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In the theory of stochastic integration, in contrast to the standard integration theory, besides the fact
that the integrand is the measurable function of two variables, it should be the adapted
(nonanticipated) process. Skorokhod (1975) replaced this requirement with the requirement of
smoothness in some sense of the integrand. Gaveau and Trauber (1982) proved that the Skorokhod
operator of stochastic integration coincides with the conjugate operator of a stochastic derivative
(with the so-called Malliavin) operator. Ocone (1984) proved that the integrand in the martingale
representation theorem coincides with the predictable projection of the stochastic derivative of the
functional. In the Weiner case there are two equivalent definitions of a stochastic derivative, but in
general, for so called normal martingale classes these definitions are not equivalent. Ma, Protter and
Martin (1998), built the corresponding example. In the present work, a new constructive definition
of the stochastic derivative of the polynomial Poisson functional is introduced. It is shown that this
definition is equivalent to a general definition based on a chaotic expansion of functional, and its
properties are studied. The stochastic integral representation theorem with an explicit expression of
the integrand is proved. © 2020 Bull. Georg. Natl. Acad. Sci.

Poisson functional, stochastic (Malliavin) derivative, Clark representation, Clark-Haussmann-Ocone

representation

Since the 70s of the last century, many attempts are made to weaken the requirement that the integrand be
adapted in Ito's stochastic integral. Skorokhod [1] suggested absolutely different method, which required
for the integrand to be smooth in a certain sense. This idea was later on developed in the works of Gaveau
and Trauber [2], Nualart and Zakai [3], Pardoux (1982), Protter and Malliavin (1979), etc. In particular,
Gaveau and Trauber proved that the Skorokhod operator of stochastic integration coincides with the
conjugate operator of a stochastic derivative (with the so-called Malliavin's) operator.

On the other hand, in the theory of random processes special place take the so-called martingale
representation theorems which, for example, implies the representation of the Wiener and Poisson
functionals in the form of stochastic integrals. According to the well-known result obtained by Clark [4], if
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F isa 3] =o{W, :0<s<T} -measurable random variable with EF ? <o, then there exists the adapted
process @(-,-) € L,([0,T]x€2), such that the integral representation: F = EF + IOT o(t,w)dW (¢) holds. Due
to the so-called Clark-Ocone's formula [5]¢(t,®) = E[D F | 3 (@), where D!"F is the stochastic

derivative of the functional F. Application of the above expression needs as a rule, on the one hand,
essential efforts, and, on the other hand, in the cases if the functional £ has no stochastic derivative, its
application is impossible. For “maximal” type functionals another distinct method of finding an integrand
belongs to Shiryaev and Yor (2003).

Our approach within the classical Ito's calculus allows one to construct ¢ (7, co) explicitly by using both

the standard L, theory and the theories of weighted Sobolev spaces, if the functional £ has no stochastic

derivative [6]. It turned out that the requirement of smoothness of functional can be weakened by the
requirement of smoothness only of its conditional mathematical expectation. We (with prof. O. Glonti,
2014) generalized the Clark-Ocone formula in case, when functional is not stochastically smooth, but its
conditional mathematical expectation is smooth [7].

The subsequent generalization of the Clark-Ocone formula to the class of normal martingales is due to
Ma, Protter and Martin [8]: if FeD,,, then the Clark-Haussmann-Ocone representation
F=FEF+ IOT P(D,F)dM (¢) is valid, where ”(D,F) is the predictable projection of the stochastic derivative
D/F of the functional F. As is seen, this representation likewise needs the existence of a stochastic

derivative. On the other hand, in this case, unlike the Wiener's one, it is impossible to define in a generally
adopted manner an operator of stochastic differentiation to obtain the structure of Sobolev space D, . In

his work, Purtukhia [9] defined the space D, (1 <g< 2) for the normal martingales and generalized the

Clark-Haussmann-Ocone formula.

