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Abstract. On the singular complex of a space, a local system of acyclic
spaces is constructed leading, for Serre fibrations, to a bigraded differential
model for the chain complex of the total space.
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1. Introduction

In independent works [4] and [3] the following bigraded model of the chain

complex of a fibration F → E
π→ B is given: the bigraded generators of the

bigraded model C∗∗(E) = {Cpq(E,G)} are continuous maps σpq : ∆p×∆q → E
such that the composition πσpq : ∆p ×∆q → B does not depend on the second
argument. The differentials d

′
and d

′′
are defined in an obvious way via the

differentials of standard simplexes ∆p and ∆q.
In [1] another bigraded model in the case B is a polyhedron, B = |K|,

is considered as a bicomplex C∗∗(E) = Cp(B, Cq(π
−1[st(σ)], G), where st(σ)

denotes the star of a simplex σ ∈ K. The proof, in the spirit of Zeeman’s
dihomology [6], is an easy one. The general case of a fibration with arbitrary B
is reduced then to that of polyhedron B by a standard but tedious technique.

Our aim is to construct the bigraded model of E by an analog technique for
the general case of B. If Sing(B) is the singular complex of the space B, then
in general it is not any longer an acyclic complex st(σm), σm ∈ Sing(X) (for
example, st(σ0) is homologically isomorphic to Sing(B) when B is a connected
space). In Section 2 we construct such a system of spaces. In Section 3 we
construct the bigraded model of a Serre fibration. In Sections 4 and 5 we equip
the cohomology version of a bigraded model with cochain operations ^ − and
^i −.

The main result of this paper was announced in [2]

2. A Local System of Spaces on the Singular Complex

Let X be a space and Sing(X) be its singular complex. If σm ∈ Sing(X), i.e.,

σm : ∆m → X,
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and if (i1, i2, . . . , ik) is a subset of the set (0, 1, 2, . . . , m), then its complementary
subset, i.e., the subset

(· · · î1 · · · î2, . . . , îk · · · ) ⊂ (0, 1, 2, . . . ,m)

is a (m − k)-dimensional face of ∆m = (0, 1, 2, 3, . . . ,m). Let denote it by
∆m

i1i2···ik . The restriction of σm on ∆m
i1i2···ik let us call by the (i1, i2, . . . , ik)-th

face of σm and denote it by σm
i1,i2,...,ik

. One has dim(σm
i1,i2,...,ik

) = m− k.
Let us fix σn and define a simplicial complex K1(σ

n) as follows. Consider
all pairs f = (σm, 0 ¹ i1 < i2 < · · · < ik ¹ m) such that σm

i1,i2,...,ik
= σn; for

such a pair consider a copy of the standard m-simplex and denote it by ∆m
f ;

let K1(σ
n) = ∪m,f∆

m
f (a disjoint union). Each simplex ∆m

f , f = (σm, 0 ¹ i1 <
i2 < · · · < ik ¹ m), contains a standard n-simplex ∆n as the face [∆m

f ]i1,i2,...,ik .
Let us identify all them in K1(σ

n) as one ∆n. The resulting factor space K2(σ
n)

is still a simplicial complex. Obviously, K2(σ
n) is a cone with the first vertex

of the simplex ∆n at the top. Hence there is a standard contraction of K2(σ
n)

to the first vertex of ∆n.
If for a pair f = (σm, 0 ¹ i1 < i2 < · · · < ik ¹ m), (j 1 < j 2 < · · · < j p) is a

subset of (i1 < i2 < · · · < ik) we define a new pair fj1,j2,...,jp , the (j1, j2, . . . , jp)-
th face of the pair f, as the pair [σm

j1,j2,...,jp
, 0 ¹ λ1 < λ 2 < · · · < λ k−p ¹ m−p],

where σm
j1,j2,...,jp

is the (j1, j2, . . . , jp)-th face of σm and the numbers λ1 < λ2 <

· · · < λk−p correspond in an obvious way to the elements of (i1, i2, . . . , ik)\(j
1, j2, . . . , j p). In the complex K2(σ

n) the pairs f and fj1,j2,...,jp are independently
given as simplexes. Let us jet identify the pair fj1,j2,...,jp with the (j 1j 2 · · · j
p)-th face of the pair f. So we get a factor space of K2(σ

n), the space K(σn).
Of course, still ∆n ⊂ K(σn) and K(σn) is still contractible to 0, the first vertex
of ∆n.

K(σ) is not any longer a simplicial complex because two different faces of a
simplex ∆m

f can be identified in K(σ). But K(σ) is obviously a simplicial set
without degeneracy operators.

Below K(σ) denotes a simplicial set or its realization.

