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ABSTRACT. In order to derive the equation of state for the pure SU(3) Yang-Mills fields from first
principles, it is proposed to generalize the effective potential approach for composite operators to non-
zero temperature. It is essentially non-perturbative by construction, since it assumes the summation of
an infinite number of the corresponding contributions. There is no dependence on the coupling constant,
only a dependence on the mass gap, which is responsible for the large-scale structure of the QCD
ground state. The equation of state generalizes the bag constant at non-zero temperature, while its
nontrivial Yang-Mills part has been approximated by the generalization of the free gluon propagator to
non-zero temperature, as a first necessary step. Even in this case we were able to show explicitly that the
pressure may continuously change its regime at T* = 266.5 MeV. All the other thermodynamical quantities
such as the energy density, entropy, etc. are to be understood to have drastic changes in their regimes in
the close vicinity of T*. All this is in qualitative and quantitative agreement with thermal lattice QCD
results for the pure Yang-Mills fields. We have firmly established the behaviour of all the thermodynamical
quantities in the region of low temperatures, where thermal lattice QCD calculations suffer from big
uncertainties. © 2012 Bull. Georg. Natl. Acad. Sci.
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I. Introduction
The equation of state (EoS) for the Quark-Gluon
Plasma (QGP) has been derived analytically in QCD
up to the order g6ln(1/g2) by generalizing the
perturbation theory (PT) method at non-zero tempe-
rature and density [1-4] and references therein).
However, due to its non-analytical dependence on
the QCD coupling constant g2, nobody can trust its

description of the QGP dynamics, apart from maybe
at very high temperature. So there is an exact
indication that the analytical EoS derived by thermal
PT QCD is wrong.

At present, the only method to be used in order
to investigate thermal QCD is the lattice QCD at finite
temperature and baryon density which underwent a
rapid recent progress [1,3,5-7] and references therein).
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However, the lattice QCD, being a very specific
regularization scheme, first of all is aimed at obtaining
the well-defined corresponding expressions in order
to get correct numbers and curves from them. So,
one gets numbers and curves, but not understanding
of what is the physics behind them. Such kind of
understanding can only come from the dynamical
theory which is continuous QCD. For example, any
description of the QGP is to be formulated in the
framework of the dynamical theory. The lattice thermal
QCD is useless in this. The need in the analytical EoS
remains, but, of course it should be essentially non-
perturbative (NP), reproducing the thermal PT QCD
results at a very high temperature only. Thus analytic
NP QCD and lattice QCD approaches to finite-
temperature QCD do not exclude each other, but on
the contrary they should complement each other.
Especially this is true for low temperatures where
lattice QCD calculations suffer from big uncertainties
[1,3,5-7]. There already exist interesting analytic
approaches based on quasi-particle  and liquid model
pictures [8-17] to analyze the results of SU(3) thermal
lattice QCD calculations for the QGP EoS.

The formalism we are going to use in order to
generalize it to non-zero temperature is the effective
potential approach for composite operators [18-20].
It is essentially NP from the very beginning, since it
is dealing with the expansion of the corresponding
skeleton loop contributions (for a more detailed
description see below). The main purpose of this
paper is to derive EoS for the gluon matter by
introducing the temperature dependence into the
effective potential approach in a self-consistent way.

II. The Vacuum Energy Density
The quantum part of the vacuum energy density
(VED) is determined by the effective potential
approach for composite operators [18]. In the absence
of external sources the effective potential is nothing
but the VED. It is given in the form of the skeleton
loop expansion, containing all the types of the QCD
full propagators and vertices. So each vacuum

skeleton loop itself is a sum of an infinite number of
the corresponding PT vacuum loops, i.e., it contains
the point-like vertices and free propagators (the
figures of these expansions are explicitly shown in
[20]). The number of the vacuum skeleton loops is
equal to the power of the Planck constant .

Here we are going to formulate a general method
of numerical calculation of the quantum part of the
truly NP Yang-Mills (YM) VED in the covariant gauge
QCD. The gluon part of the VED to leading order (the
so-called log-loop level ~ ) is given analytically by
the effective potential for composite operators as
follows [18]:

V(D)=
4

42 (2 )
i d q

 Trr{ln(D0
-1D)- D0

-1D+1}, (1)

here D(q)  is the full gluon propagator and  D0 (q)  is
its free counterpart (see below). Traces over space-
time and color group indices are assumed. Evidently,
the effective potential is normalized to V(D0) = 0. Next-
to-leading and higher order contributions (two and
more vacuum skeleton loops) are suppressed at least
by one order of magnitude in powers of .