We proposed [10, 11] a new approach to the determination of the stochastic derivative of the Poisson
functionals and obtained an explicit form of the integrand in the integral representation. Here a more
convenient and practical form for finding the explicit expression of the integrand in the Clark-Haussmann-
Ocone representation of functionals of the Poisson process N will be found. In particular, in the conditional

mathematical expectation of the above-mentioned integrand the o-algebra St]\f

can be replaced by a more
natural o-algebra StN , which, in turn, allows us to more effectively use the well-known properties of the

Poisson process.

Auxiliary Concepts and Results
Definition 1 [8]. For any Fe€L,(2) we have by the CRP that there exists a sequence of

symmetrical ~ functions f, € L, ([O,T T ) ., n=12,., suh that F=)17/(f). Denote

n=0
D,, = {F = Zln (fn):Znn!H £, ||§ (10 T]")< oo}. The derivative operator is analogous to what is often
n=0 n=l1 2\
called the Malliavin derivative in Wiener case, and it is defined as a linear operator
D :D,, > L,([0,T1xQ), by D,F = nl,_(f,(-t)).
n=1

Ma, Protter and Martin [8] gave an example showing that two possible ways of determination of a
stochastic derivative coincide if and only if the quadratic martingale characteristic [M,M] is the
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deterministic function (as, for example, in the Wiener case [W,W], =t). Consequently, the Clark-

Haussmann-Ocone formula makes it impossible to construct explicitly the operator of the stochastic
derivative of the functionals of the Compensated Poisson process, saying nothing on the construction of its

predictable projection.

Example 1 [8]. Consider a symmetric function f (s,1) =1, (s)/,, (¢)- The second chaos 1,(f) can be

computed as
bt—

L(f)= J.fst)deM_z“.deM 2jM -M,) M, =

O<s<i<]

:(Mb—Ma) —{[M,M]b—[M,M]a}. (1

Here, the last equality is due to Ito's formula. Now consider the function F(x,y)=(y - x)2 and define

a smooth functional G=F (Ma,Mb). If we define the derivative of G in a manner analogous to one of
the equivalent definitions in the Wiener case, we get:

D,G=D,[F(M,M,)]|=2(M,-M,)I,, (t). 2)

However, by definition based on decomposition in the form of a series of multiple Ito integrals, we have

DI, (f)=2L(f(~t))=2(M,-M,) I, ().
We can substitute this into (2) and compare it with (1) to see that the two definitions coincide if and
only if D, {[M,M],~[M,M],}=0, for all ¢e[0,1]. This means that [M,M], ~[M,M], must be

t
constant. If we look at the structure equation [M,M], =t+ | @ .dM _, this amounts to saying thate, =0,
t s s yl g q)s
0

therefore the two definitions are in contradiction and cannot hold simultaneously unless M =W, Wiener

process.
Let (Q, 3, (St)ogg,P) be a filtered probability space satisfying the usual conditions. Assume that the

standard Poisson process N, is given on it: P, :=P(N,=k)=e't"/k!,k=0,1,2,.. and that J, is
generated by N (S, =3V ), 3=3,. Let M, =N,—t (the Compensated Poisson process) and
AM,=M,-M,_.

Let Z'={0,1,2,..}; A f(k)=f(k)-f(k=1) (f(k)=0,k<0); A" =(A_)" and define the
Poisson-Charlier polynomials: IT (k) =(-1)"A"P, /P,, n>1; II;=1. It is known that the system of

normalized Poisson-Charlier polynomials is a basis in L,(Z7):= { I Z k)< oo} . Let
k=0

={f:eTZf2(k)Tk/k!<oo}. This is a Banach space with the basis k"e’T*/k!. Denote

Alf(x)=f(x+1)- f(x).

Proposition 1. The moment of the n-th order v (¢) = Z(k —1)" Le*f (n2>2) of the Compensated
n — k'
k=0 .

Poisson process satisfies the equation —2~~ v (t) ZC v, (1)

Proposition 2. For the n-th degree of the Compensated Poisson process the following integral

representation takes place:
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t n
M) =n[M"dM +) [CIM]7dN, . (-as).

