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Abstract. At the filling factor ν=2, the bilayer quantum Hall system has three phases, the
spin-ferromagnet phase, the spin singlet phase and the canted antiferromagnet (CAF) phase,
depending on the relative strength between the Zeeman energy and interlayer tunneling energy.
We present a systematic method to derive the effective Hamiltonian for the Goldstone modes
in these three phases. We then investigate the dispersion relations and the coherence lengths
of the Goldstone modes. To explore a possible emergence of the interlayer phase coherence, we
analyze the dispersion relations in the limit of zero tunneling energy. We find one gapless mode
with the linear dispersion relation in the CAF phase.

1. Introduction
In the bilayer quantum Hall (QH) system, at total Landau filling factor ν = 2, a rich phase
structure emerges by the interplay between the spin and the layer (pseudospin) degrees of
freedom [1, 2]. According to the one-body picture we expect to have two phases depending
on the relative strength between the Zeeman gap ∆Z and the tunneling gap ∆SAS. One is the
spin-ferromagnet and pseudospin-singlet phase (abridged as the spin phase) for ∆Z > ∆SAS; the
other is the spin-singlet and pseudospin ferromagnet phase (abridged as the pseudospin phase)
for ∆SAS > ∆Z. Instead, an intermediate phase, a canted antiferromagnetic phase (abridged as
the CAF phase) emerges. This is a novel phase where the spin direction is canted and make
antiferromagnetic correlations between the two layers[2].

The ground state structure of the ν = 2 bilayer QH system has been investigated based on
the SU(4) formalism [3, 4]. However, the effective Hamiltonian for the Goldstone modes has
not been derived, especially in the CAF phase. On the other hand, experimentally, a role of a
Goldstone mode has been suggested by nuclear magnetic resonance[5] in the CAF phase.

In this paper we develop a generic formalism to determine the symmetry breaking pattern
and to derive the effective Hamiltonian for the Goldstone modes in the three phases of the ν = 2
bilayer QH system. The symmetry breaking pattern reads, SU(4) → U(1)⊗SU(2)⊗SU(2), and
there appear eight Goldstone modes in each phase. The corresponding Goldstone modes in the
two phases match smoothly at the phase boundary.

This paper is organized as follows. In Sec. 2, we review the Coulomb interaction of the bilayer
QH system projected to the lowest Landau level (LLL) and the SU(4) effective Hamiltonian

HMF-20 IOP Publishing
Journal of Physics: Conference Series 456 (2013) 012012 doi:10.1088/1742-6596/456/1/012012

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



after making the derivative expansion. We also review the ground state structure in the three
phases. In Sec. 3, which is the main part of this paper, we develop a unified formalism to
derive the effective Hamiltonian for the Goldstone modes. Then we discuss the SU(4) symmetry
breaking pattern, the dispersion relations, and the coherence length in each phase. We study
the dispersions and the coherence length in the limit ∆SAS → 0, to explore a possible emergence
of the interlayer phase coherence in the CAF phase. Remarkably, we find one gapless mode with
the linear dispersion relation. Section 4 is devoted to discussion.

2. The SU(4) Effective Hamiltonian and the Ground State Structure
In the bilayer system an electron has two types of indices, the spin index (↑, ↓) and the layer index
(f, b). They can be incorporated in 4 types of isospin index α = f↑,f↓,b↑,b↓. The electron field
ψα(x) has four components, and the bilayer system possesses the underlying algebra SU(4) with
having the subalgebra SUspin(2) × SUppin(2). We denote the three generators of the SUspin(2)

by τ spina , and those of SUppin(2) by τ
ppin
a . There are remaining nine generators τ spina τppinb . Their

explicit form is given in Appendix D in Ref.[1].
All the physical operators required for the description of the system are constructed as the

bilinear combinations of ψ(x) and ψ†(x). There are 16 density operators

ρ(x) = ψ†(x)ψ(x), Sa(x) =
1

2
ψ†(x)τ spina ψ(x),

Pa(x) =
1

2
ψ†(x)τppina ψ(x), Rab(x) =

1

2
ψ†(x)τ spina τppinb ψ(x), (1)

where Sa describes the total spin, 2Pz measures the electron-density difference between the
two layers. The operator Rab transforms as a spin under SUspin(2) and as a pseudospin under
SUppin(2).

The kinetic Hamiltonian is quenched, since the kinetic energy is common to all states in
the LLL. The Coulomb interaction is decomposed into the SU(4)-invariant H+

C and SU(4)-
noninvariant terms H−

C . The tunneling and bias terms are summarized into the pseudo-Zeeman
term. Combining the Zeeman and pseudo-Zeeman terms we have

HZpZ = −
∫
d2x(∆ZSz +∆SASPx +∆biasPz), (2)

with the Zeeman gap ∆Z, the tunneling gap ∆SAS, and the bias voltage ∆bias = eVbias. The
total Hamiltonian is H = H+

C +H−
C +HZpZ.