Definition 1. If σn is a face of σp, σn < σp, then one defines a map

εσnσp : K(σp) → K(σn)

as the one induced by the obvious inclusion

K2(σ
p) ⊂ K2(σ

n).

Definition 2. For each ∆m
f = (σm, 0 ¹ i1 < i2 < · · · < ik ¹ m) consider the

map
σm : ∆m

f → X.

These maps define a map K2(σ
n) → X. Obviously, this map factors as

K2(σ
n) → K(σn) → X.

Let the second map be denoted by εσn ,

εσn : K(σn) → X.
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So, on the singular complex Sing(X), we have constructed a local system of
simplicial sets {K(σ), εσσ, εσ} .

Lemma 1. The system {K(σ), εσσ, εσ} is a local system of simplicial sets on
Sing(X), i.e.,

(a) K(σ), σ ∈ Sing X, is a simplicial set without degeneracy operators;
(b) if σn < σp, then the map εσnσp is a map of simplicial sets.
(c) if σn < σp < σq, then the diagram

K(σq) //

$$IIIIIIIII
K(σp)

²²
K(σn)

is commutative;
(d) if σn < σp, then the diagram

K(σp) //

%%JJJJJJJJJJ
K(σn)

²²
X

is commutative.

Proof. The commutativity of the above diagrams is obvious from the definitions
of the maps involved. ¤

The local system {K(σ), εσσ, εσ} is a covariant functor on the category of
topological spaces: if f : X → Y is a map, then for a simplex σn ∈ Sing(X) we
define in an obvious way the map

K(f) : K(σn) → K(f(σn))

and the diagrams

K(σp) //

²²

K(σn)

²²
K(f(σp)) // K(f(σn)) ,

σn < σp, and

K(σn) //

²²

K(f(σn))

²²
X // Y

are commutative.
Let X be a polyhedron, X = |L|, where L is a simplicial complex. Consider

L as an ordered simplicial complex. Then L is a subcomplex of Sing(X) and
L ⊂ Sing(X) is a homology isomorphism. For σ ∈ L consider st(σ) ⊂ L.
Then {st(σ), εσσ, εσ} is a local system of simplicial contractible complexes on L.
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Obviously, one has the map st(σ) → K(σ), i.e., there is a map of local systems
on L

{st(σ), εσσ, εσ} → {K(σ), εσσ, εσ}.
3. A Bigraded Chain Model for a Serre Fibration

Let F → E
π→ B be a Serre fibration and consider the local system of acyclic

spaces
K(σ), σ ∈ Sing(B),

on the singular complex of B, which is discussed in Section 2. For each σ ∈
Sing(B) the map

εσ : K(σ) → B

induces a fibration
F → E(σ)

π→ K(σ).

In this way we have a local system of spaces

E(σ), σ ∈ Sing(B),

on the singular complex of B. If G is a coefficient group, then

Cq(E(σ), G), σ ∈ Sing(B),

form a local system of abelian groups on B and we obtain a bigraded abelian
group

U∗,∗ = C∗(B,C∗(E(σ), G))

that carries two differentials

d′ : Cp(B, Cq(E(σ), G)) → Cp−1(B, Cq(E(σ), G))

(the differential of B) and

d′′ : Cp(B, Cq(E(σ), G)) → Cp(B, Cq−1(E(σ), G))

(the differential of E(σ)). Thus we have a bigraded complex

U∗,∗ = {C∗(B, C∗(E(σ), G)), d
′
, d

′′}. (3.1)

Lemma 2. If the base B of a Serre fibration F → E
π→ B is contractible,

then F → E is a homology isomorphism.

Proof. The first proof (using the Whitehead theorem) is trivial: from an exact
sequence of homotopy groups of a fibration it follows that π∗(F ) → π∗(E) is an
isomorphism; from the Whitehead theorem it follows that F → E is a homology
isomorphism.

The second proof is an elementary one and consists in constructing (induc-
tively on q) a chain map

f : Cq(E) → Cq(π
−1(∗))

and a chain homotopy
Dq : Cq(E) → Cq+1(E))

with
f |π−1(0)) = id : C∗(π−1(∗)) → C∗(π−1(∗))



LOCAL SYSTEM 653

and
∂D + D∂ = id− f. ¤

By Lemma 2 the first spectral sequence of the bigraded complex (3.1) can be
written as follows

E2
pq = Hp(B, Hq(F )) =⇒

p
Hp+q(U∗∗) (3.2)

(where Hq(F ) is a local system on B).
The map εσ : K(σ) → B induces a chain map

C∗(E(σ), G) → C∗(E, G).