The two-point Green’s function, describing the
full gluon propagator, is D(q) = - i { T (q)d(-q2, )
+  L (q) } (1 / q2), where î is the gauge-fixing
parameter and T(q)= g –(qq /q

2 ) = g - L(q). Its
free counterpart D0 D0

 (q) is obtained by putting
the full gluon   form   factor d(-q2, ) simply  to one,
i.e.,  D0

(q) = - i { T (q)d(-q2, ) +  L (q) } (1 / q2).
In order to evaluate the effective potential (1), we

use the well-known expression
 Tr{ln(D0

-1D) = 8×4lndet (D0
-1D) = 32 ln [ (3/ 4 )

d(-q2, ) + (1 / 4 ) ]. Going over to four-dimensional
Euclidean space in Eq. (1), one obtains (g = V(D))

g = -16
4

4(2 )
d q
 {ln [1+3 d(q2, )]- 3

4
 d(q2, )+ a}, (2)

where the constant a = (3/4) – 2ln2 = -0.6363 and the
integration over q2 from zero to infinity is assumed.
The VED g

 derived in Eq. (2) is already a colorless
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quantity, since it has been already summed over color
indices. Also, only the transversal (“physical”)
degrees of freedom of gauge bosons contribute to
this equation (up to one skeleton loop order). So,
there is no need for ghosts to cancel their longitudinal
(unphysical) counterparts because of a normalization
condition in this case.

However, the derived expression (2) remains rather
formal, since it suffers from different types of PT
contributions (“contaminations”). In order to define
correctly the truly NP VED, let us make first the
identical transformation of the full effective charge in
Eq. (2) as follows: d(q2,) = d(q2,) – dPT(q2,) +
dPT(q2,) = dNP(q2) +dPT(q2,), where dPT(q2,) correctly
describes the PT structure of the full effective charge
d (q2,), including its behaviour in the ultra-violet
(UV) limit compatible with asymptotic freedom (AF),
otherwise remaining arbitrary. On the other hand,
dNP(q2) is assumed to reproduce correctly the NP
structure of the full effective charge, including its
asymptotic behaviour in the deep infrared (IR) limit.
Evidently, both terms are valid in the whole energy/
momentum range, i.e., they are not asymptotics. Let
us also emphasize the principal difference between
dPT(q2,) and dNP(q2). The former is NP quantity
“contaminated” by PT contributions, while the latter,
being also NP, is, nevertheless, free of them. Thus
the separation between the truly NP effective charge
dNP(q2) and its nontrivial PT counterpart dPT(q2,) is
achieved. For example, if the full effective charge
explicitly depends on the scale responsible for the
truly NP dynamics in QCD, say 2

NP, then one can
define the subtraction  dNP(q2, 2

NP) = d(q2, 2
NP) -

d(q2, 2
NP = 0) = d(q2, 2

NP) - dPT(q2), which is
obviously equivalent to the previous decomposition.

III. Generalization to Non-zero
Temperature
Substituting the above-discussed exact decompo-
sition into Eq. (2), introducing further the effective
scale squared, separating the NP region from the PT
one (soft momenta from hard momenta), and omitting

some algebraic rearrangement (for details see [20]),
one obtains:

YM = - BYM + BYM (T)+ PYM (T) (3)

Here evidently g YM and BYM is the bag constant at
zero temperature [20,21]. Also,   BYM (T) and PYM ( T)
are explicitly given by the following expressions:

BYM(T)=16
4

4( 2 )

e f fq
d q
 ·

·{ln [1+ 3s
NP(q2)] –

3
4
s

NP(q2)}  (4)

and PYM (T) has more complicate form, namely

PYM (T)  = -16
4

4(2 )
d q
 { [ ln [1 +

+3s
PT(q2)+3s

NP(q2)] –
3
4

[ s
NP(q2) + s

NP(q2)]+a}(5)

respectively, since it depends on both effective
charges, s

NP(q2)  dNP(q2) and s
PT(q2)  dPT(q2).

