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ON A SIMPLE STOCHASTIC MODEL OF HAIL CLOUDS EMERGING OVER A
CIRCULAR DOMAIN
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Abstract. Under a simple stochastic model of hail clouds emerging over a circular domain
C centered at 0 which identifies a cloud with its plane projection rectangle ∆ω of fixed
sizes 2l × 2h, h < l, centered at ω and is based on the uniformity of the location of ω
in the outer parallel set of the basic rectangle ∆0, the Minkowski sum ∆0 ⊕ C, and the
isotropy of rectangle orientation on the one hand and identity of probabilities and stochastic
independence of covering the center of C by random rectangles ∆ω on the other hand, and
using the normal approximation for the binomial probability distribution of the random
number of such a covering the confidence interval is constructed which gives the bounds for
the unknown number of hail clouds over the domain by the number of hail clouds observed
over the center.

Encouraged by the advanced studies in stochastic modelling completed by R. Chitashvili
and E. Khmaladze at I.Vekua Institute of Applied Mathematics, the author performed the
present research at the same institute in early 1970ies. The real problem was posed by G.
Sulakvelidze.
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A number of hail clouds is to be estimated over a circular domain C with the center
O and radius R at the time interval [0, T ] by a number ξ of clouds registered over the
point O at the same time interval.

Assume that there are n clouds observable from C each of which at random and
independently from others covers the point O with the same probability p. This as-
sumption leads to the following binomial distribution with the parameters n and p for
the random variable ξ

P (ξ = m) = b(m; n, p) = Cm
n pm(1− p)n−m, m = 0, 1, . . . , n.

Below we will assign a value to p according to a simple model of hail clouds emerging
over C.

It is easy to check that maximum likelihood estimator n̂ for n under the observed
value ξ when p is known, i.e., arg maxn=1,2,... b(ξ; n, p) equals to

n̂ =

[
ξ

p

]
, (1)

where [x] is the integral part of a real number x.
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Assume that an unknown n is large enough. The De Moivre–Laplace theorem
enables us to write that

P

{∣∣∣∣
ξ − np√

npq

∣∣∣∣ < t

}
≈ 2Φ(t)

with q = 1− p and Φ(t) = (2π)−1/2
t∫

0

e−u2/2du. Choosing tα such that Φ(tα) = α/2, we

obtain
|ξ − np| < √

npq tα

with probability α. Solving this inequality with respect to n, we have the following
asymptotic confidence interval for n

(ξ/p− a(ξ, p, α), ξ/p + b(ξ, p, α))

with the confidence probability α, i.e.,

P (ξ/p− a(ξ, p, α) < n < ξ/p + b(ξ, p, α)) ≈ α, (2)

where

a(ξ, p, α) =

√
t2αq(t2αq + 4ξ)− t2αq

2p
, b(ξ, p, α) = a(ξ, p, α) +

t2αq

p
. (3)

Now we assign a meaningful value to the probability p using the notion of geometric
probability. Let us identify a cloud with its orthogonal projection onto the plane and
assume that the latter is a rectangle having the length 2l and width 2h.

Assume that the cloud is observable from the circle C if the above-mentioned rect-
angle intersects with the circle. Under registration of the cloud over the point O let
us mean the hitting of the point O into the rectangle. Thus we have to calculate the
probability that the rectangle 2l × 2h (l > h), randomly chosen from those rectangles
which intersect with the circle C of radius R, will cover the center of the circle.

The position of the rectangle on the plane is characterized by that of its center and
angle between the fixed line, passing through the point O, and the rectangle basis.
By the symmetry, we can fix this angle (and as we will see below, the conditional
probability given the angle does not depend on the angle, i.e., by the formula of total
probability the unconditional probability is equal to the conditional one).

For any u = (s, t) ∈ R2 denote ∆u = [s − l, s + l] × [t − h, t + h] the rectangle of
fixed sizes with the center at u, ∆0 being the basic rectangle [−l, l]× [−h, h]. Evidently,
u+∆0 = ∆u and the inclusions u ∈ ∆v and v ∈ ∆u are equivalent for any two u, v ∈ R2.

