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Abstract. A new definition of the stochastic derivative operator for Poisson
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I. As is known, in the theory of standard integration, the requirement
for the integrand to be measurable is a very small restriction as compared
to the condition of integrability which implies the boundedness in a certain
sense of an absolute integrand value. As for the stochastic Ito’s integral∫ T

0
f(t, ω)dwt, the situation here is opposite. Besides the fact that the

integrand f(t, ω) is the measurable function of two variables, it should be the
adapted (nonanticipated) process, i.e for any t ∈ [0, T ] the random variable
f(t, ·) should be measurable with respect to the Fw

t := σ{ws, s ∈ [0, t]}–σ-
algebra. On the one hand, this requirement is natural for many situations,
when filtration shows possible evolution of information. On the other hand,
over a long period of time this requirement restricted both the development
of the theory and the application of stochastic calculus.

Starting from the 70th of the past century, many attempts were made to
weak the requirement for the integrand to be adapted for the integrand of
the Ito’s stochastic integral as well as in the theory of ”the extension of filtra-
tion”. Skorokhod (1975) suggested absolutely different method, symmetric
with respect to the time inversion and did not require for the integrand to
be independent of the future Wiener process. Towards this end, he required
for the integrand to be smooth in a certain sense, i.e., its stochastic differen-
tiability. This idea was later on developed in the works of Gaveau-Trauber
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(1982), Nualart, Zakai (1986), Pardoux (1982), Protter, Malliavin (1979),
etc. In particular, Gaveau and Trauber have proved that the Skorokhod
operator of stochastic integration coincides with the conjugate operator of
a stochastic derivative operator.

Ma, Protter and Martin (1998) have proposed an anticipating integral
for the class of so-called normal martingales (a martingale M is called nor-
mal if 〈M, M〉t = t) which have the chaos representation property. It is
analogous to the Skorohod integral as developed by Nualart and Pardoux
(1988). When M is Wiener process, it is exactly the Skorohod integral.
There are many similarities between the above-mentioned martingale antic-
ipating integral and the Skorohod integral, but there are also some impor-
tant differences. Many of these differences stem from one key fact: in the
Wiener case [w, w]t = 〈w, w〉t = t, while in the normal martingale case only
〈M, M〉t = t, and [M,M ]t is random. For example, there are two ways to
describe the variational derivative (also known as the Malliavin derivative
in the Wiener case), and they are equivalent in the Wiener case but not in
the martingale case. In [5] an example is given, which shows that in the
martingale case one cannot define the stochastic derivative operator in the
usual way to obtain the Sobolev space structure for the space D2,1. Indeed,
this example shows that the two definitions (Sobolev space and chaos ex-
pansion) are compatible if and only if [M, M ]t is deterministic. Therefore
in the martingale case the space DM

q,1, (1 < q < 2) cannot be defined in the
usual way (i.e., by closing the class of smooth functionals with respect to
the corresponding norm).

On the other hand, in the theory of random processes special place take
the so-called martingale representation theorems. In the eighties of the
past century, it turned out (see Harison and Pliska (1981)) that the mar-
tingale representation theorems (along with the Girsanov’s measure change
theorem) play an important role in the modern financial mathematics. Ac-
cording to the Ocone-Haussmann-Clark formula (see [3]), if F ∈ DM

2,1, then
the Ocone-Haussmann-Clark’s representation

F = EF +

∫ T

0

p(DM
t F )dMt

is valid. Here DM
2,1 denotes the space of quadratically integrable functionals

having the first order stochastic derivative, and p(DM
t F ) is the predictable

projection of the stochastic derivative DM
t F of the functional F . In work of

Jaoshvili and Purtukhia (2008) the space DM
q,1 (1 < q < 2) for the compen-

sated Poisson process is proposed and the integral representation formula of
Ocone and Haussmann-Clark for functionals from this space is established.

II. Let wt, t ∈ [0, 1] be a d-dimensional standard Wiener process defined
on the canonical probability space (Ω,F ,P) and Ft = σ{ws, s ∈ [0, t]}.

Let C∞
b (Rk) be the set of C∞ functions f : Rk → R1 which are bounded

and have bounded derivatives of all orders. A smooth functional will be a
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random variable F : Ω → R1 of the form F = f(wt1 , ...wtn) , where the
function f(x11, ..., xd1; ...; x1n, ..., xdn) belongs to C∞

b (Rdn) and t1, ..., tn ∈
[0, 1]. The class of smooth functionals will be denoted by SF.

The derivative of a smooth functional F can be defined as the d-dimensional
stochastic process given by the relation

(Dw
t F )j =

n∑
i=1

∂f

∂xji
(wt1 , ...wtn)I[0,ti](t), t ∈ [0, 1], j = 1, ..., d.