Precisely these expressions should be generalized to
non-zero temperatures in order to get EoS for the
pure YM fields. That is why we introduce the
dependence on the temperature T in advance.
Evidently, Eq. (4) will reproduce the temperature-
dependent bag constant. In the expression for PYM

(T) the integration is from zero to infinity, while in the
integral for BYM (T) it is from zero to the effective scale
squared 2

effq , which is symbolically shown in Eq. (4).
It is worth emphasizing that a so defined bag constant
(4) is free of all types of PT contributions (“conta-
minations”), as it is required (this was a reason for
the above-mentioned algebraic rearrangements and
subtractions, see [20-22] and references therein).

The problem remaining to solve is to choose the
truly NP effective charge s

NP(q2). For the different
truly NP effective charges we will get different
analytical and numerical results. That is why the
choice for its explicit expression should be physically
and mathematically well justified. Let us choose the
truly NP effective charge as follows:
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s
NP(q2) = 

2

2
NP

q


, (6)

where 2
NP  is the mass scale parameter (the mass

gap) responsible for the large-scale structure of the
true QCD vacuum. It is well known that in continuous
QCD it leads to a linear rising potential between heavy
quarks, “seen” by lattice QCD [23] as well ( (q2)–2-
type behaviour for the full gluon propagator).
Moreover, in [24-25] (see references therein as well)
it has been explicitly shown that it is a direct nonlinear
iteration solution of the transcendental equation for
the full gluon propagator in the presence of a
renormalized mass gap (see also Ref. [26]). The
separation between the truly NP and the PT effective
charges is both exact and unique, since the PT
effective charge is always regular at zero, while the
truly NP effective charge is singular at the origin. Let
us also note that the chosen effective charge (6) does
not depend explicitly on the gauge choice. It has
been already used [20,21] in order to calculate the
bag constant, which turned out to be in a very good
agreement with such an important phenomenological
parameter as the gluon condensate. It leads to many
other desirable properties for the bag pressure at zero
temperature [20]. Thus, our choice (6) is physically
justified and mathematically confirmed.

In the imaginary time formalism [1,27] these
expressions can be easily generalized to non-zero

temperatures T  1   according to the prescription

(let us recall that there is already Euclidean signature)

0 ,
2 n

dq
T







 
q2  = q2 + 2

0q   q2 + n
2 = 2 + n

2,  n = 2nT, (7)

i.e., each integral over q0 of the loop momentum is to
be replaced by the sum over Matsubara frequencies
labeled by n, which obviously assumes the replace-
ment q0  n = 2nT for bosons (gluons). In frequ-
ency-momentum space the truly NP effective charge
becomes

s
NP( q2) = s

NP(q2, n
2) =

2

2 2
NP

n 



,

s
PT(q2) = s

PT(q2, n
2)=s

PT(2, n
2). (8)

Here and everywhere below  = (q2 )1/2 and  q2 is the
three-dimensional loop momentum squared in
complete agreement with the relations (7).

IV. The Derivitons of BYM(T) and PYM(T)
In frequency-momentum space the bag pressure (4)
after the substitution of the expressions (7) and (8)
becomes:

3
2 2 2

3( )=16 ln 3
(2 )YM NP n

n

d qB T T 






       q

  12 2 2 2 23ln
4n NP n 

         
q q , (9)

where the dependence on the effective scale eff is
omitted (see below), for simplicity. Here it is also
convenient to introduce the following notation: =

(q2 + m2eff)
1/ 2= (q2+3 2

NP )1/2= (2 + 3 2
NP )1/2. So it is

possible to say that we have two sorts of gluons:
massless  and massive  with the effective mass

meff =
23 NP . In this case the summation over the

Matsubara frequencies n can be easily done, as well
as performing an almost trivial integration over
angular variables.

Due to the above-mentioned normalization of the
effective potential approach in Eq. (1), the investi-
gation of the YM part (5) of the future gluon matter
EoS makes sense to begin with putting first s

PT(q2)=1,
i.e., approximating the nontrivial PT effective charge
by its free PT counterpart. Then on account of the
relations (7), the YM pressure (5) in frequency-
momentum space becomes

3
2 2 2

3
3( )= 16 ln
4(2 )YM NP n

n

d qP T T 






         
 q

  12 2 2 2 23ln .
4 NP n 

         
q q (10)
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Comparing Eqs. (9) and (10) one can write down
the final result directly. For this purpose, in the final
evaluation of Eq. (9) one must change the overall

sign and replace  by   = (2 + (3/4) 2
NP )1/2. WeWe

should also integrate from zero to infinity. All the
aspects of these derivations can be found in [22] in
detail.

