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After Clark [1]1 obtained the formula for the stochastic integral representation for Wiener
functionals, which asserted only the existence of this representation, many authors tried
to find the integrand explicitly, and the corresponding results were obtained when the
functionals were smooth in some sense. When the functional F belongs to the Hilbert space
D2,1 (where D2,1 denotes the space of square integrable functionals having the first order
stochastic derivative2) Ocone [3] proved that the integrand in the Clark representation
is E[DtF |=Wt ] (the optional projection of the stochastic (Malliavin) derivative of F ).
Shiryaev, Yor and Graversen [4,5] proposed a method to find representation of the
running maximum of Wiener process. Later on, using the Clark-Ocone formula, Renaud
and Remillard [6] have established explicit martingale representations for path-dependent
Wiener functionals.

1If F is a square integrable =WT := σ{Ws : 0 ≤ s ≤ T}-measurable random variable, then (due to the Clark formula)
there exist a square integrable =Wt := σ{Ws : 0 ≤ s ≤ t}-adapted random process ϕ(t, ω) such that

F = E[F ] +

∫ T

0
ϕ(t, ω)dWt(ω).

In fact, this is the inverse statement of one important property of the Ito stochastic integral: if f is square-integrable
=Wt -adapted random process, then the process

Mt =

∫ t

0
f(s, ω)dWs(ω)

is a martingale with respect to the filtration {=Wt }t≥0.
To be convinced of this, it is sufficient to take the conditional mathematical expectation on both sides of the Clark

representation. Indeed, in this way, we obtain that for the associated to F Levy’s martingale Mt = E[F |=Wt ] the following
stochastic integral representation is true

Mt = M0 +

∫ t

0
ϕ(s, ω)dWs(ω).

2Let us recall some definitions from [2].
The class of smooth Wiener functionals S is the class of a random variables which has the form

F = f(Wt1 , ...,Wtn ), f ∈ C∞p (Rn), ti ∈ [0, T ], n ≥ 1,

where C∞p (Rn) is the set of all infinitely continuously differentiable functions f : Rn → R such that f and all of its partial
derivatives have polynomial growth.

The stochastic (Malliavin) derivative of a smooth random variable F ∈ S is the stochastic process DtF given by

DtF =
n∑
i=1

∂f

∂xi
(Wt1 , ...,Wtn )I[0,ti](t).

Denote by D2,1 the Hilbert space that is the closure of the class of smooth Wiener functionals with the following Sobolev
type norm:

||F ||2,1 = ||F ||L2(Ω) + |||D·F |||L2(Ω;L2([0,T ])).

In fact, we have defined the Malliavin derivative as an "inverse"of the Ito stochastic integral (with deterministic integrand)
in the sense that DWW (h) = h (where W (h) :=

∫ T
0 h(s)dWs and DWt

∫ T
0 h(s)dWs = h(t), as well as it’s clear that

Wθ = W (I[0,θ](·)) and DWt Wθ = I[0,θ](t)).
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In all cases described above investigated functionals, were stochasticaly (in Malliavin
sense) smooth. Our approach with prof. Jaoshvili (2005-2009) in the framework of the
classical Ito calculus, on the basis of the standard L2 theory and the theory of weighted
Sobolev spaces, made it possible to construct an explicit formula for the itegrand when
the functional does not have the mentioned smoothness (see, for example [7]). Here we will
explore the stochastically nonsmooth Wiener functionnals that can be considered in the
future as a payoff function of a certain exotic European Option and study the issues of their
stochastic integral representation, which it is known to play a significant role in the hedging
problem of European Options. It has turned out that the requirement of smoothness of
functional can be weakened by the requirement of smoothness only of its conditional
mathematical expectation. We (with prof. O. Glonti, 2014) considered Wiener functionals
which are not stochastically differentiable. In particular, we (see [8]) generalized the Clark-
Ocone formula in case, when functional is not stochastically smooth, but its conditional
mathematical expectation is stochastically differentiable and established the method of
finding of integrand. Next, we have considered functionals which didn’t satisfy even these
weakened conditions. To such functionals belong, for example, Lebesgue integral (with
respect to time variable) from stochastically non smooth square integrable processes.

In the 80th of the past century, it turned out (see, [9]) that the stochastic integral
representation theorems (along with the Girsanov’s measure change theorem) play an
important role in the modern financial mathematics. In particular, using the integrand of
the stochastic integral appearing in the integral representation, one can construct hedging
strategies in the European options of different type. In contrast to the standard European
Option payoff function (i. e. (ST − K)+), which is stochastically (in Malliavin sense)
differentiable, we will discuss European type options with nonsmooth payoff functions.
The payoff functions of derivative securities with more complicated forms than standard
European or American call and put options are known as exotic options.

