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ABSTRACT. One of the well known results of descent theory asserts that a descent morphism p is
effective if the ground category has coequalizers and the change-of-base functor p" is coequalizer-

preserving. In this paper, the question is posed whether this statement remains valid if one replaces
the coequalizers therein by colimits of some other type. Two types of colimits are considered here:
pushouts and colimits of diagrams (being large in general and) formed by certain (epi)morphisms
with coinciding domains. The positive answer to the posed question is obvious for the first type of
colimits. For the second one an answer is given in the form of a necessary and sufficient condition
(not containing the existence quantifier) for p to be effective. The approach used here to the

considered question also yields a new (elementary) proof of the above-mentioned known result. ©
2019 Bull. Georg. Natl. Acad. Sci.
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It is well known that for a descent morphism p of a category C with pullbacks if

(*) C has coequalizers and the change-of-base functor p” is coequalizer-preserving,
then p is effective [1]. A question naturally arises whether this statement remains valid if one replaces the
coequalizers in (*) by the colimits of some other type. It is easy to give a positive answer to this question
for the case of pushouts. In this paper a necessary and sufficient condition for p to be effective is found
for the case of colimits of diagrams (being large in general and) formed by certain (epi)morphisms with

coinciding domains. Note that the criterion found does not contain the existence quantifier. According to
this criterion, p is effective if and only if for any descent data d = (C,y,&) we have

€, 6 =¢€,7,,
for a certain morphism e, . Here 7, is the pullback of the morphism p along the composition py (the
needed notation and definitions from descent theory are given below).
Note also that the approach used here to the considered question also gives a new (elementary) proof of
the well known result mentioned above.

We begin with the needed definitions from descent theory [1].
Let C be a category with pullbacks and p: E — B be its morphism. We will consider the adjunction
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pp 6]
between the slice categories, where the right adjoint is the well known change-of-base functor
p :C/B—>C/E

(pulling back a morphism along p) and the left adjoint is the functor
p,:C/E->C/B

which maps an object a of the slice category C/ E into the composition pa.

The morphism p is called a descent morphism (resp. an effective descent morphism) if p" is
premonadic (resp. monadic), i.e. the comparison functor
®” :C/ B — Des(p),
where Des(p) is the Eilenberg-Moore category of the monad induced by adjunction (1), is full and faithful

(resp. an equivalence of categories).
Recall that objects of the category Des(p) are triples (C,y,&) (called descent data with respect to p),

where C € ObC, while y and & are respectively morphisms C — E and Ex, C — C, and the following
equalities are fulfilled (see Figs. 1 and 2):

v =, (2)
Sr.le) =1, 3)
5(15 x 35) = 5(15 X 37[2)- “4)
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Fig. 1. The diagram related to the equalities (2), (3).
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Fig. 2. The diagram related to the equality (4).
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Besides, morphisms (C,y,&) — (C',y',&") inthe category Des(p) are C -morphisms 4 :C — C’ such

that the following diagram is commutative:

B gl — 2B Bisem O
13 g
C h c'

The functor ®” maps f: D — B into the descent data
(ExB D, 71, %, 75),

where 7/ and 7, are the pullbacks of f* and g, respectively, along each other.

Theorem 1[2, 1]. Let C have coequalizers. p is a descent morphism if and only if it is a universal regular

epimorphism, i.e. a regular epimorphism whose any pullback is also a regular epimorphism.

Theorem 2 (see, e.g. [1]). Let C have coequalizers, and let p be its descent morphism. The following
conditions are equivalent:

(i) p is effective;

(ii) the functor p* preserves the coequalizer of the pair &,x,, for any descent data (C,y,&) with

respectto p.

Recall that the known proof of this theorem is based on the fact that in the case of categories C with
coequalizers there exists a left adjoint to the functor ®” . Moreover, the existence of all coequalizers is not
essential in Theorem 2 — it is sufficient to require the existence of co equalizers for pairs mentioned in the

condition (ii). This immediately implies that Theorem 2 remains valid if one replaces both ”coequalizer(s)”
therein by ’pushout(s)”. Indeed, for any descent data (C,y,¢) the morphisms 7, and i, in the pushout

F xR CT C
‘ﬂ'zl liz
C = (-‘]—IExEC"(-’

coincide by (3) and therefore i, is the coequalizer of the pair &, 7, .
Let us now consider the general case where a category C is not imposed by any restriction related to

the existence of colimits.

