All extensions of C_{2} by $C_{2^{n}} \times C_{2^{n}}$ are good for the Morava K-theory

Malkhaz BaKURADZE
(Received April 26, 2017)
(Revised June 14, 2019)

Abstract

Let C_{m} be a cyclic group of order m. We prove that if a group G fits into an extension $1 \rightarrow C_{2^{n+1}}^{2} \rightarrow G \rightarrow C_{2} \rightarrow 1$ for $n \geq 1$ then G is good in the sense of Hopkins-Kuhn-Ravenel, i.e., $K(s)^{*}(B G)$ is evenly generated by transfers of Euler classes of complex representations of subgroups of G.

1. Introduction and statements

This paper is concerned with analyzing the 2 -primary Morava K-theory of the classifying spaces $B G$ of the groups in the title. In particular it answers the question whether transfers of Euler classes suffice to generate $K(s)^{*}(B G)$. Here $K(s)$ denotes Morava K-theory at prime $p=2$ and natural number $s>1$. The coefficient ring $K(s)^{*}(p t)$ is the Laurent polynomial ring in one variable, $\mathbb{F}_{2}\left[v_{s}, v_{s}^{-1}\right]$, where \mathbb{F}_{2} is the field of 2 elements and $\operatorname{deg}\left(v_{s}\right)=$ $-2\left(2^{s}-1\right)$ [12]. So the coefficient ring is a graded field in the sense that all its graded modules are free, therefore Morava K-theories enjoy the Künneth isomorphism. In particular, we have for the cyclic group $C_{2^{n+1}}$ that as a $K(s)^{*}$-algebra

$$
K(s)^{*}\left(B C_{2^{n+1}}^{2}\right)=K(s)^{*}\left(B C_{2^{n+1}}\right) \otimes_{K(s)^{*}} K(s)^{*}\left(B C_{2^{n+1}}\right),
$$

whereas $K(s)^{*}\left(B C_{2^{m}}\right)=K(s)^{*}[u] /\left(u^{2 m s}\right)$, so that

$$
K(s)^{*}\left(B C_{2^{n+1}}^{2}\right)=K(s)^{*}[u, v] /\left(u^{2^{(n+1) s}}, v^{2^{(n+1) s}}\right),
$$

where u and v are Euler classes of canonical complex linear representations.
The definition of good groups in the sense of [10] is as follows.
(a) For a finite group G, an element $x \in K(s)^{*}(B G)$ is good if it is a transferred Euler class of a complex subrepresentation of G, i.e., a class of the

[^0]form $\operatorname{Tr}^{*}(e(\rho))$, where ρ is a complex representation of a subgroup $H<G$, $e(\rho) \in K(s)^{*}(B H)$ is its Euler class (i.e., its top Chern class, this being defined since $K(s)^{*}$ is a complex oriented theory), and $\operatorname{Tr}: B G \rightarrow B H$ is the transfer map.
(b) $\quad G$ is called to be good if $K(s)^{*}(B G)$ is spanned by good elements as a $K(s)^{*}$-module.

Recall that not all finite groups are good as it was originally conjectured in [10]. For an odd prime p a counterexample to the even degree was constructed in [14]. The problem to construct 2-primary counterexample to the conjecture remains open.

The families of good groups in a weaker sense, i.e., $K(n)^{\text {odd }}(B G)=0$ are listed in [16]. In particular, if G belongs to any of the following families of p-groups, then $K(n)^{\text {odd }}(B G)=0$.
(a) wreath products of the form H < C_{p} with H good [10], [11];
(b) metacyclic p-groups [20];
(c) minimal non-abelian p-groups, i.e., groups all of whose maximal subgroups are abelian [21];
(d) groups of p-rank 2 [22];
(e) elementary abelian by cyclic groups, i.e., the extensions $V \rightarrow G \rightarrow C$ with V elementary abelian and C cyclic [23], [14];
(f) central product of the form $H \circ C_{p^{m}}$ with H good [16];
(g) H is a normal subgroup in G of index p, H is good and the integral Morava K-theory $\tilde{K}(s)(B H)$ is a permutation module for the action of G / H [14].

Our main result provides a new series of good groups in the sense of Hopkins-Kuhn-Ravenel.

Theorem 1. All extensions of C_{2} by $C_{2^{n+1}}^{2}$ are good for all $n \geq 0$.
For $n=0$ and $n=1$ the statement of the theorem was known. See [2], [4], [16], [18] for detailed discussion and examples. In this particular case, for various examples of groups of order 32, the multiplicative structure of $K^{*}(B G)$ is also determined in [2], [4] using transfer methods of [5], [6].

The basic tool for the proof is the Serre spectral sequence, which we use throughout the paper. However, if we work in a straightforward way, even for $s=2, n=1$, this requires a serious computational effort and use of computer, see [17], p. 78. We simplify the task of calculation with invariants by suggesting the special bases for particular C_{2}-modules $K(s)^{*}(B H)$, see Lemma 1 and Lemma 2. This simple but comfortable idea is our key tool to prove Theorem 1. We will prove it for the semi-direct products

$$
\begin{equation*}
\left(C_{2^{n+1}} \times C_{2^{n+1}}\right) \rtimes C_{2} . \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
K(s)^{*}(B G), \quad G=\left(C_{2^{n}} \times C_{2^{n}}\right) \rtimes C_{2} \tag{3}
\end{equation*}
$$

Then the general case follows because of the fact that the Serre spectral sequence does not show the difference between the semi-direct products and their non-split versions.

2. Preliminaries

Recall [9] there exist exactly 17 non-isomorphic groups of order $2^{2 n+3}$, $n \geq 2$, which can be presented as a semidirect product (1). Each such group G is given by three generators $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and the defining relations

$$
\mathbf{a}^{2^{n+1}}=\mathbf{b}^{2^{n+1}}=\mathbf{c}^{2}=1, \quad \mathbf{a b}=\mathbf{b a}, \quad \mathbf{c}^{-1} \mathbf{a c}=\mathbf{a}^{i} \mathbf{b}^{j}, \quad \mathbf{c b c}=\mathbf{a}^{k} \mathbf{b}^{l}
$$

for some $i, j, k, l \in \mathbb{Z} / 2^{n+1}\left(\mathbb{Z} / 2^{m}\right.$ denotes the ring of residue classes modulo 2^{m}). In particular one has the following.

