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Introduction

In the theory of orthogonal series one of the fundamental results is the
result obtained by D. Menshov and H. Rademacher (see [1] and [2]).

Theorem A (Menshov-Rademacher). Let {φn(x)}∞n=1 be any or-
thonormal system on [0, 1]. If the orthogonal series

∞∑
n=1

cn φn(x) (1)

is such that
∞∑

n=1

c2n ln2 n <∞,

then the series (1) converges almost everywhere on [0, 1].
D. Menshov proved (see [3]) that the Theorem A can not be strengthened

for the class of orthonormal systems. In particular, the following theorem
holds.

Theorem B (Menshov). There exists an orthonormal on [0, 1] system
of polynomials {Pn(x)} such that the following proposition holds.

Let {W (n)} be such sequence of nonnegative numbers that

lim
n→∞

W (n)

ln2 n
= 0,

then there exists such sequence {cn} of numbers, that the series
∞∑

n=1

cn Pn(x)
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diverges everywhere on [0, 1] and
∞∑

n=1

c2nW (n) <∞.

Theorem B has been strengthened by K. Tandori (see [4]). In particular,
the following theorem holds.

Theorem C (Tandori). For any sequence cn ↓ 0 for which
∞∑

n=1

c2n ln2 n = ∞,

there exists the orthogonal series
∞∑

n=1

cn ψn(x)

such that this series diverges everywhere on [0, 1].
For the Cesáro method of (c, α) summability the following theorem holds

(see [5]).
Theorem D (Menshov). If coefficients of the series (1) are such that

∞∑
n=2

c2n ln2 lnn <∞,

then the series (1) is summable almost everywhere on [0, 1] by the (c, α)
method for an arbitrary α > 0.

D. Menshov proved that the Theorem D can not be strengthened (see
[6]). Namely, the following theorem holds.

Theorem E (Menshov). For any sequence of nonnegative numbers
{W (n)} for which

lim
n→∞

W (n)

ln2 lnn
= 0,

there exists the series (1) such that
∞∑

n=2

c2nW (n) <∞

and this series diverges almost everywhere on [0, 1] by the (c, α) method for
any α > 0.

In the present work we consider the methods of summability with a vari-
able order and represent our theorems connected with these methods.



149

Notations, Definitions and Statement of the Results

Let M(α) be a triangular matrix M(α) =
∥∥λn(α, k)∥∥, whose every ele-

ment depends on the parameter α, where α ∈ [0,+∞) and λn(α, k) = 0 for
any n ≥ 0 and k > n.

We consider the matrices whose elements for arbitrary n ≥ 0 and
k = 0, 1, . . . , n satisfy the following conditions

(i) λn(0, k) = 1 and 0 ≤ λk(α, k) ≤ λn(α, k) ≤ 1, where α ∈ [0,+∞);
(ii) for any k, the function λk(α, k) is differentiable with respect to α.
Consider the numerical series

∞∑
k=0

uk. (2)

By Sn we denote partial sums of the series (2) and by τn(α) the means of
the series (2) with respect to the matrix M(α), i.e.,

Sn =
n∑

k=0

uk

and

τn(α) =
n∑

k=0

λn(α, k) · uk.

If there exists a finite limit

lim
n→+∞

τn(α) = S,

then we say that the series (2) is summable by the M(α) method to the
number S.

If for the sequence {αn} of nonnegative numbers there exists a finite limit

lim
n→∞

τn(αn) = S,

then we say that the series (2) is summable to the number S by the method
M(αn) with a variable order.

If αn = α for any n ≥ 0, then, obviously, the M(αn) summability coin-
cides with the M(α) summability, but if αn = 0 for any n ≥ 0, then since
λn(0, k) = 1, the M(0) summability coincides with the convergence of the
series (2).

It should be noted that the Cesáro method of (c, α) summability is a
particular case of M(α) summability.

The Cesáro method of summability with a variable order, i.e., the (c, αn)
method has been introduced by Menshov (see [7]).

Below, the writing (A) ≤ (B), where (A) and (B) are two methods of
summability denotes that if the series (2) is summable by the method (A)
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to the number S, then this series is also summable by the method (B) to
the same number S, while the writing

(A) < (B)

denotes that (A)≤(B) and there exists such series (2) which is not summable
by the method (A), but is summable by the method (B).

It is known (see [7]) that if αn ≥ 0 and αn =
=
o(n), then

(c, 0) ≤ (c, αn).