Hence there is a map

f0 : C0(B,C∗(E(σ), G) → C∗(E, G)

with f0d
′′

= ∂f0. It is easy to check that the composition

C1(B,C∗(E(σ), G) → C0(B, C∗(E(σ), G) → C∗(E, G)

is a zero homomorphism. Hence if one defines

fp = 0 : Cp(B, C∗(E(σ), G) → C∗(E, G), p > 0,

then one has a chain map

f : U = C∗(B, C∗(E(σ), G) → C∗(E, G).

Theorem 1. The chain map

f : C∗(B,C∗(E(σ), G)) → C∗(E,G))

is a homology isomorphism.

The proof will be given in Section 6.
Theorem 1 has (by 3.2) the following corollary.

Theorem 2 (Serre). If F → E
π→ B is a Serre fibration, then there is a

spectral sequence

E2
pq = Hp(B, Hq(F, G)) =⇒

p
Hp+q(E, G).

4. The Multiplicative Structure in the Bigraded Model

Let
C∗(B, C∗(E(σ)))

be the bigraded chain model of a Serre fibration F → E
π→ B. Then

{C∗(B, C∗(E(σ), G)), δ
′
, δ

′′}
is a model of cochain complex of E and one has a cochain map

C∗(E,G) → C∗(B, C∗(E(σ), G)) (4.1)

which is defined using a standard map

Cq(E, G) → C0(B, Cq(E(σ), G)).
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Let G = Λ be a commutative ring. Then the bicomplex

C∗(B,C∗(E(σ), Λ))

carries a multiplicative structure defined as follows: if xp,q∈Cp(B, Cq(E(σ), Λ)),
yr,s ∈ Cr(B,Cs(E(σ), Λ)), then let

xp,qyr,s = (−1)qrxp,q ^ yr,s,

where on the right is a ^-product in the singular complex of B of the p-cochain
xp,q and r-cochain yr,s., and the coefficients, q-cochains and s-cochains are paired
by the ^-product in the space E(σp+r). The product is subject of the standard
relation

d(xy) = dxy + (−1)p+qxdy.

One sees that map (4.1) is multiplicative. So we have

Theorem 3. Map (4.1) induces an isomorphism

H∗(E, Λ) → H∗(C∗(B, C∗(E(σ), Λ)))

of cohomology algebras.

5. Steenrod’s ^i-Product in a Serre Fibration

Consider a graded algebra (A, δ) (where A is a Z2−module) with Steenrod’s
^i-products, i.e., one has

δ(ap ^i bq) = δap ^i bq + ap ^i δbq + ap ^i−1 bq + bq ^i−1 ap, (5.1)

and ^0 is associative. If (B, δ) is another such algebra, then the tensor product

A⊗B

carries ^i-products defined as

i∑
j=0

^j ⊗ ^i−j T j, (5.2)

where T (ap ⊗ br) = (bp ⊗ ar). It is easy to check that Steenrod’s coboundary
formula (5.1) holds. Formula (5.2) can be rewritten in the detailed form

(ap ⊗ br) ^i (aq ⊗ bs) = (ap ^0 aq)⊗ (br ^i bs) + (ap ^1 aq)⊗ (bs ^i−1 br)

+(ap ^2 aq)⊗ (br ^i−2 bs) + (ap ^3 aq)⊗ (bs ^i−3 bq) + · · · . (5.3)

Let
C∗(B, C∗(E(σ), G))

be the bigraded cochain model of a Serre fibration F → E
π→ B.

Let G = Z2. Then by (5.3) the bicomplex

C∗(B,C∗(E(σ), Z2))

carries Steenrod’s ^i −products defined as follows: if xp,q∈Cp(B,Cq(E(σ),Z2)),
yr,s ∈ Cr(B,Cs(E(σ), Z2)), then let xp,q ^i yr,s be defined by

xp,q ^i yr,s = xp,q ^i
0 yr,s + xp,q^i−1

1 yr,s + xp,q ^i−2
2 yr,s + xp,q^i−3

3 yr,s + · · · ,
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where on the right the expression

xp,q ^k
l yr,s

means a ^l-product in the singular complex of B of the p-cochain xp,q and the
r-cochain yr,s. and the coefficients, q-cochains and s-cochains are paired by the
^k-product in the space E(σp+r−i); on the other hand, the expression

xp,q^k
l y

r,s

means a ^l-product in the singular complex of B of the p-cochain xp,q and the
r-cochain yr,s. and the coefficients, s-cochains and q-cochains are paired by the
^k-product in the space E(σp+r−i).

The Steenrod coboundary formula (5.1) obviously holds.

Proposition 1. The cochain map

C∗(E,Z2) → C∗(B, C∗(E(σ), Z2)) (5.4)

preserves ^i -product.

Proof. The map
Cq(E,Z2) → C0(B, Cq(E(σ), Z2))

obviously preserves ^i-product. ¤
Theorem 4. Map 4.1 induces an isomorphism of cohomology algebras

H∗(E, Z2) → H∗(C∗(B,C∗(E(σ), Z2)))

as modules over the Steenrod algebra.