Proposition 1 (See [9]). Let n be an integer such that $n \geq 2$. Then there exist exactly 17 non-isomorphic groups of order $2^{2 n+3}$ which can be presented as a semi-direct product (1). They are:

$$
\begin{aligned}
& G_{1}=\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid(*), \mathbf{c a c}=\mathbf{a}, \mathbf{c b c}=\mathbf{b}\rangle, \\
& G_{2}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid(*), \mathbf{c a c}=\mathbf{a}^{1+2^{n}}, \mathbf{c b c}=\mathbf{b}^{1+2^{n}}\right\rangle, \\
& G_{3}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid(*), \mathbf{c a c}=\mathbf{a b}^{2^{n}}, \mathbf{c b c}=\mathbf{b}\right\rangle, \\
& G_{4}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid(*), \mathbf{c a c}=\mathbf{a}^{1+2^{n}} \mathbf{b}^{2^{n}}, \mathbf{c b c}=\mathbf{b}^{1+2^{n}}\right\rangle, \\
& G_{5}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid(*), \mathbf{c a c}=\mathbf{a}^{-1}, \mathbf{c b c}=\mathbf{b}^{-1}\right\rangle, \\
& G_{6}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid(*), \mathbf{c a c}=\mathbf{a}^{-1+2^{n}}, \mathbf{c b c}=\mathbf{b}^{-1+2^{n}}\right\rangle, \\
& G_{7}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid(*), \mathbf{c a c}=\mathbf{a}^{-1} \mathbf{b}^{2^{n}}, \mathbf{c b c}=\mathbf{b}^{-1}\right\rangle, \\
& G_{8}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid(*), \mathbf{c a c}=\mathbf{a}^{-1+2^{n}} \mathbf{b}^{2^{n}}, \mathbf{c b c}=\mathbf{b}^{-1+2^{n}}\right\rangle, \\
& G_{9}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid(*), \mathbf{c a c}=\mathbf{a b}^{2^{n}}, \mathbf{c b c}=\mathbf{a}^{2^{n}} \mathbf{b}^{1+2^{n}}\right\rangle, \\
& G_{10}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid(*), \mathbf{c a c}=\mathbf{a}, \mathbf{c b c}=\mathbf{b}^{1+2^{n}}\right\rangle, \\
& G_{11}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid(*), \mathbf{c a c}=\mathbf{a}^{-1} \mathbf{b}^{2^{n}}, \mathbf{c b c}=\mathbf{a}^{2^{n}} \mathbf{b}^{-1+2^{n}}\right\rangle, \\
& G_{12}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid(*), \mathbf{c a c}=\mathbf{a}^{-1}, \mathbf{c b c}=\mathbf{b}^{-1+2^{n}}\right\rangle, \\
& G_{13}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid(*), \mathbf{c a c}=\mathbf{a}, \mathbf{c b c}=\mathbf{b}^{-1+2^{n}}\right\rangle, \\
& G_{14}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid(*), \mathbf{c a c}=\mathbf{a}^{-1}, \mathbf{c b c}=\mathbf{b}^{1+2^{n}}\right\rangle,
\end{aligned}
$$

$$
\begin{aligned}
& G_{15}=\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid(*), \mathbf{c a c}=\mathbf{b}, \mathbf{c b c}=\mathbf{a}\rangle, \\
& G_{16}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid(*), \mathbf{c a c}=\mathbf{a}, \mathbf{c b c}=\mathbf{b}^{-1}\right\rangle, \\
& G_{17}=\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid(*), \mathbf{c a c}=\mathbf{a}^{1+2^{n}}, \mathbf{c b c}=\mathbf{b}^{-1+2^{n}}\right\rangle,
\end{aligned}
$$

where ($*$) denotes the collection $\left\{\mathbf{a}^{2^{n+1}}=\mathbf{b}^{2^{n+1}}=\mathbf{c}^{2}=[\mathbf{a}, \mathbf{b}]=1\right\}$ of defining relations.

Let H_{i} and G_{i} be finite p-groups, $i=1, \ldots, n$, such that H_{i} is good and G_{i} fits into an extension $1 \rightarrow H_{i} \rightarrow G_{i} \rightarrow C_{p} \rightarrow 1$.

Let G fit into an extension of the form $1 \rightarrow H \rightarrow G \rightarrow C_{p} \rightarrow 1$, with diagonal action of C_{p} by conjugation on $H=H_{1} \times \cdots \times H_{n}$. Let

$$
T r^{*}=T r_{\varrho}^{*}: K(s)^{*}(B H) \rightarrow K(s)^{*}(B G)
$$

be the transfer homomorphism associated to the p-covering

$$
\varrho=\varrho(H, G): B H \rightarrow B G .
$$

Let

$$
\operatorname{Tr}_{i}^{*}=\operatorname{Tr}_{\varrho_{i}}^{*}: K(s)^{*}\left(B H_{i}\right) \rightarrow K(s)^{*}\left(B G_{i}\right)
$$

be the transfer homomorphism associated to the p-covering

$$
\varrho_{i}=\varrho\left(H_{i}, G_{i}\right): B H_{i} \rightarrow B G_{i}, \quad i=1, \ldots, n .
$$

Then

$$
\left(\operatorname{Tr}_{1} \wedge \cdots \wedge \operatorname{Tr}_{n}\right)^{*}
$$

is the transfer homomorphism associated to the product $\varrho_{1} \times \cdots \times \varrho_{n}$.
Let

$$
\rho_{i}: B G \rightarrow B G_{i}
$$

be the map induced by the projection $p_{i}: H \rightarrow H_{i}$ on the i-th factor. Consider the map

$$
\left(\rho_{1}, \ldots, \rho_{n}\right): B G \rightarrow B G_{1} \times \cdots \times B G_{n} .
$$

Then by naturality of the transfer one has

$$
\left(\rho_{1}, \ldots, \rho_{n}\right)^{*} \circ\left(\operatorname{Tr}_{1} \wedge \cdots \wedge \operatorname{Tr}_{n}\right)^{*}=\operatorname{Tr}^{*} \circ\left(p_{1}, \ldots, p_{n}\right)^{*}
$$

Therefore $\left(\rho_{1}, \ldots, \rho_{n}\right)^{*}$ defines the homomorphism

$$
\rho^{*}: K(s)^{*}\left(B G_{1} \times \cdots \times B G_{n}\right) / \operatorname{Im}\left(\operatorname{Tr}_{1} \wedge \cdots \wedge \operatorname{Tr}_{n}\right)^{*} \rightarrow K(s)^{*}(B G) / \operatorname{Im} T r^{*} .
$$

$$
K(s)^{*}(B G), \quad G=\left(C_{2^{n}} \times C_{2^{n}}\right) \rtimes C_{2}
$$

In [3] we proved the following.
Theorem 2. Let G be a group as above. Then
i) If G_{i} are good, then so is G.
ii) As a $K(s)^{*}(p t)$-module, $K(s)^{*}(B G) / \operatorname{Im} T r^{*}$ is spanned by elements in $\operatorname{Im} \rho^{*}$.