Let us now construct the set Ω of positions of the rectangle center ω = (x, y) when
the rectangle ∆ω intersects with the circle C of radius R. Place the origin of the
Cartesian coordinate system at O and assume that the Ox-axis is a straight line for
the angle counting out. For the sake of simplicity, we assume that the angle between
the rectangle basis and the Ox-axis is equal to zero.
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Fig. 1 Fig. 2

From the definition of the Minkowski sum A⊕B = {a+ b|a ∈ A, b ∈ B} of two sets
A and B in Euclidean space (see, e.g., [1], [2], [3]) it is easy to derive the representation

Ω = C ⊕∆0

for the set
Ω = {ω|∆ω ∩ C 6= ∅}

as Minkowski sum of the basic rectangle ∆0 and the given circle C called an outer
parallel set of ∆0 [2].

Indeed, C ⊕∆0 = ∪c∈C(∆0 + c) = ∪c∈C∆c and we obtain the following sequence of
equivalent assertions, which proves the desired representation.

ω ∈ C ⊕∆0 ⇔ [∃ c ∈ C : ω ∈ ∆c] ⇔ [∃ c ∈ C : c ∈ ∆ω] ⇔ C ∩∆ω 6= ∅⇔ ω ∈ Ω.

If instead of ∆0 a general convex set K is meant and KR denotes its outer parallel
set on the distance R, then according to [2, Ch. I, §2] we have the following formulas
for the perimeter LR and area (Lebesgue measure) of KR:

LR = L + 2πR, FR = F + LR + πR2, (4)

where L is the perimeter of K and F is its area.
Figures 1 and 2 visualize the definition and structure of Ω. It is done for the first

quadrant and C++ and Ω++ stand, respectively, for the parts of C and Ω from this
quadrant. When ω belongs to the basic rectangle ∆0 shown on Fig. 1 the suitable part
of which is twice shaded on Fig. 2, then the rectangle ∆ω covers the point O.

Thus if we assume that all the positions of ω are uniformly distributed on Ω for the
probability that a random rectangle ∆ω covers the point O we obtain from (4)

pl,h =
F

FR

=
4lh

4lh + 4(l + h)R + πR2
. (5)

(The notation pl,h emphasizes that the probability is calculated for rectangles of fixed
sizes.) If extra randomness is introduced assuming that l and h are random variables
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with a known joint distribution, then the unknown probability would be equal to
mathematical expectation p = E(pl,h).

Note that if we can indicate a priori the numbers l0, l, h0, h, such that

l0 < l < l, h0 < h < h, l ¿ R, h ¿ R, (6)

then

p ≈ 4
E(lh)

πR2
. (7)

But if l and h are not correlated, then

p ≈ 4
E(l)E(h)

πR2
. (8)

The expectations E(lh), E(l), E(h) may be unknown but on the basis of suitable
sampling data they can be approximated reliably by the empirical means lh, l and h.
Thus with a high reliability

p ≈ 4
lh

πR2
, (7′)

and in the case of uncorrelated l and h, when

p ≈ 4
l h

πR2
, (8′)

(8′) can be obtained by the choice from the very beginning of a rectangle of sizes 2l×2h
by passing from

p ≈ 4l h

4l h + 4(l + h)R + πR2
(5′)

to (8′) under the condition (6).
The set of formulas (1)–(3), (5), (5′) and (8′) allow us to estimate the unknown

number n.

Remark 1. According to my best knowledge no proper application of the proposed
technique was done while there exists an example of misuse of some meteorological data.
G. Sulakvelidze has had intentions to collect data to test model quality by comparison
the values of areas damaged by hail and its model values. Many serious but unsuccessful
efforts were undertaken by J. Mdinaradze to collect the official and research data to be
treated by the presented technique.

Remark 2. Note that if in a role of basic set ∆0 one takes the circle of radius l
or ellipse with half-axes l and h (h < l) one obtains some meaningful extensions of our
model which may have an interest for, say, biological, ecological and even meteorological
modelling. For the case of circle our ratio equals to

pl =
F

FR

=

(
l

R + l

)2

.
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As for ellipse, we have

pl,h =
F

FR

=
πlh

πlh + 4lE(e)R + πR2
,

where E(e) stands for the complete elliptic integral of the second kind and e =
√

l2−h2

l

for the eccentricity of ellipse.
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