For example, Dw
t ws = I[0,s](t). The operator Dw can be considered as

an unbounded operator defined on a dense subset of L2(Ω) and taking value
on L2([0, T ]) . For any real p > 1 we introduce the semi-norm on SF:

‖F‖p,1 := ‖F‖L2(Ω) + ‖‖Dw
. F‖L2([0,1])‖L2(Ω).

Let Dw
p,1 be the Banach space which is the completion of SF with respect

to the norm ‖·‖p,1. The space Dw
2,1 is a Hilbert space with the scalar product

〈F,G〉2,1 := E(FG) + E[〈Dw
. F, Dw

. G〉L2([0,1])].

Consider the orthogonal Wiener-Chaos decomposition L2(Ω,F , P ) =
⊕∞n=0Hn. Any random variable of Hn can be expressed as a multiple Ito
integral In(fn) of some symmetric kernel fn ∈ L2([0, 1]n; Rdn).

Theorem 2.1 (see [3]). Let be a square integrable random variable hav-
ing an orthogonal Wiener-Chaos expansion of the form F =

∑∞
n=0 In(fn).

Then F belongs to the space Dw
2,1 if and only if

∑∞
n=1 nn!‖fn‖L2([0,1]n) < ∞

and in this case we have Dw
t F =

∑∞
n=1 nIn−1(fn(·, t)), t ∈ [0, 1] and

‖‖Dw
. F‖L2([0,1])‖L2(Ω) =

∞∑
n=1

nn!‖fn‖2
L2([0,1]n).

Theorem 2.2 (see [3]). Suppose F and G are smooth functionals and
let h be an element of the Hilbert space L2([0, 1]. Then we have

E[G〈Dw
. F, h.〉L2([0,1]] = −E[F 〈Dw

. G, h.〉L2([0,1] + FGw(h)].

III. Let
∑

n be an increasing simplex of Rn
+ :

∑
n = {(t1, ..., tn) ∈ Rn

+ :
0 < t1 < · · · < tn}, and extend a function f defined on

∑
n by making

symmetric on Rn
+. One can then define the multiple integral with respect

to M as

In(f) := n!

∫
∑

n

f(t1, ..., tn)dMt1 · · · dMtn .

Definition 3.1 (cf. Definition 3.2 [5]). Let R = σ{Mt, t ≥ 0} be
the σ-algebra generated by a normal martingale M . Let Hn be the n-
th homogeneous chaos, Hn = In(f), where f ranges over all L2(

∑
n). If
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L2(R, P ) = ⊕∞n=0Hn, then we say that M possesses the chaos representation
property (CRP).

Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space satisfying the usual
conditions. We assume that a normal martingale M with the CRP is given
on it and that F is generated by M . Thus, for any random variable F ∈
L2(R, P ) we have by the CRP that there exists a sequence of symmetric
functions fn ∈ Ls

2([0, 1]n), n = 1, 2, ..., such that F =
∑∞

n=0 In(fn). Consider
the following subset DM

2,1 ⊂ L2(R, P )

DM
2,1 = {F =

∞∑
n=0

In(fn) :
∞∑

n=1

nn!‖f‖2
L2([0,1]n) < ∞}.

Definition 3.2 (see [5]). The derivative operator is defined as a linear
operator DM

. from DM
2,1 into L2([0, T ]× Ω) by the relation:

DM
t F :=

∞∑
n=1

nIn−1(fn(·, t)), t ∈ [0, 1].

Example 3.1 (see [5]). Consider a symmetric function f(s, t) = I(a, b](s)
×I(a, b](t). Using the Ito’s formula the second chaos I2(f) can be computed
as

I2(f) = 2!
∫

0<s<t≤1
f(s, t)dMsdMt = 2

∫ b

a

∫ t−
a

dMsdMt

= 2
∫ b

a
(Mt− −Ma)dMt = (Mb −Ma)

2 − {[M,M ]b − [M, M ]a}.
(1)

Consider now the function g(x, y) = (y − x)2, and define a smooth
functional F = g(Ma,Mb). Let us define the derivative DM

t F in a way
analogous to one of the equivalent definitions in the Wiener case:

DM
t F = DM

t (Mb −Ma)
2 = ∂F

∂x
(Ma,Mb)I[0,a](t) + ∂F

∂y
(Ma,Mb)I[0,b](t)

= −2(Mb −Ma)I[0,a](t) + 2(Mb −Ma)I[0,b](t) = 2(Mb −Ma)I(a,b](t).
(2)

However, by the Definition 3.2, we have

DM
t I2(f) = 2I1(f(·, t)) = 2

∫ 1

0

I(a,b](s)dMs · I(a,b](t) = 2(Mb −Ma)I(a,b](t).