In particular this implies
Corollary 1. Let $G=G_{i}, i \neq 3,4,7,8,9,11$, in Proposition 1. Then G is good in the sense of Hopkins-Kuhn-Ravenel.

Proof. G_{15} is good as wreath product [10]. If $i \neq 15, G_{i}$ has maximal abelian subgroup $H_{i}=\langle\mathbf{a}, \mathbf{b}\rangle$ on which the quotient acts (diagonally) as above. Each of the following groups $C_{2^{n+1}} \times C_{2}$, the dihedral group $D_{2^{n+2}}$, the quasidihedral group $Q D_{2^{n+2}}$, the semi-dihedral group $S D_{2^{n+2}}$ could be written as semidirect product $C_{2^{n+1}} \rtimes C_{2}$ with that kind of action. For all these groups $K(s)^{*}(B G)$ is generated by transfers of Euler classes, see [19, 20].

We will need the following approximations (see [7], Lemma 2.2) for the formal group law in Morava $K(s)^{*}$-theory, $s>1$, where we set $v_{s}=1$.

$$
\begin{gather*}
F(x, y) \equiv x+y+(x y)^{2^{s-1}} \bmod \left(y^{2^{2(s-1)}}\right) ; \tag{2}\\
F(x, y)=x+y+\Phi(x, y)^{2^{s-1}} \tag{3}
\end{gather*}
$$

where $\Phi(x, y) \equiv x y+(x y)^{2^{s-1}}(x+y) \bmod \left((x y)^{2^{s-1}}(x+y)^{2^{s-1}}\right)$.

3. Complex representations over $B G$

Let us define some complex representations over $B G$ we will need.
Let $H=\langle\mathbf{a}, \mathbf{b}\rangle \cong C_{2^{n+1}} \times C_{2^{n+1}}$ be the maximal abelian subgroup in G. Let

$$
\begin{equation*}
\pi: B H \rightarrow B G \tag{4}
\end{equation*}
$$

be the double covering. Let λ and v denote the complex line bundles over $B H$ defined by

$$
\lambda(\mathbf{a})=v(\mathbf{b})=e^{2 \pi i / 2^{n+1}}, \quad \lambda(\mathbf{b})=\lambda(\mathbf{c})=v(\mathbf{a})=v(\mathbf{c})=1,
$$

i.e. the pullbacks of the canonical complex line bundles along the projections onto the first and second factor of H respectively.

Define three line bundles α, β and γ over $B G$, as follows:

$$
\alpha(\mathbf{a})=\beta(\mathbf{b})=\gamma(\mathbf{c})=-1, \quad \alpha(\mathbf{b})=\alpha(\mathbf{c})=\beta(\mathbf{a})=\beta(\mathbf{c})=\gamma(\mathbf{a})=\gamma(\mathbf{b})=1 .
$$

Let us denote Chern classes by

$$
\begin{aligned}
& x_{i}=c_{i}\left(\pi_{!}(\lambda)\right), \quad y_{i}=c_{i}\left(\pi_{!}(v)\right), \quad i=1,2, \\
& a=c_{1}(\alpha), \quad b=c_{1}(\beta), \quad c=c_{1}(\gamma)
\end{aligned}
$$

in $K(s)^{*}(B G)$, where $\pi!(-)$ is the induced representation from π.

4. Proof of Theorem 1

Here we prove that all the remaining groups $G_{i}, i=3,4,7,8,9,11$, not covered by Corollary 1, are also good.

Our tool shall be the Serre spectral sequence

$$
\begin{equation*}
E_{2}=H^{*}\left(B C_{2}, K(s)^{*}(B H)\right) \Rightarrow K(s)^{*}(B G) \tag{5}
\end{equation*}
$$

associated to a group extension $1 \rightarrow H \rightarrow G \rightarrow C_{2} \rightarrow 1$.
Here $H^{*}\left(B C_{2}, K(s)^{*}(B H)\right)$ denotes the ordinary cohomology of $B C_{2}$ with coefficients in the $\mathbb{F}_{2}\left[C_{2}\right]$-module $K(s)^{*}(B H)$, where the action of C_{2} is induced by conjugation in G.

Let $T r^{*}: K(s)^{*}(B H) \rightarrow K(s)^{*}(B G)$ be the transfer homomorphism [1], [13], [8] associated to the double covering $\pi: B H \rightarrow B G$.

We use the notations of the previous two sections. In particular let

$$
H \cong C_{2^{n+1}} \times C_{2^{n+1}} \cong\langle\mathbf{a}, \mathbf{b}\rangle .
$$

The action of the involution $t \in C_{2}$ on

$$
\begin{equation*}
K(s)^{*}(B H)=K(s)^{*}[u, v] /\left(u^{2^{2(n+1) s},}, v^{2(n+1) s}\right) \tag{6}
\end{equation*}
$$

is induced by the conjugation action by \mathbf{c} on H.
As a C_{2}-module $K(s)^{*}(B H)=F \oplus T$, where F is C_{2}-free and T is C_{2} trivial.

This gives the decomposition

$$
\begin{equation*}
\left[K(s)^{*}(B H)\right]^{C_{2}}=[F]^{C_{2}} \oplus T . \tag{7}
\end{equation*}
$$

Clearly the composition $\pi^{*} T r^{*}=1+t$, the trace map, is onto $[F]^{C_{2}}$. Therefore it suffices to check that all elements in T are also represented by good elements.