One of such kind exotic option is so-called Binary Option. It is an option with
discontinuous payoff function. The simplest examples of the Binary Options are call
and put options "cash or nothing". The payoff function of the call option has the form
BCT = QI{ST>K}, and for the put option – BCT = QI{ST<K}, where K is the strike
price at the time of execution T (it should be noted that indicator of event A is Malliavin
differentiable if and only if probability P (A) is equal to zero or one [2,3]). Moreover,
so-called Asian Options also are type of Exotic Option.

Despite that application of the Clark-Ocone formula needs as a rule essential efforts
it is possible in many cases to determine the form of the representation using Malliavin
calculus, if a functional is Malliavin differentiable. We consider nonsmooth (in Malliavin
sense) functionals and have developed some methods of obtaining of constructive
martingale representation theorems. The obtained results can be used to establish the
existence of a hedging strategy in various European Options with corresponding payoff
functions.

Theorem (Ocone [3]). If F is differentiable in Malliavin sense, F ∈ D2,1, then the
stochastic integral representation is fulfilled

F = E[F ] +

∫ T

0

E[DtF |=Wt ]dWt (P − a.s.).

A different method for finding the integrand of stochastic integral was proposed by
Shiryaev, Yor and Graversen [4,5], which was based on the Ito (generalized) formula and
the Levy theorem for the Levy martingale Mt = E[F |=t] associated with F .
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Theorem (Shiryaev, Yor [4]). LetMT = sup0≤t≤T Wt. Then the following stochastic
integral representation holds

MT = EMT + 2

∫ T

0

[1− Φ(
Mt −Wt√
T − t

)]dWt,

where Φ is standard normal distribution function.
Theorem (Graversen, Shiryaev and Yor [5]). Let

gT = sup{0 < t ≤ T : Wt = 0}, Mu = max
t≤u

Wt and MgT = max
t≤gT

Wt.

Then we have

MgT =
1

2
EMT +

∫ T

0

[
1

2
Ψ(

2Mu −Wu√
T − u

)− (Mu −Mgu)ϕT−u(Wu)]dWu,

where
EMT =

√
2T/π, Ψ(x) = 2[1− Φ(x)]

and
ϕT−u(x) =

1√
T − u

ϕ(
x√
T − u

),

where ϕ is standard normal distribution density function.
Let B(R) be a Borel σ− algebra on R, λ be a Lebesgue measure, and ρ(x, T ) :=

exp{− x2

2T
}.

Theorem (Jaoshvili, Purtukhia [7]). Let the function f ∈ L2,T/α, 0 < α < 1,
and it has the generalized derivative of the first order ∂f/∂x, such that ∂f/∂x ∈ L2,T/β,
0 < β < 1/2, then the following integral representation holds

f(WT ) = E[f(WT )] +

∫ T

0

E

[
∂f

∂x
(WT )|=Wt

]
dWt (P − a.s.),

where L2,T denotes the set of measurable functions u : R → R, such that u(·)ρ(·, T )
∈ L2 := L2(R,B(R), λ).

Theorem (Glonti, Purtukhia [8]). Suppose that gt := E[F |=Wt ] is Malliavin
differentiable (gt ∈ DW

2,1)3 for almost all t ∈ [0, T ). Then we have the stochastic integral
representation

gT = F = E[F ] +

∫ T

0

νsdWs (P − a.s.),

where
νs = lim

t↑T
E[DW

s gt|=Ws ] in the L2([0, T ]× Ω).

Let us now fix the constants C2 ≤ 0 and C1 ≥ C2 and consider the following nonsmooth
path-dependent Wiener functional

F = (WT − C1)−I{ inf
0≤t≤T

Wt≤C2}. (1)

3It is well-known, that if random variable is stochastically differentiable in Malliavin sense, then its conditional
mathematical expectation is differentiable too ([2]). On the other hand, it is possible that conditional expectation can
be smooth even if random variable is not stochastically smooth. For example, it is well-known that I{WT≤x} /∈ D2,1, but
for all t ∈ [0, T ) :

E[I{WT≤x}|=
W
t ] = Φ

(
x−Wt√
T − t

)
∈ D2,1.
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Then we have.
Theorem 1. For the Wiener functional (1) the following stochastic integral

representation holds

F = EF +

∫ T

0

Φ
(2C2 − C1 −Wt√

T − t
)
dWt (P − a.s.).

Next, we have considered functionals which didn’t satisfy even the weakened
conditions from Glonti, Purtukhia [8]. To such functionals belong, for example, Lebesgue
integral (with respect to time variable) from stochastically nonsmooth square integrable
processes4.

Theorem 2. If the deterministic function

V (t, x) := E
[ ∫ T

t

f(s,Ws)ds
∣∣Wt = x

]
satisfies the requirements of the generalized Ito theorem, then the following stochastic
integral representation is fulfilled

f(t,Wt) = E
[
f(t,Wt)

]
+

∫ T

0

∂

∂x
V (t,Wt)dWt (P − a.s.).

