.

On the other hand, there is no schizophrenic object that induces the duality for Heyting

algebras. To see this, suppose there were a schizophrenic object S in Heyt such that the

duality between Heyt and, say, Esa is obtained through S . Then S is also an object of Esa

and the functors (−)∗ : Heyt → Esa and (−)∗ : Esa→ Heyt can be described through S:

that is, for each object A of Heyt, the carrier of A∗ is the set HomHeyt(A, S), and for each

object X of Esa, the carrier of X∗ is the set HomEsa(X, S). Therefore, the isomorphism

ϕ : A → A∗
∗ is given by ϕ(a)(h) = h(a) for each a ∈ A and h ∈ A∗. Thus, if a �= b in A,

there exists h ∈ HomHeyt(A, S) such that h(a) �= h(b). We now show that this leads to a

contradiction. Let A be a linearly ordered Heyting algebra with second largest element a.

Then a �= 1. Observe that each h ∈ HomHeyt(A, S) for which h(a) �= 1 is injective. Indeed,

let b < c � a. If h(b) = h(c), then h(b) = h(c → b) = h(c) → h(b) = 1. This, together

with h(b) � h(a), implies h(a) = 1, which gives a contradiction. Consequently, such an S
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cannot exist because it would contain a subset of an arbitrarily large cardinality. It is

clear that this argument does not depend on the category Esa. In fact, it shows that there

is no co-generating object in Heyt, and hence the duality for Heyting algebras cannot be

induced by a schizophrenic object. See Johnstone (1982, page 254) for a general discussion

of co-generators and dualities that are obtained through schizophrenic objects.

The dual description of algebraic concepts that are important for the study of Heyting

algebras is similar to that for bounded distributive lattices. The dual description of filters,

prime filters and maximal filters, as well as ideals, prime ideals and maximal ideals, is

exactly the same. So is the dual description of the canonical completions. On the other

hand, the dual description of the MacNeille completions is simpler because in the case of

Heyting algebras, we have D = Cl (Harding and Bezhanishvili 2004, Section 3).

It is well known that the homomorphic images of a Heyting algebra A are characterised

by its filters. Consequently, unlike the case with bounded distributive lattices, the

homomorphic images of a Heyting algebra A correspond dually to closed upsets of

the Esakia space of A. Therefore, homomorphic images of A correspond dually to τ2-

closed subsets of the bitopological Esakia space of A, and to compact saturated subsets

of the spectral Esakia space of A.

We will give the dual description of subalgebras of a Heyting algebra. For a quasi-

ordered set (X,Q), we define an equivalence relation E on X by xEy if and only if xQy

and yQx.

Definition 7.14. Let (X, τ,�) be a Priestley space and Q be a Priestley quasi-order on X

extending �. We say Q is an Esakia quasi-order if for each x, y ∈ X, it follows from xQy

that there exists z ∈ X such that x � z and zEy.

Remark 7.15. Let (X, τ,�) be a Priestley space and E be an equivalence relation on X.

We say E is an Esakia equivalence relation if E viewed as a quasi-order is a Priestley

quasi-order on X and ↑E(x) ⊆ E(↑x). It is easy to see that if Q is an Esakia quasi-order,

then E is an Esakia equivalence relation. For an Esakia equivalence relation E, we define

Q on X by xQy if and only if there exists z ∈ X such that x � z and zEy. Then, for

an Esakia space X, it is easy to see that Q is an Esakia quasi-order. Thus, for an Esakia

space X, there is an isomorphism between Esakia quasi-orders on X ordered by inclusion

and Esakia equivalence relations on X ordered by inclusion.

Theorem 7.16. Let A be a Heyting algebra and (X, τ,�) be the Esakia space of A. Then

the poset (HSA,⊆) of Heyting subalgebras of A is dually isomorphic to the poset (EQX,⊆)

of Esakia quasi-orders on X.

Proof. In view of Theorem 6.15, it is sufficient to show that if S ∈ HSA, then QS ∈ EQX ,

and that if Q ∈ EQX , then SQ ∈ HSA. Let S ∈ HSA. By Theorem 6.15, QS is a Priestley

quasi-order on X extending �. Suppose xQSy. Then x∩S ⊆ y∩S . Let F be the filter of A

generated by x∪ (y ∩ S). Then F is a proper filter of A with x ⊆ F and F ∩ S = y ∩ S . By

Zorn’s lemma, we can extend F to a maximal such filter z. The standard argument shows

that z is prime. Therefore, there exists z ∈ X such that x � z and zESy. Thus, QS ∈ EQX .