Note that $\pi^{*} \pi_{!}$is the trace map in complex K-theory, i.e., $\pi^{*}\left(\pi_{!}(\lambda)\right)=$ $\lambda+t(\lambda)$. Then the Chern classes can be easily computed. In particular for all cases of G let $u=e(\lambda)=c_{1}(\lambda)$ and $v=e(v)=c_{1}(v)$ as before. Then

$$
K(s)^{*}(B G), \quad G=\left(C_{2^{n}} \times C_{2^{n}}\right) \rtimes C_{2}
$$

$\bar{x}_{1}=\pi^{*}\left(x_{1}\right)=c_{1}\left(\pi^{*}\left(\pi_{!}(\lambda)\right)\right)=u+t(u), \quad \bar{x}_{2}=\pi^{*}\left(x_{2}\right)=c_{2}\left(\pi^{*}\left(\pi_{!}(\lambda)\right)\right)=u t(u)$,
$\bar{y}_{1}=\pi^{*}\left(y_{1}\right)=c_{1}\left(\pi^{*}\left(\pi_{!}(v)\right)\right)=v+t(v), \quad \bar{y}_{2}=\pi^{*}\left(y_{2}\right)=c_{2}\left(\pi^{*}\left(\pi_{!}(v)\right)\right)=v t(v)$.
We will need the following.
Lemma 1. Let G be one of the groups under consideration and $t \in C_{2}=$ G / H be the corresponding involution on H. Then there is a set of monomials $\left\{x^{\omega}\right\}=\left\{\bar{x}_{1}^{i} \bar{x}_{2}^{j} \bar{y}_{1}^{k} \bar{y}_{2}^{l}\right\}$, such that the set $\left\{x^{\omega}, x^{\omega} u, x^{\omega} v, x^{\omega} u v\right\}$ is a $K(s)^{*}$-basis in $K(s)^{*}(B H)$. Specifically one can choose $\left\{x^{\omega}\right\}$ as follows:

$$
\left\{x^{\omega}\right\}= \begin{cases}\left\{\bar{x}_{2}^{j} \bar{y}_{1}^{k} \bar{y}_{2}^{l} \mid j<2^{n s-1}, k<2^{s}, l<2^{(n+1) s-1}\right\}, & \text { if } G=G_{3}, \\ \left\{\bar{x}_{1}^{i} \bar{x}_{2}^{j} \bar{y}_{1}^{\bar{y}} \bar{y}_{2}^{l} \mid i, k<2^{s}, j, l<2^{n s-1}\right\}, & \text { if } G=G_{4}, G_{9}, \\ \left\{\bar{x}_{1}^{i} \bar{x}_{2}^{j} \bar{y}_{1}^{k} \bar{y}_{2}^{l} \mid i, k<2^{n s}, j, l<2^{s-1}\right\}, & \text { if } G=G_{7}, G_{8}, G_{11} .\end{cases}
$$

Proof. For any case, the set $\left\{x^{\omega}, x^{\omega} u, x^{\omega} v, x^{\omega} u v\right\}$ generates $K(s)^{*}(B H)$: using $u^{2}=u \bar{x}_{1}-\bar{x}_{2}$ and $v^{2}=v \bar{y}_{1}-\bar{y}_{2}$ any polynomial in u, v can be written as $g_{0}+g_{1} u+g_{2} v+g_{3} u v$, for some polynomials $g_{i}=g_{i}\left(\bar{x}_{1}, \bar{y}_{1}, \bar{x}_{2}, \bar{y}_{2}\right)$. In particular it follows by induction, that

$$
\begin{equation*}
v^{2^{m}}=v \bar{y}_{1}^{2^{m}-1}+\sum_{i=1}^{m} \bar{y}_{1}^{2^{m}-2^{i}} \bar{y}_{2}^{2^{i-1}} \tag{8}
\end{equation*}
$$

and similarly for $u^{2^{m}}$.
Now for each case we have to explain the restrictions in $\left\{x^{\omega}\right\}$. Then the restricted set $S=\left\{x^{\omega}, x^{\omega} u, x^{\omega} v, x^{\omega} u v\right\}$ will indeed form a $K^{*}(s)$-basis in $K^{*}(s)(B H)$ because of its size $4^{(n+1) s}$.

Consider G_{3}. For the conditions on l and k we have to take into account (2), (3), (6) and the action of the involution t.

In particular, we have

$$
t(\lambda)=\lambda, \quad t(v)=\lambda^{2^{n}} v, \quad \text { and } \quad t(u)=u
$$

This implies $\bar{x}_{1}=u+t(u)=0$ and $\bar{x}_{2}=u t(u)=u^{2}$.
On the other hand, from (3)

$$
t(v)=F\left(u^{2^{n s}}, v\right)=v+u^{2^{n s}}+\left(v u^{2^{n s}}\right)^{2^{s-1}}
$$

which implies $\bar{y}_{2}^{2^{(n+1) s-1}}=0$ from (6). Similarly

$$
\bar{y}_{1}=v+t(v)=u^{2^{n s}}+\left(v u^{2^{n s}}\right)^{2^{s-1}}
$$

which implies $\bar{y}_{1}^{2 s}=0$.
Thus we have the condition that $k<2^{s}$ and $l<2^{(n+1) s-1}$ in $\left\{x^{\omega}\right\}$.

For the condition on j, that is, the decomposition of $\bar{x}_{2}^{n s-1}$ in the suggested basis, note that the formula for $t(v)$ and (8) for $m=s-1$ imply

$$
\begin{aligned}
\bar{x}_{2}^{2 n s-1}=u^{2^{n s}} & =\bar{y}_{1}+\left(v u^{2^{n s s}}\right)^{2^{s-1}} \\
& =\bar{y}_{1}+v^{2^{s-1}}\left(\bar{y}_{1}+\left(v u^{2 s s}\right)^{2^{s-1}}\right)^{2^{s-1}} \\
& =\bar{y}_{1}+v^{2^{s-1}} \bar{y}_{1}^{2 s-1} \\
& =\bar{y}_{1}+\bar{y}_{1}^{2 s-1}\left(v \bar{y}_{1}^{2^{s-1}-1}+\sum_{i=1}^{s-1} \bar{y}_{1}^{2^{s-1}-2^{i}} \bar{y}_{2}^{i-1}\right) \\
& =\bar{y}_{1}+v \bar{y}_{1}^{s-1}+\bar{y}_{1}^{s-1} \sum_{i=1}^{s-1} \bar{y}_{1}^{2^{s-1}-2^{i}} \bar{y}_{2}^{i-1}
\end{aligned}
$$