We can substitute this into (2) and compare it with (1) to see that
the two definitions coincide if and only if DM

t {[M, M ]b − [M,M ]a} = 0,
for all t ∈ [0, 1]. By Lemma 4.1 [5], this means that [M, M ]b − [M,M ]a
must be constant. If we look at the structure equation (see (2.1) [5]), this
amounts to saying that the two definitions are in contradiction and cannot
hold simultaneously unless M = w, Wiener process.

IV. Let (Ω,F , {Ft}t≥0), P be a filtered probability space satisfying the
usual conditions. Let Nt be the standard Poisson process and Ft is generated
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by N,F = FT . Let Mt be the compensated Poisson process (Mt = Nt − t).
Let us denote ∇xf(x) := f(x + 1)− f(x);∇xf(MT ) := ∇xf(x)|x=MT

.

Using the relations Ms =
∫ T

0
I[0,s](u)dMu = I1(I[0,s](·)) and [M,M ]s =

Ns = Ms + s, by the Definition 3.2 we can obtain:
Proposition 4.1. DM

t Ms = DM
t [I1(I[0,s](·))] = I[0,s](t)and

DM
t [M, M ]s = DM

t Ns = DM
t Ms + DM

t s = I[0,s](t).

Definition 4.1. a). D
M

t (Ms)
n := [∇x(x

n)]|x=Ms·D
M

t Ms :=[∇x(x
n)]|x=Ms×

I[0,s](t); b). For any polynomial function Pm(x1, ...xn) :

D
M

t Pm(Mt1 , ..., Mtn) :=
n∑

k=1

∑
i1<i2<...<ik

∇xi1
· · · ∇xik

Pm(Mt1 , ..., Mtn)

×I[0,ti1 ](t) · · · I[0,tik ](t).

Remark 4.1. If we take here n = 2, we obtain that

D
M

t M2
s = ∇xx

2|x=Ms ·D
M

t Ms = (2Ms + 1)I[0,s](t),

whereas in the Wiener process ases

Dw
t w2

s =
∂

∂x
x2|x=ws ·Dw

t ws = 2wsI[0,s](t).

Theorem 4.1. If F = In(fn) for some fn ∈ Ls
2([0, T ]n), then D

M

t F =

nIn−1(fn(·, t)) and ‖DM

t F‖2
L2([0,T ]×Ω) = nn!‖fn‖2

L2([0,T ]n).

Proof. Let fn(t1, ..., tn) =
∑m

i1,...,in=1 ai1,...,inIAi1
×···Ain

(t1, ..., tn), then we
have

In(fn) =
∑m

i1,...,in=1 ai1,...,in

∫ T

0
IAi1

(s)dMs · · ·
∫ T

0
IAin

(s)dMs :

=
∑m

i1,...,in=1 ai1,...,inM(Ai1) · · ·M(Ain).

Therefore, due to the Definition 4.1, one can easily verify that:

D
M

t In(fn) =
∑m

i1,...,in=1 ai1,...,inD
M

t [M(Ai1) · · ·M(Ain)]

=
∑m

i1,...,in=1 ai1,...,inIAi1
(t) · · · IAin

(t) +
∑m

i1,...,in=1 ai1,...,in

×∑n
j=1 IAi1

(t) · · · IAij−1
(t)IAij+1

(t) · · · IAin
(t)M(Aij) + · · ·

+
∑m

i1,...,in=1 ai1,...,in

∑n
j=1 IAij

(t)M(Ai1) · · ·M(Aij−1
)M(Aij+1

) · · ·M(Ain)

= nIn−1(fn(·, t).
Moreover, it is not difficult to see that:

‖DM

t F‖2
L2([0,T ]×Ω) =

∫ T

0
‖nIn−1(fn(·, t))‖2

L2(Ω)dt

= nn!
∫ T

0
‖fn(·, t)‖2

L2([0,T ]n−1)dt = nn!‖fn‖2
L2([0,T ]n).
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Analogously one can prove the following
Theorem 4.2. For Poisson polynomial functionals the above-given two

definitions of stochastic derivatives (Definition 3. 2 from [4] and Definition

4.1) are equivalent: DM
t Pm(MT ) = D

M

t Pm(MT ).
Remark 4.2. It is not difficult to see that the Definition 4.1 is agree

with the Example 3.1. Indeed, due to the Proposition 4.1 and Theorem 4.1,
we have

D
M

t I2{I(a,b](·)I(a,b](·)}+ D
M

t {[M, M ]b − [M, M ]a}
= 2I1{I(a,b](·)}I(a,b](t) + I[0,b](t)− I[0,a](t)

= [2(Mb −Ma) + 1] · [I[0,b](t)− I[0,a](t)].