Lemma 3. Let p be a morphism of C and (C,y,&) be descent data with respect to p. The following

conditions are equivalent:
(1) (C,y,E) = D7 (f) for some f e ObC/ B,
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(ii) there exist morphisms e:C — D, f:D — B and 0:Exy; D — C with

el =erm,, (%)
pr=Je ©)
¢ =0(;x ze). ™

and such that 1, x ye is an epimorphism (see Fig. 3)

EXHC

e
N

EXBD : D
\J “ 7
™ P P

Fig. 3. The diagram related to the equalities (5)-(7).

ll:

If C has coequalizers and p is a descent morphism, then “there exist morphisms
e:C—oD, f:D—>B and 0:Ex; D— C” can be replaced by “there exist an epimorphism e:C — D
and morphisms f:D — B, 8:Ex, D — C . Moreover, in that case, the conditions (i), (ii) are equivalent

to the following condition:
(iii) for the coequalizer e:C — D of the pair &, r,, there exists a morphism 6:Ex, D —C

satisfying equality (T) and, moreover, 1, x ye is an epimorphism.
If. in addition, p" maps epimorphisms into morphisms (of the slice category) with epimorphic

underlying morphisms, then the requirement that 1, x ye be epimorphic can be omitted in (ii) and in (iii).

Proof. (i)=(ii): From the construction of the functor ®” it readily follows that the morphisms e =7, f

and 0 =1, , are the desired ones.

(il)=(i): Let us show that @ is the inverse for (y,e). Indeed, we have
m/(y,e)0 = y0 =), ®)
since by (2)
w1y x ye)=m = y& =yo(1, x ze),
and, moreover, 1, x ;e is an epimorphism. Further,
(1, x ye) =erm, =e& =eb(1,; x ze),
whence we conclude that
7, = 0. ©)
Therefore
7, (y,e)0 = el =1,.
Taking (8) into account, we obtain (y,e)d =1,, .. To prove the equality 6(y,e) =1, itis sufficient to
observe that (y,e) = (1, x ,e)(7,1.) and use equality (3).

The equivalence of the conditions (i) and (iii) is proved in [3] (Theorem 2), but it also follows from the

obvious equivalence (ii)e(iii). [
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Note that Lemma 3 easily implies the implication (ii)=>(i) of Theorem 2. Indeed, let us take the
coequalizer e of the pair &, 7, for descent data (C,y,&) with respect to p . Then the morphism 1, x, e

is the coequalizer of the pair 1, x, &, 1, x, 7, and therefore by (4) there exists a morphism & with (7).

Let d =(C,y,&) be descent data with respect to p. It is not difficult to verify that the following

conditions are equivalent:
(**) the diagram formed by morphisms e:C — D such that there exist morphisms f:D — B and

0:Ex, D— C with (6), (7)and 1, x e is an epimorphism, has a colimit and the functor p* preserves it;

(***) the full subcategory of the slice category C/C, whose objects are morphisms e:C — D such
that there exist morphisms f:D — B and 6:Ex, D — C with (6), (7) and 1, x ,e is an epimorphism,

has a weakly terminal object e, (i.e. an object such that for any one g of this subcategory there exists at

least one morphism g —e,).

Theorem 4. Let p be a descent morphism and the equivalent conditions (**) and (***) be fulfilled for
any descent data d with respect to p . p is effective if and only if the equality

e,=e,m, (10)

holds for any descent data d .

The proof easily follows from Lemma 3. [

Theorem 4 implies

Corollary 5. Let C be co-well-powered, and let the class of epimorphisms be stable under pullback.
Let p be a descent morphism. Assume that, for any descent data d with respect to p, C has

cointersections of quotient objects e:C — D for which there exist morphisms f:D— B and

0:Ex, D — C with (6) and (7). Moreover, let p" preserve these cointersections. Then p is an effective

descent morphism if and only if the equality (10) is satisfied for any descent data d .
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