Here $\bar{x}_{2}^{2^{n s-1}}$ is represented by $\bar{y}_{1}^{k} \bar{y}_{2}^{l}$'s, and so we have the condition $j<2^{n s-1}$.
G_{4} : The involution acts as follows: $t(\lambda)=\lambda^{2^{n}+1}, t(v)=\lambda^{2^{n}} v^{2^{n}+1}$, hence

$$
\begin{align*}
& t(u)=F\left(u, u^{2^{n s}}\right)=u+u^{2^{n s}}+\left(u u^{2^{n s}}\right)^{2^{s-1}} \quad \text { by }(2), \tag{9}\\
& t(v)=F\left(v, F\left(v^{2^{n s}}, u^{2^{n s}}\right)\right)=v+F\left(v^{2^{n s}}, u^{2^{n s}}\right)+v^{2^{s-1}}\left(F\left(v^{2^{n s}}, u^{2^{n s}}\right)\right)^{s^{s-1}} \tag{10}
\end{align*}
$$

so that $\bar{x}_{1}^{2 s}=\bar{y}_{1}^{s s}=0$.
For the decomposition of $\bar{x}_{2}^{n s-1}$, note (9) implies

$$
\bar{x}_{2}^{2^{n s-1}}=(u t(u))^{2^{n s-1}}=u^{2^{n s}} .
$$

Then by (9) again

$$
\bar{x}_{2}^{2^{n s-1}}=\bar{x}_{1}+\left(u \bar{x}_{2}^{2^{n s-1}}\right)^{2^{s-1}}=\bar{x}_{1}+\left(u\left(\bar{x}_{1}+\left(u \bar{x}_{2}^{2^{n s-1}}\right)^{2^{s-1}}\right)\right)^{2^{s-1}}=\bar{x}_{1}+u^{2^{s-1}} \bar{x}_{1}^{2^{s-1}}
$$

and apply (8) for $u^{2 s-1}$.
Similar arguments work for $\bar{y}_{2}^{n s-1}$.
The proof for G_{9} is completely analogous as it uses the following similar formulas for the action of the involution:

$$
\begin{aligned}
& t(\lambda)=\lambda v^{2^{n}}, \quad t(v)=\lambda^{2^{n}} v^{2^{n}+1}, \\
& t(u)=F\left(u, v^{2^{s s}}\right)=u+v^{2^{n s}}+\left(u v^{2^{n s}}\right)^{2^{s-1}}, \\
& t(v)=F\left(v, F\left(u^{2^{n s}}, v^{2 n s}\right)\right) .
\end{aligned}
$$

G_{7} : Let $\bar{\lambda}$ be the complex conjugate to λ and

$$
\bar{u}=[-1]_{F}(u)=e(\bar{\lambda}), \quad \bar{v}=[-1]_{F}(v)=e(\bar{v}) .
$$

$$
\begin{equation*}
K(s)^{*}(B G), \quad G=\left(C_{2^{n}} \times C_{2^{n}}\right) \rtimes C_{2} \tag{9}
\end{equation*}
$$

The involution acts as follows:

$$
\begin{array}{ll}
t(\lambda)=\bar{\lambda} \\
t(v)=\lambda^{2^{n}} \bar{v} \\
t(u)=\bar{u} \equiv u+(u \bar{u})^{2^{s-1}} \bmod (1+t), & \text { by (3) as } F(u, \bar{u})=0 \\
t(v)=F\left(\bar{v}, u^{2^{n s}}\right)=\bar{v}+u^{2^{n s}}+\left(\bar{v} u^{2^{n s}}\right)^{2^{s-1}}, & \text { by (2). }
\end{array}
$$

It follows that

$$
0=u+\bar{u} \bmod (u \bar{u})^{2^{s-1}} \equiv u+\bar{u} \bmod \left(u^{2^{s}}\right)
$$

therefore

$$
\bar{x}_{1}^{2 n s}=(u+\bar{u})^{2^{n s}}=0, \quad \text { as } u^{2^{(n+1) s}}=0 .
$$

Then as $u \bar{u}=\bar{x}_{2}$ is nilpotent we can eliminate $\bar{x}_{2}^{2^{i}}=(u \bar{u})^{2^{i}}$ for $i>s-1$ in (3) after finite steps of iteration and write $\bar{x}_{2}^{2 s-1}$ as a polynomial in $u+\bar{u}=\bar{x}_{1}$. We will not need this polynomial explicitly but only

$$
\bar{x}_{2}^{2^{s-1}} \equiv 0 \bmod (1+t) .
$$

For $\bar{y}_{1}^{2 n s}=0$ apply the formula for $t(v)$ and take into account $v+\bar{v} \equiv$ $0 \bmod v^{2^{s}}$.

For the decomposition of $\bar{y}_{2}^{2^{s-1}}$ note we have two formulas for $F(v, t(v))=$ $e\left(\lambda^{2^{n}}\right)=u^{2^{n s}}$, one is (8) and another is (3). Equating these formulas we have an expression of the form

$$
\bar{y}_{2}^{2 s-1}=u \bar{x}_{1}^{2^{n s}-1}+P\left(\bar{y}_{1}, \bar{y}_{2}\right), \quad \text { for some polynomial } P\left(\bar{y}_{1}, \bar{y}_{2}\right) .
$$

Again as \bar{y}_{2} is nilpotent we can eliminate \bar{y}_{2}^{2} for $i>s-1$ in (3) after finite steps of iteration and write $\bar{y}_{2}^{2 s-1}$ in the suggested basis. Again we only will need that

$$
\bar{y}_{2}^{2^{s-1}} \equiv u \bar{x}_{1}^{2^{n s}-1} \bmod \operatorname{Im}(1+t) .
$$

This completes the proof for G_{7}. The proofs for G_{8} and G_{11} are analogous. Let us sketch the necessary information for the interested reader to produce detailed proofs.
G_{8} : the action of the involution is as follows:

$$
\begin{aligned}
& t(\lambda)=\bar{\lambda} \lambda^{2^{n}}, \quad t(v)=\bar{v} \lambda^{2^{n}} v^{2^{n}}, \\
& t(u)=F\left(\bar{u}, u^{2^{n s}}\right), \\
& t(v)=F\left(\bar{v}, F\left(u^{2 n s}, v^{2^{n s}}\right)\right) .
\end{aligned}
$$

G_{11} : one has

$$
\begin{aligned}
& t(\lambda)=\bar{\lambda} v^{2^{n}}, \quad t(v)=\bar{v} \lambda^{2^{n}} v^{2^{n}} \\
& t(u)=F\left(\bar{u}, v^{2^{n s}}\right), \\
& t(v)=F\left(\bar{v}, F\left(u^{2^{n s}}, v^{2^{n s}}\right)\right) .
\end{aligned}
$$