Now let Q ∈ EQX . By Theorem 6.15, SQ is a bounded distributive sublattice of A. For
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a, b ∈ SQ we have φ(a), φ(b) are Q-upsets of X. We show that

φ(a→ b) = φ(a)→ φ(b) = [↓(φ(a)− φ(b))]c = {x ∈ X | ↑x ∩ φ(a) ⊆ φ(b)}

is also a Q-upset of X. Let x ∈ φ(a → b) and xQy. We show that ↑y ∩ φ(a) ⊆ φ(b). Let

u ∈ ↑y ∩ φ(a). Then y � u and u ∈ φ(a). Therefore, xQu, so there exists z ∈ X such that

x � z and zEu. Since zEu, u ∈ φ(a), and φ(a) is a Q-upset, we have z ∈ φ(a). This implies

that z ∈ ↑x ∩ φ(a), and as ↑x ∩ φ(a) ⊆ φ(b), we get z ∈ φ(b). Now zEu and the fact that

φ(b) is a Q-upset imply that u ∈ φ(b). Consequently, ↑y ∩ φ(a) ⊆ φ(b), so y ∈ φ(a → b),

and thus φ(a → b) is a Q-upset. It then follows that a, b ∈ SQ implies a → b ∈ SQ, so

SQ ∈ HSA.

As a consequence of Remark 7.15 and Theorem 7.16, we get the following well-known

dual description of the subalgebras of Heyting algebras (Esakia 1974, Theorem 4): the

poset of Heyting subalgebras of a Heyting algebra A is dually isomorphic to the poset of

Esakia equivalence relations on the Esakia space X of A.

We now give the dual description of the subalgebras of Heyting algebras by means of

bitopological Esakia spaces and spectral Esakia spaces. Let (X, τ1, τ2) be a bitopological

Esakia space. We say a bitopology (τ′1, τ
′
2) is an Esakia bitopology on X if (τ′1, τ

′
2) is

pairwise zero-dimensional and A ∈ β′1, B ∈ β′2 imply Cl1(A ∩ B) ∈ β′2. We use (EBX,⊆) to

denote the poset of Esakia bitopologies on X coarser than (τ1, τ2).

Lemma 7.17. Let (X, τ,�) be an Esakia space and (X, τ1, τ2) be the corresponding

bitopological Esakia space. Then (EQX,⊆) is dually isomorphic to (EBX,⊆).

Proof. In view of Lemma 6.17, we only need to show that if Q ∈ EQX , then (τQ1 , τ
Q
2 ) ∈

EBX , and that if (τ′1, τ
′
2) ∈ EBX , then Q(τ′1 ,τ

′
2)
∈ EQX . Let Q ∈ EQX . By Lemma 6.17, (τQ1 , τ

Q
2 )

is a zero-dimensional bitopology coarser than (τ1, τ2). Moreover, βQ1 coincides with the

set of clopen Q-upsets and β
Q
2 coincides with the set of clopen Q-downsets of (X, τ,�).

Therefore, for A ∈ βQ1 and B ∈ βQ2 , we have that A is a clopen Q-upset and B is a clopen

Q-downset of (X, τ,�). Since Q is an Esakia quasi-order, by Theorem 7.16, the lattice of

clopen Q-upsets of (X, τ,�) is a Heyting subalgebra of the Heyting algebra of all clopen

upsets of (X, τ,�). So ↓(A∩B) is a clopen Q-downset of (X, τ,�), and thus ↓(A∩B) ∈ βQ2 .

By Corollary 6.6, Cl1(A∩B) = ↓(A∩B). Consequently, Cl1(A∩B) ∈ βQ2 , so (τQ1 , τ
Q
2 ) ∈ EBX .

Now suppose (τ′1, τ
′
2) ∈ EBX . By Lemma 6.17, Q(τ′1 ,τ

′
2)

is a Priestley quasi-order on X

extending �. We show that the lattice of clopen Q(τ′1 ,τ
′
2)
-upsets of (X, τ,�) is closed under

→. Let A and B be clopen Q(τ′1 ,τ
′
2)
-upsets of (X, τ,�). Then A ∈ β′1 and Bc ∈ β′2. Therefore,

Cl1(A ∩ Bc) ∈ β′2, so Cl1(A ∩ Bc) is a clopen Q(τ′1 ,τ
′
2)
-downset of (X, τ,�). By Corollary 6.6,

Cl1(A ∩ Bc) = ↓(A ∩ Bc). Consequently, ↓(A ∩ Bc) is a clopen Q(τ′1 ,τ
′
2)
-downset of (X, τ,�),

so A → B = [↓(A ∩ Bc)]c is a clopen Q(τ′1 ,τ
′
2)
-upset of (X, τ,�), and thus the lattice of

clopen Q(τ′1 ,τ
′
2)
-upsets of (X, τ,�) is closed under →. This implies that the lattice of clopen

Q(τ′1 ,τ
′
2)
-upsets of (X, τ,�) is a Heyting subalgebra of the Heyting algebra of all clopen

upsets of (X, τ,�), which, by Theorem 7.16, gives us that Q(τ′1 ,τ
′
2)
∈ EQX .

