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A new summabilitymethod of series is introduced and studied. The particular cases of this method
are, for example, variable-order Cesaro and Riesz methods. Applications to divergence problem
of Fourier series are given. An extension of Kolmogorov, Schipp, and Bočkarev’s well-known
theorems on divergence of Fourier trigonometric, Walsh, and orthonormal series is established.

1. A New Summability Method of Series

Let

Λ = ‖λn(k)‖, n = 0, 1, 2, . . . , k = 0, 1, 2, . . . , n, (1.1)

be such triangular matrix which satisfies the following conditions:

(1) 0 ≤ λn(k + 1) ≤ λn(k) ≤ 1, 0 ≤ k ≤ n;

(2) λn(0) = 1, λn(k) = 0, k ≥ n + 1.
(1.2)

By sn we denote a partial sum of a series

∞∑

k=0

uk, (1.3)
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and by σn we denote a mean constructed by the Λmatrix, that is,

sn =
n∑

k=0

uk, σn =
n∑

k=0

λn(k)uk. (1.4)

Theorem 1.1. Let matrix (1.1) satisfies an inequality

lim
n→∞

λn(n) >
1
2
. (1.5)

Then for any series (1.3) which satisfies the following condition:

lim
n→∞

|sn| = +∞, (1.6)

an equality

lim
n→∞

|σn| = +∞ (1.7)

holds.

Below we prove a Lemma which is used to prove Theorem 1.1.

Lemma 1.2. For every natural number n an inequality

|sn − σn| ≤ 2(1 − λn(n)) · max
1≤k≤n

|sk| (1.8)

holds.

Proof of the Lemma. Using Abel transformation and λn(0) = 1 we get

sn − σn =
n∑

k=0

uk −
n∑

k=0

λn(k)uk

=
n∑

k=1

uk −
n∑

k=1

λn(k)uk

=
n∑

k=1

(1 − λn(k))uk

=
n−1∑

k=1

(λn(k + 1) − λn(k))sk + (1 − λn(n))sn.

(1.9)
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Therefore,

|sn − σn| ≤
n−1∑

k=1

|λn(k + 1) − λn(k)| · |sk| + |1 − λn(n)| · |sn|

≤ max
1≤k≤n

|sk| ·
(

n−1∑

k=1

|λn(k + 1) − λn(k)| + |1 − λn(n)|
)
.

(1.10)

Thus, taking into account (1.1) we immediately get

|sn − σn| ≤ max
1≤k≤n

|sk| ·
(

n−1∑

k=1

(λn(k) − λn(k + 1)) + 1 − λn(n)

)

= max
1≤k≤n

|sk| · (λn(1) − λn(n) + 1 − λn(n))

≤ max
1≤k≤n

|sk| · (1 − λn(n) + 1 − λn(n))

= 2 · (1 − λn(n)) · max
1≤k≤n

|sk|.

(1.11)

So the Lemma is proved.

Proof of Theorem 1.1. According to the condition of Theorem 1.1 we have

lim
n→∞

λn(n) =
1
2
+ δ (1.12)

for some δ > 0. Note that inequalities 0 ≤ λn(n) ≤ 1 which hold for every natural n imply
1/2 + δ ≤ 1, that is, δ ≤ 1/2.

So, 0 < δ ≤ 1/2 holds.
According to (1.12) there exists a natural number n0 such that for every natural

number n > n0 we have

λn(n) >
1
2
+
δ

2
. (1.13)

So according to the Lemma, for every n > n0 an inequality

|sn − σn| < 2 ·
(
1 −

(
1
2
+
δ

2

))
· max
1≤k≤n

|sk| (1.14)

holds true; that is, if n > n0, then

|sn − σn| < (1 − δ) · max
1≤k≤n

|sk|. (1.15)
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Thus for every n > n0 an inequality

‖sn|−|σn‖ < (1 − δ) · max
1≤k≤n

|sk| (1.16)

holds.
So for every n > n0 we have

|σn| > |sn| − (1 − δ) · max
1≤k≤n

|sk|. (1.17)

Note that for every natural n there exists at least one natural number 1 ≤ q ≤ n, such
that the partial sums of the series (1.3) satisfy the following condition:

∣∣sq
∣∣ = max

1≤k≤n
|sk|. (1.18)

We define pn by a formula:

pn = max
{
q : 1 ≤ q ≤ n &

∣∣sq
∣∣ = max

1≤k≤n
|sk|

}
. (1.19)

So pn is maximal number among the above-mentioned natural q numbers. Consequently,

1 ≤ pn ≤ n,
∣∣spn

∣∣ = max
1≤k≤n

|sk|, (1.20)

pn ≤ pn+1,
∣∣spn

∣∣ ≤ ∣∣spn+1
∣∣. (1.21)

According to the condition of Theorem 1.1,

lim
n→∞

|sn| = +∞. (1.22)

Therefore,

lim
n→∞

∣∣spn
∣∣ = +∞, (1.23)

that is,

lim
n→∞

pn = +∞. (1.24)

A consequence of (1.24) is that there exists such natural n1 that if n > n1 then pn > n0 and
since (1.17) holds for every n > n0, then (1.17) remains true for every pn, where n > n1.

So

∣∣σpn

∣∣ >
∣∣spn

∣∣ − (1 − δ) · max
1≤k≤pn

|sk|. (1.25)
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Since 1 ≤ pn ≤ n, therefore,

max
1≤k≤pn

|sk| ≤ max
1≤k≤n

|sk|. (1.26)

Note that the last one and (1.25) imply

∣∣σpn

∣∣ >
∣∣spn

∣∣ − (1 − δ) · max
1≤k≤n

|sk|. (1.27)

So according to (1.21) we have

∣∣σpn

∣∣ >
∣∣spn

∣∣ − (1 − δ) · ∣∣spn
∣∣, (1.28)

that is, for every n > n1 an inequality

∣∣σpn

∣∣ > δ · ∣∣spn
∣∣ holds, where 0 < δ ≤ 1

2
. (1.29)

Also, (1.23) and (1.29) imply

lim
n→∞

∣∣σpn

∣∣ = +∞. (1.30)

So we have finished the proof of Theorem 1.1.

Below we consider some consequences of Theorem 1.1.
Let Λ = ‖λn(k)‖ be a triangular matrix, where the sequence {αn} is from [0, 1] and for

every 0 ≤ k ≤ n number λn(k) is defined by the formula:

λn(k) =
Aαn

n−k
Aαn

n

, where Aαn
n =

(αn + 1)(αn + 2) · · · (αn + n)
n!

. (1.31)

If αn = α, for every n ≥ 0 and (1.31) holds true, then the Λ method is Cesaro (C, α)
summability method, and if αn ≡ 0, then the Λ method coincides with convergence.

We introduce Cesaro summability method with variable orders, denoted by a symbol
(C, {αn}), which coincides with Λ summability method defined by (1.31). Means of this
method for series (1.3)we denoted by σαn

n .
For (C, {αn}) we have the following.

Theorem 1.3. Let a sequences {αn} be such that for some positive numberm we have

αn ≤ c

lnn
, where 0 ≤ c < ln 2 and n > m. (1.32)

Then for any series (1.3) which satisfies the following condition:

lim
n→∞

|sn| = +∞, (1.33)
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an equality

lim
n→∞

∣∣σαn
n

∣∣ = +∞ (1.34)

holds.

Proof of Theorem 1.3. Note that every λn(k) satisfies condition (1.1) and condition (1.3).
Indeed,

λn(k + 1)
λn(k)

=
Aαn

n−k−1
Aαn

n−k
=

n − k

αn + n − k
≤ 1 (1.35)

and λn(0) = 1, when n ≥ 0.
For every n ≥ 1 we have

λn(n) =
1

Aαn
n

, where Aαn
n =

(αn + 1)(αn + 2) · · · (αn + n)
n!