0 i=2 0

Theorem 1 [11]. Let f € L and for some & >0: A* f(-—T) € L)"", then the stochastic integral below is

well defined and the following representation is valid:
S(Mp)=ELf(M;)]+ j E[ALf(M})| 3, 1dM, (P -as.).

(0,7]

New Construction of Derivative
Definition 2. The class of smooth Poisson functionals S is the class of a random variables which has the

form F=f(M,,...M,), feCl(R"), t,€[0,T], n>1, where f and all of its partial derivatives have

polynomial growth.

Definition 3. The stochastic (Malliavin) derivative of a smooth random variable F e S¥ is the stochastic
process D F given by
DYF =3, 3 A((AL (M, e M)y, 1 (0) Iy, (0,

k=1 iy <-<iy

where AL f (X, X;pees X,) = F(Xpsees X, 1oy X,) = F (X e0s X,y een X))

T
Remark 1. Because M, = J.I[O.S] (0)dM , = 1,(I,,,(-)) and, hence, D' M, =1, (1), we have the following
0

definition

n

DI'F =% % A(-(A'f(M,,..M, )D'M, ---D'M, .
k=1 d <-<iy

Lemma 1. The stochastic (Malliavin) derivative of the multiple Ito integral I, (f,,) is the same as in Ma,

Protter and Martin [8]:

Proof. Fix m>1. Let f, elementary function of the form [ (4,.it, )= D" a, I, . .\ (fnt,):

where 4, 4,, ..., 4, are pairwise disjoint sets from B([0,7]) and a, , =0 if any two of the indices

o,

() -m(4,)

by

iy....I,, are equal. For this function we define multiple integral as 7, (f,)= Y. a,

T
where M (A)=M(I,)= _[ I,dM,. According to the Definition 3, wusing the relation
0

X X, _
Al ("'(Af (%, "'xn))) =X X o0 X, , We have
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=iM(Al)~~~M(Ak_1)M(Ak+1)~~~M(Am)IAk (7).

k=1
Therefore, due to the linearity of the operator 7, the assertion of the lemma is true for elementary

functions. After this, the lemma can be completed using the standard technique of approximating of any

function f, €L, ([O, T]m) by a sequence of elementary functions. O

Example 2. If F'=f (Ma,M b) , then our definition gives
D" f(M,M,)=A} (Aif(Mwa))I[o,u] () Loy () + AL (M, My ) g 4 (2)+ AL (M My ) 1o (1)
If we take into account the relations: Al (A{ (v —x)2 ) =-2; Al(y- x)2 =-2(y-x)+1 and
A ( y—x)2 =2(y—x)+1 it is easy to see that for the functional from the example of Ma, Protter and
Martin [8] we have D' (M, -M,)" =21, (¢)+
+[=2(M, =M ,)+ 1L, (£)+[2(M, =M, )+ 110, (£) = 2(M, =M ), (1) + 10 (2).
If we recall now that [M,M], =M —s and D"M =1,,,(t), then it is easy to see that these two

definitions are equivalent in this case. Indeed, on the one hand, we have
L(f)=(M,-M,) ~{IM,M],~[M,M],}=(M,-M,) ~{M,~b-M, +a}
and therefore
DML (f)=2(My =M )1y ()4 Ly () = Troy (£) + Do (£) = 2(M, =M ) L, (1) )

On the other hand, due to the Lemma 1, we can write

DML (f)=2L(f(~1) 2]1( w(s)am -1,,(t)=2(M,-M,)I,, (1). O

Lemma 2. Let F and G the smooth Poisson functionals, then F -G is also smooth and the following
relaion is valid:
D'(F-G)=D"F-G+F-D"G+DF-D"G.

Proof. For simplicity, we consider the case F =f(Ma) and G= g(Mb), where f,geC; (R”) CItis
clear that A(f-g)=A(f)-g+ f-A(g)+A(f)-A(g). Hence, due to the Definition 3, we have

D'[f(M,)-g(M)]=A(ALf(M,) (M) g, (t) L., (1) +
+AL[f (M) - (M) gy (O + ALLf (M) g(M)M (1) =
= AL (M), (1) ALTg (M) (1) +
=f(M,)- A Tg(M ) o () +8(M,) - ALLf (M ), (8) =
=DMF-DYG+F-D"G+D'F-G. O

Lemma 3. Let F be a smooth Poisson functional, then F” (n > 1) is also smooth and the following relaion

is valid: D (F")= ZCF’”( )
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Proof. For n =1 itis evident. For n =2 from the Lemma 2 we have

2 .