6. The Proof of Theorem 1

6.1. The bigraded model of a covering. Let E be a space and U = {Uα}
be its open covering, i.e., Uα is an open set of E and ∪Uα = E. The well-known
tool in the singular homology theory is

Proposition 2 (see [5]). If SU(E) is the union of subcomplexes Sing(Uα),
then SU(E) ⊂ Sing(E) is a homology isomorphism.

Let N(U) be the nerve of the covering U . In the spirit of [6], consider, in the
product

N(U)× SU(E),

the subcomplex V (U) of all pairs (σ, τ), τ ∈ Sing |σ|, where |σ| = Uα0 ∩ Uα1 ∩
Uα0 ∩ · · · ∩ Uαn .

Denote Vτ = {σ|(σ, τ) ∈ V } ⊂ N(U) and Vσ = {τ |(σ, τ) ∈ V } ⊂ SU(E).
Obviously, Vτ is a simplex and hence it is acyclic.
If G is an abelian group, then the chain complex C(V,G) is bigraded

V∗∗ = C∗∗(V,G). (6.1)

The system {Vσ} is a local system of spaces on N(U). So we can consider
the above bicomplex as

C∗(N(U), C∗(Vσ, G)). (6.2)
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As in Section 3 we have a chain map

C∗(SU(E), G) ←− C∗(N(U), C∗(Vσ, G)).

Lemma 3. The above map is a homology isomorphism

Proof. The second spectral sequence of bicomplex (6.2) is the same as that of
bicomplex (6.1). Being first term of the spectral sequence

E1
p,q = Cp(SU(E), Hq(Vς , G)

and being Vτ acyclic, one has

E1
p,q = 0, p > 0,

E1
p,q = Cq(SU(E), G), p = 0.

It follows that the first term of the spectral sequence is equal to the chain
complex C∗(SU(E), G). ¤

The first spectral sequence of the bigraded complex 6.2 is

E2
pq = Hp(N(U), Hq(|σ|, G)) ⇒

p
Hp+q[C∗(N(U), C∗(Vσ, G)].

Hence, by Lemma 3 and Proposition 2, we get

E2
pq = Hp(N(U), Hq(|σ|, G)) ⇒

p
Hp+q(E, G).

Remark 1. This is a version for the singular homology theory of Leray spectral
sequence of a covering.

6.2. The bigraded model of a fibration with the base a simplicial com-
plex. If the base of a fibration F → E

π→ B is a polyhedron, B = |L|, then
consider the open covering of B, U = {s̃t(a)}, where s̃t(a) is the union of all
open simplexes of L having a as a vertex. The well-known fact is

Proposition 3. N(U) is isomorphic to L.

Consider the open covering of E: π−1U = {π−1[s̃t(a)]}. Obviously,

N(π−1(U)) = N(U).

Hence Lemma 3 and Proposition 2 give a homology isomorphism

C∗(E,G) ← C∗(L,C∗(π−1[s̃t(σ)], G)). (6.3)

The map

s̃t(σ) → st(σ)]

induces an isomorphism

Hq(π
−1[s̃t(σ)], G) → Hq(π

−1[st(σ)], G).

Hence one has a homology isomorphism

C∗(L, C∗(π−1[s̃t(σ)], G)) → C∗(L,C∗(π−1[st(σ)], G)),

i e., by (6.3) we have
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Proposition 4. For F → E
π→ |L| one has the bigraded complex

C∗(L,C∗(π−1[st(σ), G)))

and a homology isomorphism

C∗(E, G) ← C∗(L,C∗(π−1[st(σ), G))).

On the other hand, the map

C∗(L,C∗(π−1[st(σ)], G)) → C∗(|L|, C∗(E(σ), G))

is a homology isomorphism.

6.3. Proof of Theorem 1. If B is a space, then there are a simplicial complex
L and f : |L| → B, inducing an isomorphism of homotopy groups. Let for a

Serre fibration F → E
π→ B, F → E

′ π→ |L| be the induced fibration. Then
C∗(E

′
, G) → C∗(E, G) is a homology isomorphism.

Proof of Theorem 1. One has a diagram

C∗(E, G) C∗(E
′
, G)oo C∗(L,C∗(π−1[st(σ)], G))oo

²²
C∗(B, C∗(E[K(σ)], G)))

s
iiSSSSSSSSSSSSSS

C∗(|L|, C∗(E(K(σ)], G)))) .oo

It is easy to check that the diagram is commutative. The above reasoning shows
that the maps of the diagram except s are homology isomorphisms. Hence s,
too, is a homology isomorphism. ¤
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