, (1.36)

that is,

Aαn
n =

(
1 +

αn

1

)(
1 +

αn

2

)
· · ·

(
1 +

αn

n

)
. (1.37)

Therefore,

lnAαn
n =

n∑

k=1

ln
(
1 +

αk

n

)
<

n∑

k=1

αn

k
= αn ·

∑

k=1

1
k
< αn(1 + lnn). (1.38)

Note that the last one and (1.32) imply that

c = ln
2

1 + γ
, for some 0 < γ ≤ 1, (1.39)

and if n > m, we have

Aαn
n < eαn(1+lnn) = eαn · eαn lnn

≤ eαn · ec = eαn · eln(2/(1+γ)) = eαn · 2
1 + γ

,
(1.40)

that is,

λn(n) =
1

Aαn
n

>
1
eαn

·
(
1
2
+
γ

2

)
, where γ > 0. (1.41)
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Note that αn → 0 implies the existence of such γ1 > 0 and natural n2, that if n > n2, then

1
eαn

·
(
1
2
+
γ

2

)
>

1
2
+ γ1, (1.42)

that is, if n > n2, then

λn(n) >
1
2
+ γ1. (1.43)

A consequence of (1.43) is that if (1.32) holds, then the Λ matrix satisfies conditions of
Theorem 1.1. This completes the proof of Theorem 1.3.

Theorem 1.3 directly implies the following.

Theorem 1.4. Let {αn} be such sequence that

{αn} = o

(
1

lnn

)
. (1.44)

Then for every series (1.3) which satisfies

lim
n→∞

|sn| = +∞, (1.45)

we have

lim
n→∞

∣∣σαn
n

∣∣ = +∞. (1.46)

2. On Divergence of Fourier Series

It is well known the following.

Theorem A (Kolmogorov [1]). There exists such summable function f that Fourier trigonometric
series of f

a0

2
+

∞∑

k=1

ak cos kx + bk sin kx (2.1)

unboundedly diverges everywhere.

Let W = {wn(t)}∞n=1 be the Walsh system. Below we formulate Theorem B which is
analogous of Theorem A and holds for Fourier-Walsh series.
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Theorem B (Schipp [2, 3]). There exists such summable function g that Fourier-Walsh series of g

∞∑

n=1

anwn(t) (2.2)

unboundedly diverges everywhere.

Let Φ = {ϕn(t)} be orthonormal functions system defined on [0, 1], such that

∣∣ϕn(t)
∣∣ ≤ M, t ∈ [0, 1], n = 1, 2, . . . (2.3)

Then below-mentioned theorem holds.

Theorem C (Boc̆karev [4]). For every orthonormal systemΦ which satisfies (2.3), there exists such
summable function h defined on [0, 1] that its Fourier series constructed by Φ system

∞∑

n=1

anϕn(t) (2.4)

unboundedly diverges in any point of some set E ⊂ [0, 1] with positive measure.

Denote by σαn
n (x; f), σαn

n (t, g,W), and σαn
n (t, h,Φ)means of series (2.1), (2.2), and (2.4),

respectively.
Theorem 1.3 implies that if {αn} satisfies (1.32), then Theorems A, B, and C hold for

(C, {αn}) summability method.
Namely, the following Theorems hold true.

Theorem 2.1. Let a sequence {αn} satisfies (1.32). Then there exists such summable function f , that
sequence {σαn

n (x; f)} unboundedly diverges everywhere.

Theorem 2.2. Let a sequence {αn} satisfies (1.32). Then there exists such summable function g that
sequence {σαn

n (t, g,W)} unboundedly diverges everywhere.

Theorem 2.3. If orthonormal systemΦ satisfies (2.3) and a sequence {αn} satisfies (1.32), then there
exists such summable function h, defined on [0, 1], that sequence {σαn

n (t;h;Φ)} unboundedly diverges
at every point of some set E ⊂ [0, 1] with positive measure.

It is obvious that a consequence of Theorem 1.4 is that Theorems 2.1, 2.2, and 2.3 hold
true if

αn = o

(
1

lnn

)
. (2.5)

Remark 2.4. If every number λn(k) will be replaced by (1 − k/(n + 1))αn in (1.31), then we get a
summability method defined by Λ = ‖λn(k)‖ matrix, which we call Riesz summability method with
variable orders and denote it by symbol (R, {αn}).
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It can be proved analogously that Theorems 2.1, 2.2, and 2.3 remain true for Riesz
summability method with variable orders, that is, for (R, {αn}) method, where {αn} satisfies
(1.32).
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