Let (X, τ) be a spectral Esakia space. We say a topology τ′ on X is a spectral Esakia

topology if τ′ is strongly coherent and A ∈ E(X, τ′), B ∈ Δ(X, τ′) imply Cl(A∩B) ∈ Δ(X, τ′).
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Heyt Esa BEsa SpecE

filter closed upset τ2-closed set compact saturated set

prime filter ↑x Cl2(x) Sat(x)

maximal filter ↑x = {x} Cl2(x) = {x} Sat(x) = {x}

ideal open upset τ1-open set open set

prime ideal (↓x)c [Cl1(x)]
c [Cl(x)]c

maximal ideal (↓x)c = {x}c [Cl1(x)]
c = {x}c [Cl(x)]c = {x}c

homomorphic image closed upset τ2-closed set compact saturated set

subalgebra Q ∈ EQX (τ′1 , τ
′
2) ∈ EBX τ′ ∈ SEX

canonical completion Up(X) S1(X) = CS2(X) S(X)

MacNeille completion RgOpUp(X) RgOp12(X) SatOp(X)

complete lattice RgOpUp(X) = CpUp(X) β1 = RgOp12(X) E(X) = SatOp(X)

Table 2. Dictionary for Heyt, Esa, BEsa and SpecE.

For a spectral Esakia space (X, τ), let (SEX,⊆) denote the poset of spectral Esakia

topologies on X coarser than τ.

Lemma 7.18. Let (X, τ1, τ2) be a bitopological Esakia space and (X, τ1) be the corres-

ponding spectral Esakia space. Then (EBX,⊆) is isomorphic to (SEX,⊆).

Proof. In view of Lemma 6.19, we only need to show that if (τ′1, τ
′
2) ∈ EBX , then

τ′1 ∈ SEX , and that if τ′1 ∈ SEX , then (τ′1, τ
′
2) ∈ EBX . Let (τ′1, τ

′
2) ∈ EBX . By Lemma 6.19,

τ′1 is a strongly coherent topology coarser than τ1. Moreover, since β′1 = E(X, τ′1) and

β′2 = Δ(X, τ′1), for A ∈ E(X, τ′1) and B ∈ Δ(X, τ′1), we have A ∈ β′1 and B ∈ β′2, so

Cl1(A ∩ B) ∈ β′2, and thus Cl1(A ∩ B) ∈ Δ(X, τ′1). Therefore, τ′1 ∈ SEX . Now let τ′1 ∈ SEX .

By Lemma 6.19, (τ′1, τ
′
2) is a zero-dimensional bitopology coarser than (τ1, τ2). Moreover,

since E(X, τ′1) = β′1 and Δ(X, τ′1) = β′2, for A ∈ β′1 and B ∈ β′2, we have A ∈ E(X, τ′1) and

B ∈ Δ(X, τ′1), so Cl1(A∩B) ∈ Δ(X, τ′1), and thus Cl1(A∩B) ∈ β′2. Hence, (τ′1, τ
′
2) ∈ EBX .

Putting Lemmas 7.17 and 7.18 together, we get the following dual description of the

Heyting subalgebras of a Heyting algebra.

Corollary 7.19. Let A be a Heyting algebra, (X, τ,�) be the Esakia space of A, (X, τ1, τ2)

be the bitopological Esakia space of A and (X, τ1) be the spectral Esakia space of A. Then

(HSA,⊆) is dually isomorphic to (EQX,⊆), and is also isomorphic to (EBX,⊆) and (SEX,

⊆).

Table 2 gathers together the dual descriptions of different algebraic concepts for Heyting

algebras by means of their Esakia spaces, bitopological Esakia spaces and spectral Esakia

spaces obtained in this section. This can be thought of as a dictionary of duality theory

for Heyting algebras.

We conclude by observing that two further natural subclasses of the class of distributive

lattices that play an important role in the study of non-classical logics are the classes

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 24 Mar 2015 IP address: 169.230.243.252

G. Bezhanishvili, N. Bezhanishvili, D. Gabelaia and A. Kurz 392

of co-Heyting algebras and bi-Heyting algebras. Recall that a co-Heyting algebra is a

bounded distributive lattice A with a binary operation ←: A2 → A such that for all

a, b, c ∈ A, we have

c � a← b iff b ∨ c � a.

Recall also that (A,→,←) is a bi-Heyting algebra if (A,→) is a Heyting algebra and (A,←)

is a co-Heyting algebra. The first duality for co-Heyting algebras and bi-Heyting algebras

was developed in Esakia (1975). It is a restricted version of Priestley’s duality, and is a

modified version of Esakia’s duality for Heyting algebras (Esakia 1974). The bitopological

and spectral dualities for co-Heyting and bi-Heyting algebras can be developed by an

obvious modification of the bitopological and spectral dualities for Heyting algebras

developed in this section. We will skip over the details, which can be recovered by an

appropriate modification of the proofs given above, and only mention that one can also

construct a dictionary of duality theory for co-Heyting algebras and bi-Heyting algebras

similar to that given for Heyting algebras in Table 2.
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