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ON SETS OF UNIQUENESS OF SOME FUNCTION SERIES

SHAKRO TETUNASHVILI1,2 AND TENGIZ TETUNASHVILI2,3

Abstract. Uniqueness theorems for function series with respect to systems of finite functions,

Lebesgue measurable and finite functions, and some orthonormal systems of functions are formu-
lated.

1. Notation and Definitions

Let Φ = {ϕn(x)}∞n=1 be a system of finite functions defined on [0, 1], a = (a1, a2, . . . , an, . . .) be a
sequence of real numbers, and θ = (0, 0, 0, . . .) be a constant sequence of zeros. a 6= θ means that there
exists a natural number n0 ≥ 1 such that an0

6= 0.
Let S be the set of all sequences of real numbers, S = {a : a = (a1, a2, . . . , an, . . .)}. Let S0 be the

set S\{θ}, i.e., S0 = {a : (a ∈ S) & (a 6= θ)}.
Consider a series with respect to Φ:

∞∑
n=1

anϕn(x). (1)

For every fixed x ∈ [0, 1] let

A(x) =

{
a : (a ∈ S0) &

( ∞∑
n=1

anϕn(x) 6= 0

)}
and for every fixed a ∈ S0 let

E(a) =

{
x : (x ∈ [0, 1]) &

( ∞∑
n=1

anϕn(x) 6= 0

)}
.

Definition 1. A set H ⊂ [0, 1] is called a U -set if the convergence of a series
∞∑

n=1
anϕn(x) to zero for

every x ∈ [0, 1]\H implies that an = 0 for every natural number n ≥ 1.

2. A Uniqueness Theorem for Series with Respect to Systems of Finite Functions

Let Φ = {ϕn(x)}∞n=1 be a system of finite functions defined on [0, 1], then the following assertions
hold true:

Theorem 1. A set H ⊂ [0, 1] is a U -set if and only if⋃
x∈[0,1]\H

A(x) = S0.

Proposition 1. A set H ⊂ [0, 1] is a U -set if and only if

E(a)
⋂

([0, 1]\H) 6= ∅ for any a ∈ S0.

Proposition 2. If the empty set is a U -set, then a nonempty set H ⊂ [0, 1] is a U -set if and only if⋃
x∈H

A(x) ⊂
⋃

x∈[0,1]\H

A(x).
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3. A Uniqueness Theorem for Series with Respect to Systems of Lebesgue
Measurable and Finite Functions

Let Φ = {ϕn(x)}∞n=1 be a system of Lebesgue measurable and finite functions defined on [0, 1].
In what follows, µ∗ and µ∗ stand for Lebesgue inner and outer linear measures of a set, respectively,

and measurable is applied instead of Lebesgue measurable for the sake of brevity.

Definition 2. A series
∞∑

n=1
anϕn(x) is called a null-series with respect to Φ if

∞∑
n=1

anϕn(x) = 0 for

almost all x ∈ [0, 1] and there exists a natural number n0 ≥ 1 such that an0 6= 0.

Definition 3. An orthonormal system of functions Φ = {ϕn(x)}∞n=1 defined on [0, 1] is called a strictly

convergence system if
∞∑

n=1
a2n <∞ implies that a series

∞∑
n=1

anϕn(x) converges almost everywhere on

[0, 1] and
∞∑

n=1
a2n =∞ implies that a series

∞∑
n=1

anϕn(x) diverges on a subset of [0, 1] of positive Lebesgue

measure.

It is well known that if Φ is a strictly convergence system, then there is no null-series with respect
to Φ.

Note that examples of strictly convergence systems defined on [0, 1], are lacunar trigonometric
systems (see [3, Ch. 5, §6]), Rademacher’s system (see [1, Ch. 4, §5]), Kashin’s complete and
orthonormal system [2].

The following assertions hold true.

Theorem 2. If there is no null-series with respect to the system Φ = {ϕn(x)}∞n=1, then any set
H ⊂ [0, 1] such that µ∗H = 0 is a U -set.

Note that if a set H ⊂ [0, 1] is such that µ∗H = 0 and µ∗H = 1, then µ∗ ([0, 1]\H) = 0 and therefore,
according to Theorem 2, we have

Corollary 1. If there is no null-series with respect to the system Φ = {ϕn(x)}∞n=1, and a set H ⊂ [0, 1]
is such that µ∗H = 0 and µ∗H = 1, then both H and [0, 1]\H are U -sets.

Corollary 1 implies:

Corollary 2. If Φ = {ϕn(x)}∞n=1 is a strictly convergence system and a set H ⊂ [0, 1] is such that
µ∗H = 0 and µ∗H = 1, then both H and [0, 1]\H are U -sets.

Remark. It can be proved that after appropriate modifications of the notation and definitions pre-
sented in Section 1, the assertions formulated in Section 2 remain true for multiple function series,
too.
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