ON SETS OF UNIQUENESS OF SOME FUNCTION SERIES

SHAKRO TETUNASHVILI^{1,2} AND TENGIZ TETUNASHVILI^{2,3}

Abstract. Uniqueness theorems for function series with respect to systems of finite functions, Lebesgue measurable and finite functions, and some orthonormal systems of functions are formulated.

1. NOTATION AND DEFINITIONS

Let $\Phi = \{\varphi_n(x)\}_{n=1}^{\infty}$ be a system of finite functions defined on [0, 1], $a = (a_1, a_2, \ldots, a_n, \ldots)$ be a sequence of real numbers, and $\theta = (0, 0, 0, \ldots)$ be a constant sequence of zeros. $a \neq \theta$ means that there exists a natural number $n_0 \ge 1$ such that $a_{n_0} \ne 0$.

Let S be the set of all sequences of real numbers, $S = \{a : a = (a_1, a_2, \dots, a_n, \dots)\}$. Let S_0 be the set $S \setminus \{\theta\}$, i.e., $S_0 = \{a : (a \in S) \& (a \neq \theta)\}$.

Consider a series with respect to Φ :

$$\sum_{n=1}^{\infty} a_n \varphi_n(x). \tag{1}$$

For every fixed $x \in [0, 1]$ let

$$A(x) = \left\{ a : (a \in S_0) \& \left(\sum_{n=1}^{\infty} a_n \varphi_n(x) \neq 0 \right) \right\}$$

and for every fixed $a \in S_0$ let

$$E(a) = \left\{ x : \ (x \in [0,1]) \ \& \left(\sum_{n=1}^{\infty} a_n \varphi_n(x) \neq 0 \right) \right\}.$$

Definition 1. A set $H \subset [0,1]$ is called a *U*-set if the convergence of a series $\sum_{n=1}^{\infty} a_n \varphi_n(x)$ to zero for every $x \in [0,1] \setminus H$ implies that $a_n = 0$ for every natural number $n \ge 1$.

2. A UNIQUENESS THEOREM FOR SERIES WITH RESPECT TO SYSTEMS OF FINITE FUNCTIONS

Let $\Phi = \{\varphi_n(x)\}_{n=1}^{\infty}$ be a system of finite functions defined on [0, 1], then the following assertions hold true:

Theorem 1. A set $H \subset [0,1]$ is a U-set if and only if

$$\bigcup_{x \in [0,1] \setminus H} A(x) = S_0.$$

Proposition 1. A set $H \subset [0,1]$ is a U-set if and only if

$$E(a) \bigcap ([0,1] \setminus H) \neq \emptyset$$
 for any $a \in S_0$.

Proposition 2. If the empty set is a U-set, then a nonempty set $H \subset [0,1]$ is a U-set if and only if

$$\bigcup_{x \in H} A(x) \subset \bigcup_{x \in [0,1] \setminus H} A(x)$$

²⁰²⁰ Mathematics Subject Classification. 40A30, 40A05.

Key words and phrases. Set of uniqueness; Function series, Null-series.

3. A Uniqueness Theorem for Series with Respect to Systems of Lebesgue Measurable and Finite Functions

Let $\Phi = \{\varphi_n(x)\}_{n=1}^{\infty}$ be a system of Lebesgue measurable and finite functions defined on [0, 1]. In what follows, μ_* and μ^* stand for Lebesgue inner and outer linear measures of a set, respectively,

and measurable is applied instead of Lebesgue measurable for the sake of brevity. **Definition 2.** A series $\sum_{n=1}^{\infty} a_n \varphi_n(x)$ is called a null-series with respect to Φ if $\sum_{n=1}^{\infty} a_n \varphi_n(x) = 0$ for almost all $x \in [0, 1]$ and there exists a natural number $n_0 \ge 1$ such that $a_{n_0} \ne 0$.

almost all $x \in [0, 1]$ and there exists a natural number $n_0 \ge 1$ such that $a_{n_0} \ne 0$. **Definition 3.** An orthonormal system of functions $\Phi = \{\varphi_n(x)\}_{n=1}^{\infty}$ defined on [0, 1] is called a strictly convergence system if $\sum_{n=1}^{\infty} a_n^2 < \infty$ implies that a series $\sum_{n=1}^{\infty} a_n \varphi_n(x)$ converges almost everywhere on

[0,1] and $\sum_{n=1}^{\infty} a_n^2 = \infty$ implies that a series $\sum_{n=1}^{\infty} a_n \varphi_n(x)$ diverges on a subset of [0,1] of positive Lebesgue measure.

It is well known that if Φ is a strictly convergence system, then there is no null-series with respect to Φ .

Note that examples of strictly convergence systems defined on [0, 1], are lacunar trigonometric systems (see [3, Ch. 5, §6]), Rademacher's system (see [1, Ch. 4, §5]), Kashin's complete and orthonormal system [2].

The following assertions hold true.

Theorem 2. If there is no null-series with respect to the system $\Phi = \{\varphi_n(x)\}_{n=1}^{\infty}$, then any set $H \subset [0,1]$ such that $\mu_* H = 0$ is a U-set.

Note that if a set $H \subset [0, 1]$ is such that $\mu_* H = 0$ and $\mu^* H = 1$, then $\mu_* ([0, 1] \setminus H) = 0$ and therefore, according to Theorem 2, we have

Corollary 1. If there is no null-series with respect to the system $\Phi = \{\varphi_n(x)\}_{n=1}^{\infty}$, and a set $H \subset [0,1]$ is such that $\mu_* H = 0$ and $\mu^* H = 1$, then both H and $[0,1] \setminus H$ are U-sets.

Corollary 1 implies:

Corollary 2. If $\Phi = \{\varphi_n(x)\}_{n=1}^{\infty}$ is a strictly convergence system and a set $H \subset [0,1]$ is such that $\mu_*H = 0$ and $\mu^*H = 1$, then both H and $[0,1] \setminus H$ are U-sets.

Remark. It can be proved that after appropriate modifications of the notation and definitions presented in Section 1, the assertions formulated in Section 2 remain true for multiple function series, too.

ACKNOWLEDGEMENT

This work was supported by the Shota Rustaveli National Scientific Foundation of Georgia through the Grant No. DI-18-118.

References

- 1. S. Kacmarz, H. Steinhaus, Theorie der Ortogonalreihen. Warszawa/Lwów, 1935; Russian translation: Moscow, 1958.
- B. S. Kashin, Some properties of orthogonal convergence system. Trudy Mat. Inst. Steklov. 143(1977), 68–87; translation in Proc. Steklov Inst. Math. 143 (1980), 73–92).
- 3. A. Zygmund, Trigonometric Series. 2nd ed. vol. I. Cambridge University Press, New York 1959.

(Received 17.02.2020)

 $^1\mathrm{A.}$ Razmadze Mathematical Institute of I. Javakhishvili T
bilisi State University, 6 Tamarashvili Str., Tbilisi 0177, Georgia

²Department of Mathematics, Georgian Technical University, 77 Kostava Str., Tbilisi 0171, Georgia

 3 Ilia Vekua Institute of Applied Mathematics of Ivane Javakhishvili Tbilisi State University, 2 University Str., Tbilisi 0186, Georgia

E-mail address: stetun@hotmail.com

 $E\text{-}mail\ address: \texttt{tengiztetunashvili@gmail.com}$