V. The Gluon Matter EoS
Denoting further YM (T) + BYM= PGM (T) in the left-
hand-side of our EoS (3) and summing up all the
results of the summation over the Matsubara
frequencies in the expressions (9) and (10), one
obtains that EoS (3) finally becomes

PGM(T) = 2
2

6
NP

 P1(T) +

2
16


T {P2(T) + P3(T) – P4(T)}, (11)

where the dependence on the thermodynamical
variable T is only shown explicitly and

P1(T) =
1

eff

d
e








P2(T) = 
eff

d





 2 ln[1- e]

P3(T) = 
0

eff

d


  2 ln[1- e’ ]

         P4(T) = 
0

d


  2 ln[1- e ]. (12)

In the formal PT limit 2
NP =0 it follows  = ’ =

and thus the gluon matter pressure (11) in this limit
vanishes, i.e., it is truly NP, indeed. The effective
potential has been normalized to zero in the D D0

limit, which reproduces the case of the so-called
Stefan-Boltzmann (SB) non-interacting (ideal) gas of
massless particles (gluons) at high temperatures [1].

So the SB limit PSB (T) = (8/45) 4 can be added (if
necessary) to the truly NP pressure (11) in the T 
( 0) limit only.

Other thermodynamical quantities. In quantum
statistics the thermodynamical potential (T) is
nothing but the pressure P(T) apart from the sign, so
in our case we can put (T) = –PGM(T). In the quan-
tum statistical theory all the important quantities such
as energy density, entropy, etc. are to be expressed
in terms of the thermodynamical potential. So the

general formulae to be used are [1]:  (T)=–T 
( )T
T




+ (T),  s(T) = – ( )T
T




, cV(T) = 
( )T
T




= T 
( )s T
T




for the pure YM fields, i.e., when the chemical
potential is equal to zero. Evidently, here and
everywhere below  (T) and s(T) are the energy
density and entropy, respectively, of the pure NP
gluon matter, and one of the interesting thermo-
dynamical characteristics of the QGP is the heat
capacity cV (T). Their corresponding SB limits are:
SB(T) = ( 24/45)  2 T 4, sSB(T) = ( 32/45)  2 T 3 ,    cV

SB(T)
= (96/45) 2T3 which should be added to our
expressions in the high temperature T  ( 0)
limit only.

VI. The Scale-setting System
From the relations (7) it follows that in frequency-
momentum space a possible free parameter of our

approach is the effective scale eff = 2 2
eff cq  ,

where we introduced the constant Matsubara
frequency c, which is always positive. So eff is
always less than or equal to qef f of the four-
dimensional QCD, i.e., eff  qef f.. One then can
conclude that qeff is a very good upper limit for eff. In
this connection, let us recall now that the bag
constant BYM at zero temperatures has been succes-
sfully calculated at a scale qeff = 1 GeV2, in fair
agreement with other phenomenological quantities
such as gluon condensate [20]. So eff is fixed as
follows: eff = qeff = 1 GeV2. The mass gap squared
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2
NP  calculated just at this scale is equal to 2

NP  =

0.4564 GeV2 [20]. Thus, we have no more free
parameters in our approach. The confinement
dynamics is nontrivially taken into account directly
through the mass gap and the bag constant itself.

VII. Numerical Results And Discussion
All our numerical results are shown in Fig. 1. It is
seen explicitly that the NP gluon pressure may
continuously change its regime in the close
neighborhood of a maximum at T * = 266.5 MeV

(which is obtained after the parameters eff and 2
NP

have been fixed) in order to achieve the thermody-
namical SB limit at high temperatures. For the
displayed quantities in Fig. 1 the SB limits are the
corresponding constants. At the same time, for all
the other thermodynamical quantities such as the
energy density, entropy and heat capacity this is
impossible (none of their power-type fall off at this
point can be smoothly transformed into constant
behaviour at high temperatures). In order to achieve
the thermodynamical SB limits at high temperatures
their full counterparts should undergo drastic
changes in their regimes in the close neighborhood
of this point. As we already know from thermo-
dynamics of SU(3) lattice QCD [1], [2], [28] the ener-
gy and entropy densities have a discontinuity at
about  Tc =260 MeV, while the pressure remains
continuous. Our characteristic temperature T *=266.5
MeV is, surprisingly, very close to the same value. A
clear evidence that something nontrivial in the
behaviour of the thermodynamical quantities in the
vicinity of our characteristic temperature T * = 266.5
MeV should actually take place follows from the fact
that at this point  = 3P, which should be valid at  very
high temperatures only (SB limit). In other words, in
order to derive EoS valid above T*, and thus to
provide a correct picture of thermodynamics of the
gluon matter in the whole range of temperature, one
needs a nontrivial approximation of the YM part (5),
compatible with the asymptotic freedom phenome-

non in QCD. This will be the subject of the
subsequent paper.

