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ON THE EXISTENCE OF UNIVERSAL SERIES WITH SPECIAL PROPERTIES

SHAKRO TETUNASHVILI

Abstract. An arbitrary system of Lebesgue measurable and almost everywhere finite functions

Φ = {ϕn(x)}∞n=1 such that there exists a universal series with respect to Φ is considered. A theorem
asserting that for any sequence of real numbers (cn)∞n=1 there exist two universal series with respect

to Φ such that every cn is a product of two corresponding coefficients of these two universal series

is formulated.

Let Φ = {ϕn(x)}∞n=1 be an arbitrary system of Lebesgue measurable and almost everywhere finite
functions defined on [a, b].

Definition 1. A series
∞∑

n=1

αnϕn(x) (1)

is called a universal series with respect to Φ in the sense of subsequences of partial sums of this series,
if for any Lebesgue measurable function f(x) defined on [a, b] and finite or infinite at any point of [a, b]
there exists a strictly increasing sequence of natural numbers (mk)

∞
k=1 ↑ ∞ such that the equality:

lim
k→∞

mk∑
n=1

αnϕn(x) = f(x)

holds for almost all x ∈ [a, b].

In what follows, for the sake of brevity, a universal series (1) with respect to Φ in the sense of
subsequences of partial sums of (1) is called a universal series with respect to Φ and measurable is
applied instead of Lebesgue measurable.

D. E. Menshoff was the first who established the existence of universal trigonometric series and
proved that any trigonometric series is a sum of two universal trigonometric series (see [3]). Namely,
he proved that for any sequence of real numbers (cn)

∞
n=1 there exist two universal trigonometric series

with coefficients
(
α
(1)
n

)∞
n=1

and
(
α
(2)
n

)∞
n=1

, respectively, such that for every natural number n ≥ 1 the

following equality

cn = α(1)
n + α(2)

n

holds.
A. A. Talaljan proved (see [2, Theorem 9.2.11]) that for any complete and orthonormal system Φ

there exists a universal series (1) with respect to Φ such that lim
n→∞

αn = 0.

Various aspects of the theory of universal series are presented in the article of K. G. Grosse-
Erdman [1].

In [4], the above-mentioned result of Menshoff on trigonometric series is generalized for the series
with respect to any system Φ of measurable and almost everywhere finite functions such that there
exists a universal series with respect to Φ, in particular, for the series with respect to any complete
and orthonormal system Φ (see [4, Theorem 1 and Theorem 2]).

The above-indicated results of [3] and [4] hold true not only for the sums of corresponding coefficients
of the above-mentioned two universal series, but also for the products of corresponding coefficients of
certain two universal series. Namely, the following theorem holds.
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Theorem 1. Let Φ = {ϕn(x)}∞n=1 be an arbitrary system of measurable and almost everywhere finite
functions defined on [a, b] and (cn)

∞
n=1 be any sequence of real numbers, then a necessary and sufficient

condition for the validity of the equality

cn = α(1)
n · α(2)

n

for every natural number n ≥ 1, where
∞∑

n=1
α
(1)
n ϕn(x) and

∞∑
n=1

α
(2)
n ϕn(x) are certain universal series

with respect to Φ, is the existence of a universal series with respect to Φ.

A consequence of Theorem 1 and of the above-mentioned theorem of A. A. Talaljan is the following

Theorem 2. Let Φ = {ϕn(x)}∞n=1 be any complete and orthonormal system of functions defined on

[a, b], then for any sequence of real numbers (cn)
∞
n=1, there exist two universal series

∞∑
n=1

α
(1)
n ϕn(x)

and
∞∑

n=1
α
(2)
n ϕn(x) with respect to Φ such that the equality

cn = α(1)
n · α(2)

n

holds for every natural number n ≥ 1.

Proposition 1. For any system Φ of measurable and almost everywhere finite functions defined on
[a, b] such that there exists a universal series with respect to Φ, in particular, for any complete and
orthonormal system Φ, there exist two series

∞∑
n=1

αnϕn(x) and

∞∑
n=1

1

αn
ϕn(x)

with respect to Φ such that every one of them is a universal series with respect to Φ.
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