We project the density operators (1) to the LLL. What are observed experimentally are
the classical densities, which are expectation values such as ρcl(p) = ⟨S|ρ(p)|S⟩, where |S⟩
represents a generic state in the LLL. The SU(4) effective Hamiltonian density are given by[3]

Heff = Jd
s

(∑
(∂kSa)

2 + (∂kPa)
2 + (∂kRab)

2
)
+ 2J−

s

(∑
(∂kSa)

2 + (∂kPz)
2 + (∂kRaz)

2
)

+ ρϕ[ϵcap(Pz)
2 − 2ϵ−X

(∑
(Sa)

2 + (Raz)
2
)
− (ϵ+X − ϵ−X)(

∑(
Sa)

2 + (Pa)
2 + (Rab)

2
)

− (∆ZSz +∆SASPx +∆biasPz)− (ϵ+X + ϵ−X)], (3)

where Js, J
d
s , ϵcap and ϵ±X , are the intralyer stiffness, the interlayer stiffness, the capacitance

energy and the exchange Coulomb energy, respectively, with the explicit formula given in
Appendix A in Ref.[1]. ρΦ = ρ0/ν is the density of states, and we set ρcl(p) = ρ0,
Scl
a (p) = ρΦSa(p), P

cl
a (p) = ρΦPa(p), and Rcl

ab(p) = ρΦRab(p) for the study of Goldstone
modes.
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It is to be remarked that all potential terms vanish in the SU(4) invariant limit, where
perturbative excitations are gapless. They are the Goldstone modes associated with spontaneous
breaking of the SU(4) symmetry. They get gapped in the actual system, since the SU(4)
symmetry is explicitly broken. Nevertheless we call them the Goldstone modes.

The ground state is obtained by minimizing the effective Hamiltonian (3) for homogeneous
configurations of the classical densities. The order parameters are the classical densities for the
ground state. It has been shown[4] at ν = 2 that they are given as

S0
z =

∆Z

∆0
(1− α2)

√
1− β2, P0

x =
∆SAS

∆0
α2

√
1− β2, P0

z =
∆SAS

∆0
α2β,

R0
xx = −∆SAS

∆0
α
√
1− α2β, R0

yy = −∆Z

∆0
α
√

1− α2
√

1− β2, R0
xz =

∆SAS

∆0
α
√

1− α2
√

1− β2,

(4)

with ∆0 =
√

∆2
SASα

2 +∆2
Z(1− α2)(1− β2) and all the rest components are zero. The

parameters α and β, satisfy the condition, |α| ≤ 1 and |β| ≤ 1. As a physical variable it is
convenient to use the imbalance parameter σ0 ≡ P0

z , instead of the bias voltage ∆bias. This is
possible in the pseudospin and CAF phases. The bilayer system is balanced at σ0 = 0, while all
electrons are in the front layer at σ0 = 1, and in the back layer at σ0 = −1. There are three
phases, and we discuss them in terms of α and β.

First, when α = 0, it follows that
S0
z = 1, (5)

and all others being zero. This is the spin phase, which is characterized by the fact that the
isospin is fully polarized into the spin direction. The spins in both layers point to the positive
z axis due to the Zeeman effect.

Second, when α = 1, we have

P0
x =

√
1− β2, P0

z = β = σ0, (6)

and all the others being zero. This is the pseudospin phase, which is characterized by the fact
that the isospin is fully polarized into the pseudospin direction as given by (6).

For intermediate values of α (0 < α < 1), not only the spin and pseudospin but also some
residual components are nonvanishing, where we may control the density imbalance by applying
a bias voltage as in the pseudospin phase. It follows from (4) that, as the system goes away
from the spin phase (α = 0), the spins begin to cant coherently and make antiferromagnetic
correlations between the two layers.

The interlayer phase coherence is an intriguing phenomenon in the bilayer QH system[1].
Since it is enhanced in the limit ∆SAS → 0, it is worthwhile to investigate the effective
Hamiltonian at ν = 2 in this limit. We need to know how the parameters α and β are expressed
in terms of the physical variables. Up to the order O(∆2

SAS), the solutions are

β = ±

√
1−

(
∆SAS

∆Z

)2

+O(∆4
SAS), (7)

with ∆0 → ∆SAS + O(∆3
SAS). Then we have P0

z = σ0 = ±α2 + O(∆2
SAS). The parameters α

and β are simple functions of the physical variables ∆SAS/∆Z and σ0 in the limit ∆SAS → 0.
We might expect novel phenomena associated with the interlayer phase coherence in the CAF
phase.
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Figure 1. Dispersion relations (10) for the four Goldstone modes Ei. The sample parameters
are d = 231Å, B=5.5T, ρ0 = 2.7 × 1015m−2, and α = 1/

√
2. Inset: Dispersion relations near

k = 0. It is clear that E4(k) is linear.