For both cases to get $\bar{x}_{1}^{2^{n s}}=0$ apply formula for $t(u)$ and $u+\bar{u} \equiv$ $0 \bmod u^{2^{s}}$. Similarly for $\bar{y}_{1}^{2^{n s}}=0$. For the decompositions of $\bar{x}_{2}^{2 s-1}$ and $\bar{y}_{2}^{2^{s-1}}$ apply (3) and (8). In particular for G_{8} we have by (3) $\bar{x}_{2}^{2^{s-1}} \equiv u^{2^{n s}}$ modulo some $\bar{x}_{1} f\left(\bar{y}_{1}, \bar{x}_{2}\right) \in \operatorname{Im}(1+t)$. Therefore $\bar{x}_{2}^{2 n s-1} \equiv 0 \bmod (1+t)$ and by (8) for u, we have

$$
\bar{x}_{2}^{2 s-1} \equiv u^{2^{n s}} \equiv \bar{x}_{1}^{2^{n s}-1} u+\bar{x}_{2}^{\overline{2}^{n s-1}} \equiv \bar{x}_{1}^{2 n s}-1 \quad u \bmod (1+t) .
$$

Similarly $\bar{y}_{2}^{2_{s-1}} \equiv 0 \bmod (1+t)$ and we get

$$
\bar{x}_{2}^{2 s-1} \equiv F\left(u^{2^{n s}}, v^{2 n s}\right) \equiv \bar{x}_{1}^{2^{n s}-1} u+\bar{y}_{1}^{2 n s-1} v \bmod (1+t) .
$$

Thus we obtain

$$
\begin{array}{ll}
\bar{x}_{1}^{2^{n s}}=\bar{y}_{1}^{2^{n s}}=0, & \text { if } G=G_{7}, G_{8}, G_{9}, \\
\bar{x}_{2}^{2 s-1} \equiv 0, \quad \bar{y}_{2}^{2^{s-1}} \equiv \bar{x}_{1}^{2^{n s}-1} u \bmod (1+t), & \text { if } G=G_{7}, \\
\bar{x}_{2}^{2^{s-1}} \equiv \bar{x}_{1}^{2^{n s}-1} u, \quad \bar{y}_{2}^{2^{s-1}} \equiv \bar{x}_{1}^{2 n s-1} u+\bar{y}_{1}^{2^{n s}-1} v \bmod (1+t), & \text { if } G=G_{8}, \\
\bar{x}_{2}^{2^{s-1} \equiv \bar{y}_{1}^{2 n s}-1 v,} \quad \bar{y}_{2}^{2^{s-1}} \equiv \bar{x}_{1}^{2 n s-1} u+\bar{y}_{1}^{2^{n s}-1} v \bmod (1+t), & \text { if } G=G_{11} .
\end{array}
$$

Lemma 2. Let $g=f_{0}+f_{1} u+f_{2} v+f_{3} u v \in K(s)^{*}(B H)$, where $f_{i}=$ $f_{i}\left(\bar{x}_{1}, \bar{y}_{1} \bar{x}_{2}, \bar{y}_{2}\right)$ are some polynomials written uniquely in the monomials x^{ω} of Lemma 1. Then g is invariant under involution $t \in G / H$ iff

$$
f_{3} \bar{x}_{1}=f_{3} \bar{y}_{1}=0 ; \quad f_{1} \bar{x}_{1}=f_{2} \bar{y}_{1}
$$

Proof. We have g is invariant iff $g \in \operatorname{Ker}(1+t)$. Since each f_{i} is invariant

$$
\begin{aligned}
g+t(g) & =f_{1}(u+t(u))+f_{2}(v+t(v))+f_{3}(u v+t(u v)) \\
& =f_{1} \bar{x}_{1}+f_{2} \bar{y}_{1}+f_{3}\left(\bar{x}_{1} \bar{y}_{1}+\bar{x}_{1} v+\bar{y}_{1} u\right)
\end{aligned}
$$

and using Lemma 1 the result follows.
To prove Theorem 1 it suffices to see that all invariants are represented by good elements. It is obvious for the elements $a+t(a)=\pi^{*} \operatorname{Tr}^{*}(a)$ in the free

$$
\begin{equation*}
K(s)^{*}(B G), \quad G=\left(C_{2^{n}} \times C_{2^{n}}\right) \rtimes C_{2} \tag{11}
\end{equation*}
$$

summand $[F]^{C_{2}}$ in (7). Therefore one can work modulo $\operatorname{Im}(1+t)$ and check the elements in the trivial summand T. Let us finish the proof of Theorem 1 using Propositions 2, i). We will turn to Proposition 2 ii) later.

Proposition 2. Let T^{\prime} be spanned by the set
for G_{3},

$$
\left\{\bar{x}_{2}^{j} \bar{y}_{2}^{l}, \bar{x}_{2}^{j} \bar{y}_{2}^{l} u, \bar{y}_{1}^{s s-1} \bar{x}_{2}^{j} \bar{y}_{2}^{l} v, \bar{y}_{1}^{2 s-1} \bar{x}_{2}^{j} \bar{y}_{2}^{l} u v \mid j<2^{n s-1}, l<2^{(n+1) s-1}\right\}
$$

for G_{4}, G_{9},

$$
\left\{\bar{x}_{2}^{i} \bar{y}_{2}^{j}, \bar{x}_{1}^{2^{s-1}} \bar{x}_{2}^{i} \bar{y}_{2}^{j} u, \bar{y}_{1}^{2^{s-1}} \bar{x}_{2}^{i} \bar{y}_{2}^{j} v, \bar{x}_{1}^{2^{s-1}} \bar{y}_{1}^{s-1} \bar{x}_{2}^{i} \bar{y}_{2}^{j} u v \mid i, j<2^{n s-1}\right\},
$$

for G_{7}, G_{8}, G_{11},

$$
\left\{\bar{x}_{2}^{i} \bar{y}_{2}^{j}, \bar{x}_{1}^{2 s s}-1 \bar{x}_{2}^{i} \bar{y}_{2}^{j} u, \bar{y}_{1}^{2 n s-1} \bar{x}_{2}^{i} \bar{y}_{2}^{j} v, \bar{x}_{1}^{2 n s}-1 \bar{y}_{1}^{2^{n s}-1} \bar{x}_{2}^{i} \bar{y}^{j} u v \mid i, j<2^{s-1}\right\} .
$$

Then
i) All terms in T^{\prime} are represented by good elements and $T \subset T^{\prime}$.
ii) Moreover, $T=T^{\prime}$.

Proof of i). The case of G_{3}. The basis set of T^{\prime} above is suggested by Lemma 1 and Lemma 2: it is clear that all its terms are invariants. The terms $\bar{x}_{2}^{j} \bar{y}_{1}^{k} \bar{y}_{2}^{l} \in \operatorname{Im}(1+t), k>0$ are omitted as we work modulo $1+t$. Then all the restrictions follow by

$$
\bar{y}_{1}^{2 s}=0, \quad \bar{x}_{1}=0, \quad \bar{y}_{2}^{2(n+1) s-1}=0, \quad \bar{x}_{2}^{2^{n s-1}} \equiv v \bar{y}_{1}^{2^{s}-1} \bmod (1+t) .
$$

Thus $T \subset T^{\prime}$. Let us check that T^{\prime} is generated by the images of products of Euler classes under π^{*}, where π is the double covering (4).