It is worth emphasizing that we have no problems
in describing and predicting the behaviour of all the
important thermodynamical quantities at low tempe-
ratures below T* (see Fig. 1). We do not expect any
serious changes in the behaviour of the thermo-
dynamical quantities in this region (exponential fall off
or rise when the temperature goes down or up,
respectively) even after taking into account the above-
mentioned nontrivial approximation of the YM part
(5), apart from the “non-physical” maximums which
should disappear, of course. However, whatever
changes may occur they will be under our control.

The confinement dynamics (6), generalized to
non-zero temperatures in Eq. (8), is still important
especially in the region of low temperatures even up
to the temperature at which all the important
thermodynamical quantities may undergo drastic
changes in their behaviour (apart from pressure).
From the structure of our EoS (see Eqs. (11)- (12)), it
clearly follows that we have two massive gluonic

excitations ’ and  . The former can be interpreted

as glueballs with masses ' 3effm  NP  = 1.17 GeV,,

while the latter as gluons with effective masses

' 3
2eff NPm    = 0.585 GeV. We have also two

Fig. 1. The NP pressure P, energy density , entropy s
and heat capacity cV as functions of the temperature.
The NP gluon pressure P has a maximum at
T* = 266.5 MeV.
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massless gluonic excitations propagating in accor-
dance with the two first integrals in Eq.~(12).
However, they are not free since in the formal PT

2
NP =0 limit they vanish. So all our massive and

massless gluonic excitations are of the NP dynamical
origin. At the same time, the generalization of our
formalism to non-zero temperature in order to
introduce into the consideration topological objects

like instantons and related issues (for example,
tunneling) would be of great interest [29,30] (work
is in progress).
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fizika

gluonis materiis mdgomareobis
araperturbaciuli analizuri gantoleba

v. gogoxia*, a. SurRaia**

* ungreTis mecnierebaTa akademia, fizikis  kvlevis centraluri instituti, vigneris instituti,
budapeSti, ungreTi; Tbilisis i. javaxiSvilis sax. saxelmwifo universiteti, a. razmaZis sax.
maTematikis instituti

** Tbilisis i. javaxiSvilis sax. saxelmwifo universiteti, a. razmaZis sax. maTematikis instituti

(warmodgenilia akademiis wevris a.xelaSvilis mier)

efeqturi potencialis miaxloeba Sedgenili operatorebisTvis ganzogadebulia
aranulovani temperaturebisTvis da misi meSveobiT, pirveladi principebidan gamomdinare,
miRebulia mdgomareobis gantoleba SU(3) iang-milsis velebisTvis. is arsebiTad araper-
turbaciuli xasiaTisaa, radgan usasrulo raodenobis wevrebis ajamvas gulisxmobs. igi
damokidebulia ara bmis mudmivaze, aramed masur RreCoze, romelic pasuxismgebelia
kvanturi qromodinamikis ZiriTadi mdgomareobis struqturaze did manZilebze. mdgoma-
reobis gantoleba aris CanTis modelis mudmivas ganzogadeba aranulovani tempera-
turebisTvis, maSin rodesac misi iang-milsis aratrivialuri nawili aproqsimirebulia
gluonis Tavisufali propagatoriT aranulovani temperaturebisTvis, rogorc pirveli
aucilebeli nabiji. am SemTxvevaSic ki Cven SevZeliT cxadad gveCvenebina, rom wneva
uwyvetad icvlis Tavis reJims T*=266.5MeV temperaturaze. yvela sxva Termodinamikuri
sidideebi, rogoricaa energiis simkvrive, entropia da sxva, mkveTrad icvlian TavianT
reJimebs T* temperaturis maxloblobaSi. yovelive es Tvisebriv da raodenobriv Tanxmo-
baSia Termuli kvanturi qromodinamikis meseruli miaxloebis  SedegebTan wminda iang-
milsis velebisTvis. Cven mkafiod davadgineT yvela Termodinamikuri sidide dabali
temperaturebis areSi, sadac mesereuli miaxloebis gamoTvlebi awydebian did ara-
calsaxobebs.
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