DY(F*)=D)(F-F)=D/F-F+F-D'F+D}F-D'F =Y CF*'(D"F) .
i=1

Let the lemma be true for 7 and verify its validity for #+1. Indeed, due to the Lemma 2 and using the

relation C! +C!™' =C!

n+l >

we easily obtain that
DY (F"™'y=DM(F"-F)=D"(F")-F+F"-D"F+D"(F")-D"F =
n n—1
— nFn .D[MF+ZC)1;F)1+I—i(DtM F)z +Fn 'DtMF +ZC’1;Fn—i (DtMF)iH +(DtMF)n+I —

i=2 i=1

— CI F71+I—I (D[MF)+Z(C; + C’i—l )Fn+]—i(DtM F)l + Cn+]Fn+]—(n+])(DtMF)n+] —

n+l n+l1
i=2
n+l
_ i n+l-i M i
_ZCHHF (Dt F) .
i=1

Verification ends using mathematical induction. O

Corollary 1. Let F be a smooth Poisson functional, then F” (n 2 1) is also smooth and the following

n

relaion is valid: DtM (F”) = (F + DtMF) —-F".

Corollary 2. Let F be a smooth Poisson functional and P, (x) = Zakxk is a polynomial function then

k=0
P (F) is stochastic differentiable and we have:

n

DY'P (F)= iakic;Fk*f (DtMF)i =Y a, [(F +DtMF)k - F"} .
k=0 i=1 =0

Jo=

Stochastic integral representation of Poisson polynomial functionals

Example 3. The following representation holds:

M} =E(M?)+ [ (1+2M, )dM,. (P-as).

©.7]
Consider the random process: X, := E[MﬂSt] Due to the independence and stationarity of the

increments of the Poisson process from its past, taking into account the values of the moments of the Poisson

process, we can write that:
X, =E(M, -M,+M,)*|3,1=E[(M, -M,)*]+
+2M E(M, —M))+ M} =T —t+M].
Based on Proposition 2, if we substitute in the last representation the integral representation of Mf :

Mt2 = J‘QMS?dMS + Ing , obtain that:

(0,¢] (0,¢]

X, =T-t+ [ 2M_dM,+N, =T +M,+ [2M _aM, .

(0,¢] (0,¢]

But E[M;]=T and X, = M, and thus the verification is complete. O
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Example 4. Similarly, we get a representation for the third degree of the Compensated Poisson process:
M} =E(M)+ [ [143(T=s5)+3M, +3M] |dM, .

(0,7]

Theorem 2. For every natural number 71 > 1 the representation is true:

M; =E(M;})+ ZC"ZC’ [ M, (T—-s)dM, (P-as.). 3)

=l (0,7]

Proof. In fact, in the case n =1 the representation (3) is trivial, and for cases n=2 and n=3 we have
Examples 3 and 4. So consider the case n>4. Calculate the conditional mathematical expectation
X, =E[

13,1 According to Newton's binomial formula we can write:

WMy =M ) MEIS]

Based on the known properties of the Poisson process and the conditional mathematical expectation,

we get:

n=2

X z n nk M zck ¢ nk T t)‘i-M’1

Calculate now the stochastic differential of the process X,. We write the Ito formula and use the

statements from Proposition 1 and Proposition 2. We get that:
— n—k=2

X, =X, Zc" [V (T =s)ds - Zc" Zc [MEv(T = s)ds+

k=0 (0.7] i= (0.7]

+ Z Cr MmN, + 22: ct ﬁ Ci [Mv, (T -s)dN, +

k=2 0,£] k=1 i=2 0,¢]
n=2
+2.Chk [My, (T =s5)dM, +n [M]"aM, .
k=1 0,11 (0.,£]