By definitions

$$
\begin{array}{ll}
\pi^{*}(\alpha)=\lambda^{2^{n}}, & \pi^{*}\left(\operatorname{det} \pi_{!}(v) \otimes \alpha\right)=v \lambda^{2^{n}} \nu \lambda^{2^{n}}=v^{2}, \\
\pi^{*}\left(v^{\prime}\right)=v^{2^{s}}, & \text { where } v^{\prime}=e\left(\operatorname{det} \pi_{!}(v) \otimes \alpha\right) .
\end{array}
$$

Taking into account (8), for $m=s$, we get

$$
\begin{equation*}
\pi^{*}\left(v^{\prime}\right)=v^{s}=v \bar{y}_{1}^{2^{s}-1}+\sum_{i=1}^{s} \bar{y}_{1}^{2^{s}-2^{i}} \bar{y}_{2}^{2 i-1}=\bar{y}_{2}^{s-1}+v \bar{y}_{1}^{2^{s}-1} \bmod (1+t) . \tag{11}
\end{equation*}
$$

By definition $\bar{x}_{2}=\pi^{*}\left(x_{2}\right)$ and $\bar{y}_{2}=\pi^{*}\left(y_{2}\right)$. Combined with (11) this implies that all elements of the first and third parts of the basis set of T^{\prime} are π^{*} images of the sums of Euler classes.

For the rest parts of the basis of T^{\prime} note that the bundle λ can be extended to a bundle over $B G$, say λ^{\prime}, represented by $\lambda^{\prime}(\mathbf{a})=e^{2 \pi i / 2^{n+1}}, \lambda^{\prime}(\mathbf{b})=\lambda^{\prime}(\mathbf{c})=1$. So $\pi^{*}\left(e\left(\lambda^{\prime}\right)\right)=u$. Then note that the second and last parts are obtained by multiplying by u from the first and third parts respectively. Therefore we can easily read off all elements as π^{*} images of the sums of Euler classes.

G4. Again the basis for T^{\prime} is suggested by Lemma 1: we have $\bar{x}_{1}^{2^{s}}=$ $\bar{y}_{1}^{s}=0$ and $\bar{x}_{2}^{2_{s}^{n s-1}}$ and $\bar{y}_{2}^{2 s-1}$ are decomposable. Then applying (8) we get

$$
\begin{aligned}
& \pi^{*}(\operatorname{det}(\pi!v) \otimes \alpha)=v^{2} \\
& \pi^{*}(e(\operatorname{det}(\pi!v) \otimes \alpha))=v^{2^{s}} \equiv v \bar{y}_{1}^{2^{s}-1}+\bar{y}_{2}^{2 s-1} \bmod (1+t), \\
& \pi^{*}(\operatorname{det}(\pi!\lambda) \otimes \alpha \beta)=\lambda^{2} \\
& \pi^{*}(e(\operatorname{det}(\pi!\lambda) \otimes \alpha \beta))=u^{2^{s}} \equiv u \bar{x}_{1}^{2^{s}-1}+\bar{x}_{2}^{2^{s-1}} \bmod (1+t) .
\end{aligned}
$$

Thus G_{4} is good. The proof for G_{9} is completely analogous.
G_{7}, G_{8}, G_{11} : It is clear that all of the basis elements for T^{\prime} are invariants and all restrictions are explained by Lemma 1. It suffices to check that all elements are represented by images of the sums of Euler classes.
G_{7}. The bundle $\lambda^{2^{n}}$ and $v^{2^{n}}$ can be extended to line bundles over $B G$, say λ^{\prime} and v^{\prime} respectively. Then

$$
\pi^{*}\left(e\left(v^{\prime}\right)\right)=e\left(v^{2^{n}}\right)=v^{2^{n s}} \quad \text { and } \quad \pi^{*}\left(e\left(\lambda^{\prime}\right)\right)=e\left(\lambda^{2^{n}}\right)=u^{2^{n s}} .
$$

Applying again (8) we get

$$
\begin{aligned}
& \pi^{*} e\left(\lambda^{\prime}\right)=u^{2^{n s}}=u \bar{x}_{1}^{2 n s}-1 \\
& \sum_{i=1}^{n s} \bar{x}_{1}^{2^{n s}-2^{i}} \bar{x}_{2}^{2 i-1} \\
& \equiv u \bar{x}_{1}^{2 n s}-1 \\
& \bar{x}_{2}^{2 n s-1} \bmod (1+t) \\
& \equiv u \bar{x}_{1}^{2 n s}-1 \\
& \bmod (1+t)
\end{aligned}
$$

by Lemma 1 .
Similarly, applying Lemma 1 we have for G_{8}

$$
\begin{aligned}
& \pi^{*}(e(\operatorname{det}(\pi!\lambda)))=u^{2^{n s}} \equiv \bar{x}_{1}^{2 n s}-1 u \bmod (1+t), \\
& \pi^{*}(e(\operatorname{det}(\pi!v)))=F\left(u^{2^{n s}}, v^{2^{n s}}\right) \equiv \bar{x}_{1}^{2 n s}-1 u+\bar{y}_{1}^{2 n s-1} v \bmod (1+t)
\end{aligned}
$$

and for G_{11}

$$
\begin{aligned}
& \pi^{*}(e(\operatorname{det}(\pi!\lambda)))=v^{2^{n s}} \equiv \bar{y}_{1}^{2 n s}-1 v \bmod (1+t), \\
& \pi^{*}(e(\operatorname{det}(\pi!v)))=F\left(u^{2^{n s}}, v^{2^{n s}}\right) \equiv \bar{x}_{1}^{2 n s}-1 u+\bar{y}_{1}^{2_{s}^{n s}-1} v \bmod (1+t)
\end{aligned}
$$

$$
K(s)^{*}(B G), \quad G=\left(C_{2^{n}} \times C_{2^{n}}\right) \rtimes C_{2}
$$

For the proof of Theorem 1, we only need to see i). This completes the proof of Theorem 1.

Proposition 2 ii) may have an independent interest. Let us sketch the proof.