We have constructed an example of the divergent series (2) with uk → 0

which is (c, αn) summable, where
∞∑

n=0
α2
n <∞, i.e, it is shown that

(c, 0) < (c, αn)

and, in addition,
∞∑

n=0
α2
n <∞.

We denote partial sums of the series (1) by Sn(x) and all means of the
series (1) with respect to the M(αn) method by τn(αn, x), i.e.,

Sn(x) =
n∑

k=0

ck φk(x)

and

τn(αn, x) =

n∑
k=0

λn(αn, k) ck φk(x).

For every k, for the derivative of the function λk(α, k) we introduce the
notation

γ2k = sup
α≥0

(
λ′k(α, k)

)2
.

For M(αn) summability method, the following theorem holds.

Theorem 1. If the sequence of nonnegative numbers {αn} is such that
∞∑

n=0

α2
n ·

n∑
k=0

c2k γ
2
k <∞,

then

lim
n→∞

(
Sn(x)− τn(αn, x)

)
= 0, for almost all x ∈ [0, 1].

Using this theorem and the known results presented in Introduction, we
have proved the theorems on the divergence of orthogonal series by the
M(αn) methods with a variable order. Namely, the following theorems
hold.
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Theorem 2. Let the matrix M(α) be such that γ2k = O
=
(ln2 k). Then

for any {αn} and {W (n)} sequences of nonnegative numbers for which
∞∑

n=0
α2
n <∞ and lim

n→∞
W (n)
ln2 n

= 0, there exists the orthogonal series

∞∑
n=0

cn ψn(x),

which diverges by the M(αn) method almost everywhere on [0, 1] and
∞∑

n=1

c2nW (n) <∞.

Theorem 3. For any {αn} sequence of nonnegative numbers for which
∞∑

n=0
α2
n <∞, there exits the sequence of numbers cn ↓ such that the following

propositions are valid:
1) there exists the orthogonal series

∞∑
n=0

cn ψn(x),

which diverges almost everywhere on [0, 1] by the (c, αn) method;
2) every orthogonal series

∞∑
n=0

cn φn(x),

with the same cn coefficients is (c, α) summable almost everywhere on [0, 1],
for any α > 0.

Let us introduce the notion of the Riesz M -method of summability with
order α and the notion of the Riesz M -method of summability with a vari-
able order.

Let M = ∥λn(k)∥ be a triangular matrix such that for any n,

0 < λk(k) ≤ λn(k) ≤ 1, k = 0, 1, . . . , n.

For every number α ≥ 0, the matrix ∥λαn(k)∥ we denote by Mα.

i.e., Mα =
∥∥λαn(k)∥∥.

The means of the series (1) corresponding to the matrix Mα we denote
by Rα

n(x), i.e.,

Rα
n(x) =

n∑
k=0

λαn(k) · ck φk(x). (3)
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Definition 1. The method of summability corresponding to the matrix
Mα we call the Riesz M -method of order α, and the means Rα

n(x) defined
by equalities (3) we call the Riesz M -means of order α of the series (1) at
the point x.

Definition 2. If for the {αn} sequence of nonnegative numbers there
exists a finite limit

lim
n→∞

Rαn
n (x) = S,

then we say that the series (1) is summable by the Riesz M -method with a
variable order to the number S at the point x.

Here we present some corollaries of Theorem 1 and Theorem 2 for the
Riesz M -method of summability with a variable order.

Corollary 1. If the sequence of nonnegative numbers {αn} is such that
∞∑

n=1

α2
n ·

n∑
k=1

c2k · ln2 λk(k) <∞,

then
lim

n→∞

(
Sn(x)−Rαn

n (x)
)
= 0 for almost all x ∈ [0, 1].

Corollary 2. Let the matrix M = ∥λn(k)∥ be such that for some number
δ > 0,

1

(k + 1)δ
≤ λk(k) ≤ λn(k) ≤ 1, k = 0, 1, . . . , n.

Then for arbitrary sequences of nonnegative numbers {αn} and {W (n)} for
which

∞∑
n=0

α2
n <∞ and lim

n→∞
W (n)
ln2 n

= 0, there exists the orthogonal series

∞∑
n=0

cn ψn(x)

for which the Rαn
n (x) means diverge almost everywhere on [0, 1] and

∞∑
n=1

c2nW (n) <∞.
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