Let us now fix the deterministic functions h1(t) ≤ h2(t) and consider the following
integral type, nonsmooth Wiener functional∫ T

0

I{h1(t)≤Wt≤h2(t)}dt.

Then we have.
Theorem 3. The following stochastic integral representation is fulfilled∫ T

0

I{h1(t)≤Wt≤h2(t)}dt =

∫ T

0

Φ
( x√

t

)∣∣h2(t)

x=h1(t)
+

+

∫ T

0

∫ T

t

ϕ
(x−Wt√

s− t
)∣∣h2(t)

x=h1(t)
dsdWt (P − a.s.).

References

1. Clark M. C. The representation of functionals of Brownian motion by stochastic
integrals, J. The Annals of Mathematical Statistics, Vol. 41, 1970, 1282-1295.

2. Nualart D. Malliavin calculus and related topics (second edition), Springer-Verlag,
2006.

4In particular, to such functional belongs the integral type functional
∫ T
0 us(ω)ds with nonsmooth integrand us(ω). It

is well-known that if us(ω) ∈ D2,1 for all s, then
∫ T
0 us(ω)ds ∈ D2,1 and Dt{

∫ T
0 us(ω)ds} =

∫ T
0 Dtus(ω)ds. But if us(ω) is

not differentiable in Malliavin sense, then the Lebesgue average (with respect to ds) also is not differentiable in Malliavin
sense (see, for example, [10]). Indeed, in this case the conditional mathematical expectation is not stochastically smooth,
because we have:

E[

∫ T

0
us(ω)ds|=Wt ] =

∫ t

0
us(ω)ds+

∫ T

t
E[us(ω)|=Wt ]ds,

where the first summand (integral) is analogous that the initial integral and therefore it is not Malliavin differentiable, but
the second summand is differentiable in Malliavin sense when us satisfied our weakened condition. It should be noted that
such type integral functionals have been considered in our previous works (Glonti, Purtukhia [10]) and (Glonti, Jaoshvili
and Purtukhia [11]).

63



3. Ocone D. Malliavin calculus and stochastic integral representation formulas of
diffusion processes, J. Stochastics, Vol. 12, 1984, 161вЂ“185.

4. Shiryaev A. N., Yor M. On the problem of stochastic integral representations of
functionals of the Brownian motion. I, J. Teor. Veroyatnost. i Primenen., Vol. 48 (2),
2003, 375-385.

5. Graversen S., Shiryaev A. N., Yor M. On the problem of stochastic integral
representations of functionals of the Browning motion. II, J. Teor. Veroyatnost. i
Primenen., Vol. 51 (1), 2006, 64-77.

6. Renaud J-F., Remillard B. Explicit martingale representations for Brownian
functionals and applications to option hedging, J. Stochastic Analysis and Applications,
Vol. 25 (4), 2007, 801-820.

7. Jaoshvili V., Purtukhia O. Stochastic Integral Representation of Functionals of
Wiener Processes, J. Bull. Georg. Acad. Sci., Vol. 171 (1), 2005, 17-20.

8. Glonti O., Purtukhia O. On One Integral Representation of Functionals of Brownian
Motion, SIAM J. Theory of Probability and Its Applications, 2017, Vol. 61, 133вЂ“139.

9. Harrison J. M., Pliska S. R. Martingales and stochastic integrals in the theory of
continuous trading, J. Stochastic Processes and Applications, Vol 11, 1981, 215-260.

10. Glonti O., Purtukhia O. Hedging of European Option of Integral Type, J. Bull.
Georg. Acad. Sci., Vol. 8(3), 2014, 4-13.

11. Glonti O., Jaoshvili V., Purtukhia O. Hedging of European Option of Exotic Type,
J. Proceedings of A. Razmadze Mathematical Institute, Vol 168, 2015, 25-40.

Sequential statistical testing of several simple
hypotheses under distortion of the observations

probability distribution
Kharin A., Ton That Tu, Ivankovich I., Song Peidong

Dept. of Probability Theory & Mathematical Statistics, Belarusian State University,
Minsk, Belarus

University of Science & Education – University of Danang, Vietnam
KharinAY@bsu.by, tthattu@gmail.com, ivill1104@gmail.com, linyuyix@gmail.com

Introduction
In applied problems of modern data analysis we often face with a problem of

statistical testing of several simple hypotheses on the parameter value that controls the
probability distribution of an observed random sequence. Those simple hypotheses, as
usual, correspond to some typical modes of the process observed: for example, one value
corresponds to the growth of the incidence level, another one - to the recession, and the
third one - to the “no-changes” mode.

Especially in the situations, where data come one after another, and are not available all
together simultaneously, it is natural to use sequential tests [1] to discriminate between
those hypotheses. Sequential tests are known to hold some optimal properties [2], e.g.
the sequential probability ratio test minimizes the expected sample size provided the
upper bounds for error type I and II probabilities are satisfied. Exact calculation of
the performance characteristics for sequential tests is a complicated problem even for
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