On the other hand, using the Definition 4.1, we can write

D
M

t (Mb −Ma)
2 = D

M

t M2
b − 2D

M

t (MbMa) + D
M

t M2
a

= (2Mb + 1)I[0,b](t)− 2[MaI[0,b](t) + MbI[0,a](t) + I[0,a](t)I[0,b](t)]

+(2Ma + 1)I[0,a](t) = [2(Mb −Ma) + 1] · [I[0,b](t)− I[0,a](t)].

Proposition 4.2. Let F be a random variable of the space DM
2,1 such

that D
M

t F = 0 for all t ∈ [0, T ]. Then F = EF .
Proof. Suppose that F =

∑∞
n=0 In(fn) = f0 +

∑∞
n=1 In(fn). Taking the

mathematical expectation from the both sides of the last relation we obtain

that: f0 = EF . On the other hand, since D
M

t F = 0 for all t ∈ [0, T ], we
can write:

0 = E

∫ T

0

D
M

t Fdt =
∞∑

n=1

nn!‖fn‖2
L2([0,T ]n).

From here we conclude that f0 = 0 a.s. for all n ≥ 1, and hence,
In(fn) = 0 for all n ≥ 1. Therefore, F = f0 = EF .

Let A ∈ B([0, T ]). We will denote by FA the σ-algebra (completed with
respect to the probability P ) generated by the random variables

M(B) =

∫

B

dMt (B ⊂ A, B ∈ B([0, T ])).

Proposition 4.3. Suppose that F =
∑∞

n=0 In(fn) and A ∈ B([0, T ]).
Then we have:

E(F |FA) =
∞∑

n=0

In(fnIAn) :=
∞∑

n=0

In(fnI
⊗n
A ).

Proof. It suffices to assume that F = In(fn), where fn is a symmetric
and elementary kernel. Also, by linearity we can assume that the kernel is



Stochastic Derivative of Poisson Polynomial .... 65

of the form: fn = IB1×···×Bn , where B1, ..., Bn are mutually disjoint sets of
finite measure. In this case we have:

E(F |FA) = E[M(B1) · · ·M(Bn)|FA] = E{[M(B1 ∩ A) + M(B1 ∩ A)]

· · ·[M(Bn ∩ A) + M(Bn ∩ A)]|FA} = M(B1 ∩ A) · · ·M(Bn ∩ A)

=
∑∞

n=0 In(fnI⊗n
A ).

Proposition 4.4. Suppose that F belongs to the space DM
2,1, and let

A ∈ B([0, T ]). Then E(F |FA) also belongs to DM
2,1 and we have:

D
M

t E(F |FA) = E(D
M

t F |FA)IA(t) a.s. in [0, T ]× Ω.

Proof. Due to the Proposition 4.3 and Definition 3.2, on the one hand,
we can write:

D
M

t E(F |FA) =
∞∑

n=1

nIn−1[fn(·, t)I⊗(n−1)
A ]IA(t).

On the other hand, we have:

E(D
M

t F |FA) = E{
∞∑

n=1

nIn−1[fn(·, t)]|FA} =
∞∑

n=1

nIn−1[fn(·, t)I⊗(n−1)
A ].

Corollary 4.1. Suppose that F ∈ DM
2,1 and F is FM

t -measurable. Then

D
M

s F = 0 for all s > t.
Denote by 〈·, ·〉 the scalar product in L2([0, T ]).
Theorem 4.3. Let h be an element of the Hilbert space L2([0, T ]). Then

for any polynomial functions f(x) and g(x) we have

E[g(MT )〈DM

. f(MT ), h.〉] = −E[f(MT + 1)〈DM

. g(MT ), h.〉]
+E[f(MT )g(MT )M(h)]/T.

Proof. Using the distribution of NT , it is not difficult to verify that the
following relations are valid:

E[g(MT )〈DM

. f(MT ), h.〉] = E[g(MT )〈∇xf(MT )I[0,T ](·), h.〉]
= 〈I[0,T ](·), h.〉

∑∞
x=0 g(x− T )∇xf(x− T )T xe−T /x!

= [〈I[0,T ](·), h.〉g(x− T )∇xf(x− T )T xe−T /x!]|∞0
−〈I[0,T ](·), h.〉

∑∞
x=0 f(x + 1− T )∇x[g(x− T )T xe−T /x!]

= −〈I[0,T ](·), h.〉{g(−T )f(−T )e−T −∑∞
x=0 f(x + 1− T )g(x + 1− T )

×(x + 1− T )T x+1

T (x + 1)!
e−T + E[f(MT + 1)∇xg(MT )]}

= −〈I[0,T ](·), h.〉{g(−T )f(−T )e−T − E[f(MT )g(MT )MT /T ]

−f(−T )g(−T )e−T} − E[f(MT + 1)〈∇xg(MT )I[0,T ](·), h.〉]
= E[f(MT )g(MT )M(h)]/T − E[f(MT + 1)〈DM

. g(MT ), h.〉].
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