In this representation, taking into account the equalityv, (7') = 0, it is possible to combine the second

and third terms, as well as the fourth and fifth terms. As a result we get:

n=2 n— -

Xt:XO—kZ:(; Z Cry [ Miv,(T- s)ds+ZCPZijMﬂ v, (T—s)dN, +

i= (0,2 J=2 (0]

+§C2‘k jMf:]vnfk(T—s)dMS +n IM:’:]dMS =

k=1 (0,4 (0,]

=v,(D) =1, + 1, +>.Cik ijfj‘vn,k (T -s)dM

k=1 0.4]
Where
n-2 n—k-2
I=3.Ch Yoy [Miv(T=s)ds, I, = ZC’ [Mr7v, (T -5)dN, .
k=0 i=0 0,11 Jj=2 (0,¢]
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It is not difficult to see (as in Examples 3 and 4) that for each integral with respect to dN, one can found
the corresponding integral with respect to ds, whose integrands are equal under in modulus and opposite

in sign. To do this, we must compare the same degrees of A/ _ with each other and use the relation

C;ncn—m—Z—j — C;n+2+jc2+j

n—m m+2+j "

Hence, taking into account the equalities X, = M and X, = E(M,), we get:

M= E[M;]+Zn:Cf [ mi*am, +

k=1 (0,7]

+"f: c:ﬁc;; [ My, (T =s)aM, +n [ v, (T-s)dM, =
k=2

i=1 (0,T] 0,7]

n k
=EMN)+Y.CY.C [ M, (T=s)dM, - O
k=1 i=1 0,7]
Corollary 3. For each natural number n >1 the following representation is true:
My =EM{)+ | EIAU(M,_+M,)[3)aM, (P-as). @

(0,7]

Proof. Due to the Newton's binomial formula and taking into account well-known properties of

Compensated Poisson's process, we obtain:

E[(l +M, +M, )

3, =Sk, Y B3, )=
k=0

= §C5 (1+ 0, Y E[v, - 0,)[3,]=

=2 Gl M Y EME =3 CHA+ M ) v, (T =s).
k=0 k=0
Similarly, we have

E[(Mk +M,.,)

SS ] = z C:M.s]'ivn—k (T - S) :
k=0
Therefore, due to the Theorem 2, wusing again the Newton's binomial formula
k
(Msi + 1)" - Mf, = ZC]’;M;‘:" , we finish the proof of corollary. O
i=1

Corollary 4. For the polynomial function P, (x) = z a,x" the following representation is valid:

k=0

P(M;)=E[B,(M)]+ | EIAP,(M, +M,.,)

(0,7]

3, UM, (P-as.).

Corollary 5. Since for fixed 7 P,(x—T) is again polynomial P, (x) of order n with respect to x , but

with other coefficients, therefore it is clear that the representation of type (4) we will have for the
polynomial functional with respect to N, :

P(N;)=E[R,(N)]+ [ E[AIP.(N,_ +N,.,)

(0,7]

I, WM, (P-as).
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Theorem 3. For any polynomial function P, (x), the relation is true where

’[DYP(M,)]=E[AP,(M, +M, )|3,] (dP®dt-as.). (5)

Proof. According to the well-known result of Ma, Protter and Martin [8], there is the following Clark-

Haussmann-Ocone representation formula

P,(M}) = EIR,(M)]+ [ {"[D) B,(M)]iaM, (P-as.).

.11
Consider the difference:

&= [ (BIAR,(M, +M, )|3,]1- "D P,(M)}dM, = | n,aM, .

+5n

0,7] (0,7]

According to Theorem 2: &, =0 (P- a.s.). Further, due to the Ito formula:

& =2 [ &ndM, + | nldim, M, .

(0,7] (0,7]

Taking the mathematical expectation of both sides of the last relation and using the properties of the

quadratic and predictable characteristics of the martingale, we get:

0=E [ n/d[M,M],=E [ n’d(M,M) =E [ nldt.

(0,7] (0,7] (0,7]

from which we conclude the validity of relation (5).
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