3. Effective Hamiltonian for Goldstone Modes
Having reviewed the three phases in the bilayer system at ν = 2, we proceed to discuss the
symmetry breaking pattern and construct the effective Hamiltonian for the Goldstone modes in
each phase. There is a systematic method for this purpose[6].

We analyze excitations around the classical ground state (4). It is convenient to introduce

the SU(4) isospin notation such that, I(0)
a0 = S0

a , I
(0)
0a = P0

a , I
(0)
ab = R0

ab. We set all of them into

one 15-dimensional vector I(0)
µν with the index µν: Note that there is no component I(0)

00 . We
parametrize the SU(4) isospin operators as

Iµν(x) =

exp
i∑

γδ

πγδTγδ

µ′ν′

µν

I0
µ′ν′ , (8)

where Tγδ are the matrices of the broken SU(4) generators in the adjoint representation of
SU(4), each of which is a 15× 15 matrix. The greek indices run over 0, x, y, z. The phase field
πγδ(x) are the eight Goldstone modes associated with the broken generators, and hence, only
eight generating matrices Tγδ are involved in the formula (8). Then we may identify Sa = Ia0,
Pa = I0a, Rab = Iab, and express various physical variables in terms of the Goldstone modes

πγδ(x). We then expand the formula (8) in πγδ as, Iµν(x) = I0
µν +I(1)

µν (x)+I(2)
µν (x)+ · · · , where

I(n)
µν (x) is the nth order term in the Goldstone mode πγδ. Each phase is characterized by the

order parameter I0
µν , which are nothing but (4). The key observation is that the first order

term I(1)
µν (x) contains all informations about the symmetry breaking pattern and the associated

Goldstone modes, yielding their kinematic terms. On the other hand, the second order term

I(2)
µν (x) provides them with gaps. For the detailed discussions, see Ref.[7].

3.1. CAF Phase in ∆SAS → 0
The effective Hamiltonian in the CAF phase is too complicated. We take the limit ∆SAS → 0 to
examine if some simplified formulas are obtained. In particular we would like to seek for gapless
modes. Such gapless modes will play an important role to drive the interlayer coherence in the
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CAF phase. In this limit we have the Hamiltonian

H =

4∑
i=1

∫
d2kEiη

†
i,kηi,k, (9)

together with the dispersion relations (Figure 1)

E1 = E2 =
4

ρ0
((1− α2)Js + α2Jd

s )k
2 +∆Z, E3 =

4k2

ρ0
Jd
s + 2∆Z + 8 cos2 θαϵ

−
X ,

E4 = |k|

√
8Jd

s

ρ0

(
2k2

ρ0
(cos2 2θαJd

s + sin2 2θαJs) + 2 sin2 2θα(ϵ
−
D − ϵ−X)

)
, (10)

where cos θα =
√
1− α2, sin θα = α, and ηi,k (i = 1, 2, 3, 4) are the annihilation operators

satisfying the commutation relation
[
ηi,k, η

†
j,k′

]
= δijδ(k − k′).

We summarize the Goldstone modes in the CAF phase in the limit ∆SAS → 0. It is to be
emphasized that there emerges one gapless mode, η4,k, reflecting the realization of an exact and
its spontaneous breaking of a U(1) part of the SU(4) rotational symmetry. Furthermore, it has
the linear dispersion relation as in (10), as leads to a superfluidity associated with this gapless
mode. All other modes have gaps.

4. Discussion
We have presented a systematic method based on the formula (8) to investigate the symmetry
breaking pattern and to derive the effective Hamiltonian for the Goldstone modes in the ν=2
bilayer QH system, particularly, for the CAF phase. Eight Goldstone modes emerge in each
phase, which are shown to be smoothly transformed one to another across the phase boundary.

The interlayer phase coherence and the Josephson effect are among the most intriguing
phenomena in the ν = 1 bilayer QH system[1]. They are enhanced in the limit ∆SAS → 0.
It is natural to seek for similar phenomena in the ν = 2 bilayer QH system in the CAF phase,
where the electron densities can be controlled arbitrarily in both layers. Having investigated the
dispersion relations and the coherence length in the limit ∆SAS → 0, remarkably, we have found
one coherent mode whose coherence length diverges. Furthermore it has the linear dispersion
relation. It might be responsible to the interlayer phase coherence.
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