Using the Euler characteristic formula of [10], Theorem D, one can compute $K(s)^{*}$-Euler characteristic

$$
\chi_{2, s}(G)=\operatorname{rank}_{K(s)^{*}} K(s)^{\text {even }}(B G),
$$

for the classifying spaces of the groups in the title. The answer is as follows.

group	$\chi_{2, s}$,
G_{1}	$2^{(2 n+3) s}$,
G_{2}, G_{4}, G_{9}	$2^{2(n+1) s-1}-2^{2 n s-1}+2^{(2 n+1) s}$,
G_{3}, G_{10}	$3 \cdot 2^{2(n+1) s-1}-2^{(2 n+1) s-1}$,
$G_{5}, G_{6}, G_{7}, G_{8}, G_{11}, G_{12}$	$2^{2(n+1) s-1}-2^{2 s-1}+2^{3 s}$,
G_{13}, G_{16}	$2^{2(n+1) s-1}-2^{(n+2) s-1}+2^{(n+3) s}$,
G_{14}, G_{15}, G_{17}	$2^{2(n+1) s-1}-2^{(n+1) s-1}+2^{(n+2) s}$.

As $T \subset T^{\prime}$ it suffices to prove $\chi_{2, s}(T)=\chi_{2, s}\left(T^{\prime}\right)$. It is easy to check the following relation between the size of the trivial summand $x=\chi_{2, s}(T)$ and $\chi_{2, s}(G)$ for all groups under consideration

$$
\begin{equation*}
\left(\chi_{2, s}(H)-x\right) / 2+2^{s} x=\chi_{2, s}(G), \tag{12}
\end{equation*}
$$

where $\chi_{2, s}(H)=2^{2 s(n+1)}$.
Therefore it suffices to see that the number of basis elements of $T^{\prime} \subset G$, in Proposition 2 i) is equal to x in (12) for all cases

G	$\chi_{2, s}\left(T^{\prime}\right)$
G_{3}	$2^{(2 n+1) s}$,
G_{4}, G_{9}	$4^{n s}$,
G_{7}, G_{8}, G_{11}	4^{s}.

Acknowledgments

The author is very grateful to the referee for exceptionally thorough analysis of the paper and numerous suggestions which have been very useful for improving the paper.

References

[1] J. F. Adams, Infinite loop spaces, Annals of Mathematics Studies, Princeton University Press, Princeton, 1978.
[2] M. Bakuradze and N. Gachechiladze, Morava K-theory rings of the extensions of C_{2} by the products of cyclic 2-groups, Moscow Math. J., 16 (4)(2016), 603-619.
[3] M. Bakuradze, Morava $K(s)^{*}$-rings of the extensions of C_{p} by the products of good groups under diagonal action, Georgian Math. J., 22 (4)(2015), 451-455.
[4] M. Bakuradze and M. Jibladze, Morava K-theory rings of groups G_{38}, \ldots, G_{41} of order 32, J. K-Theory, 13(2014), 171-198.
[5] M. Bakuradze and S. Priddy, Transferred Chern classes in Morava K-theory, Proc. Amer. Math. Soc., 132(2004), 1855-1860.
[6] M. Bakuradze and S. Priddy, Transfer and complex oriented cohomology rings, Algebraic and Geometric Topology, 3(2003), 473-507.
[7] M. Bakuradze and V. V. Vershinin, Morava K-theory rings for the dihedral, semi-dihedral and generalized quaternion groups in Chern classes, Proc. Amer. Math. Soc., 134(2006), 3707-3714.
[8] A. Dold, The fixed point transfer of fibre-preserving maps, Math. Zeit., 148(1976), 215-244.
[9] T. Gramushnjak and P. Puusemp, Description of a Class of 2-Groups, Journal of Nonlinear Math. Physics, 13(2006), 55-65.
[10] M. Hopkins, N. Kuhn, and D. Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc., 13, 3(2000), 553-594.
[11] J. R. Hunton, Morava K-theories of wreath products, Math. Proc. Camb. Phil. Soc., 107(1990), 309-318.
[12] D. C. Johnson and W. S. Wilson, BP operations and Morava's extraordinary K-theories, Math. Z., 144 (1975), 55-75.
[13] D. S. Kahn and S. B. Priddy, Applications of the transfer to stable homotopy theory, Bull. Amer. Math. Soc., 78(1972), 981-987.
[14] I. Kriz, Morava K-theory of classifying spaces: Some calculations, Topology, 36(1997), 1247-1273.
[15] D. C. Ravenel, Morava K-theories and finite groups, Contemp. Math., 12(1982), 289-292.
[16] B. Schuster, Morava K-theory of groups of order 32, Algebraic and Geometric Topology, 11(2011), 503-521.
[17] B. Schuster, Morava K-theory of classifying spaces, Habilitationsschrift, 2006.
[18] B. Schuster and N. Yagita, On Morava K-theory of extraspecial 2-groups, Proc. Amer. Math. Soc., 132, 4(2004), 1229-1239.
[19] M. Tezuka and N. Yagita, Cohomology of finite groups and Brown-Peterson cohomology II, Algebraic Topology (Arcata, Ca, 1986), 396-408. Lecture Notes in Math. 1370, Springer, Berlin, 1989.
[20] M. Tezuka and N. Yagita, Cohomology of finite groups and Brown-Peterson cohomology II, Homotopy theory and related topics (Kinosaki, 1988), 57-69. Lecture Notes in Math. 1418, Springer, Berlin, 1990.
[21] N. Yagita, Equivariant BP-cohomology for finite groups, Trans. Amer. Math. Soc., 317, 2(1990), 485-499.
[22] N. Yagita, Cohomology for groups of $\operatorname{rank}_{p}(G)=2$ and Brown-Peterson cohomology, J. Math. Soc. Japan, 45, 4(1993), 627-644.

$$
K(s)^{*}(B G), \quad G=\left(C_{2^{n}} \times C_{2^{n}}\right) \rtimes C_{2}
$$

[23] N. Yagita, Note on BP-theory for extensions of cyclic groups by elementary abelian p-groups, Kodai Math. J. 20, 2(1997), 79-84.

Malkhaz Bakuradze
Department of Mathematics
Faculty of Exact and Natural Sciences
Iv. Javakhishvili Tbilisi State University, Georgia
E-mail: malkhaz.bakuradze@tsu.ge

[^0]: The author is supported by Shota Rustaveli National Science Foundation Grant 217-614 and CNRS PICS Grant 7736.
 2010 Mathematics Subject Classification. 55N20; 55R12; 55R40.
 Key words and phrases. Morava K-theory, Euler class, Transfer.

