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Abstract

Using the notation of stochastic derivative for a class of normal martingale and

for Poisson functionals the Sobolev type Hilbert spaces for normal martingale and

stochastic differentiable Poisson functionals are introduced and the Sobolev, Sobolev-

Poincare and logarithmic Sobolev type inequalities for random variables from this

spaces are proved.
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1 Introduction

The classical Sobolev inequalities play a fundamental role in an analysis
in Euclidean spaces and in the research of partial differential equations.
Sobolev type inequalities provide some of the very basic tools in the study
the existence, regularity and uniqueness of the solutions of all sorts of par-
tial differential equations, linear and nonlinear, elliptic, parabolic, and hy-
perbolic. On the other hand, as we will partially see below, the inequalities
introduced by S.L.Sobolev and their many modifications have turned out
to be extremely useful flexible tools in surprisingly various settings.

Classical Sobolev inequalities usually state that if f a function defined
on Rn and its first (weak) derivatives belong to class Lp(R

n), then f also
belongs to Lq(R

n) for some q > p, particularly for q = (p−1 − n−1)−1 if
q < ∞. On the other hand, Sobolev-type inequalities explains how can one
control the size of a function in terms of the size of its gradient. On the
real line, the answer is given by a simple and yet extremely useful calculus
inequality (see [2]): for any smooth function f on the line with compact
support

|f(x)| ≤ 1

2

∫
R1

|f ′
(x)|dx (1)
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(if f is smooth, but no other restriction is imposed, the inequality above
may fail). As concerns to a multidimensional case a question of the exis-
tence of such estimates was first studied by Sobolev in [1]. In this case one
has:

∀f ∈ C∞
0 (Rn) : ||f ||q ≤ ||∇f ||p (2)

for any integer n ≥ 2 and a real p, 1 ≤ p < n, where q = np/(n − p) and
C = C(n, p) is a constant.

This inequality is called the Sobolev inequality although the case p = 1
is not contained in [1]. As it turned out, when p = 1, (2) has a very
simple proof based on (1) and Holder’s inequality, which was independently
discovered by E. Gagliardo and L. Nirenberg. Moreover, the case p > 1
follows from the case p = 1 by a simple trick.

Note that, if (2) holds for all f ∈ C∞
0 (Rn), it obviously also holds

for a larger class of functions including for instance all C1 functions with
compact support or even Lipschitz functions vanishing at infinity. In fact,
(2) holds for all functions vanishing at infinity whose gradient in the sense of
distributions is in Lp(R

n). On the other side, (2) restricted to non-negative
functions in C∞

0 (Rn) suffices to prove (2) in its full generality. Indeed, the
correctness of (2) for such functions implies that it also holds for non-
negative Lipschitz functions with compact support and, if f ∈ C∞

0 (Rn), |f |
is Lipschitz and satisfies |▽ |f || ≤ |▽f | almost everywhere. It then follows
that (2) holds for f ∈ C∞

0 (Rn).
Further, for the Gaussian measure ν on Rn, it is well known the so

called logarithmic Sobolev inequality:∫
Rn

|f(x)|2ln|f(x)|dν(x) ≤
∫
Rn

|gradf(x)|2dν(x) + ||f ||22ln||f ||2, (3)

where ||f ||p denotes the Lp(ν) norm of f .
Logarithmic Sobolev (or Log-Sobolev) inequalities were introduced by

L. Gross [9] in 1975 as an attempt of isolating smoothing properties of
Markov semigroups in infinite-dimensional settings. It can be used to obtain
quantitative bounds on the convergence of finite Markov chains to station-
ary. Given an irreducible finite Markov chain K with invariant probability
π, consider the Dirichlet form

ℵ(f, g) = ⟨(I −Kf, g)⟩.

In general, a logarithmic Sobolev inequalities are inequalities of the type
ℜ(f) ≤ Cℵ(f, f) holding for all functions f , where the entropy-like quantity
ℜ(f) is defined by

ℜ(f) =
∑
x∈X

|f(x)|2ln( |f(x)|
2

||f ||22
)π(x).
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Log-Sobolev inequalities are one of the essential tools for proving con-
centration phenomena, not only because they require in some sense less un-
derstanding about the underlying geometry of the measured space, but also
because they yield sharper results for concentration, i.e., Gaussian rather
than exponential. They are particularly well-suited for infinite-dimensional
analysis.

Let (X, d, µ) be a metric measure space in which the log-Sobolev in-
equality holds. Then (see [3]) every K-Lipschits function is integrable and
if F : X → R is such a function, we have:

µ{x : F (x) ≥
∫

Fdµ+ r} ≤ exp{−r2/(2CK2)}.

Moreover, if µ satisfies the Log-Sobolev inequality, then the Poincare
inequality is satisfied:

∀f ∈ C∞
0 (Rn) : V arµf ≤ C

∫
|∇f |2dµ.

Next we present a weighted Poincare inequality (see [4]) which looks
similar to but is weaker than the Sobolev inequality. It seems weaker be-
cause there is no gain in the integrability of a function over the integrability
of its gradient. However, even a non-weighted Poincare inequality actually
implies a Sobolev inequality under the doubling condition on the metric
balls of the ambient space. Let g be a non-negative, continuous function in
Rn, with compact support D,∫

D
u(x)g(x)dx = 1

and the super level set {g ≥ k} is convex for all k. Write r as the diameter
of D and

L =

∫
D
g(x)dx = 1.

Then for all u ∈ W 1,p(D), p ≥ 1, there exists C = C(n) > 0 such that∫
Rn

|u(x)− L|pg(x)dx ≤ C(n)||g||∞rn+p

∫
Rn

|∇u(x)|pg(x)dx.

A more technical but very important fact is the equivalence between
strong forms and weak forms of Sobolev inequalities. An example of this
phenomenon is that it is enough to have the weak Sobolev inequality

∀f ∈ C∞
0 (D) : supx>0{sµ({x : |f(x)| > s})1/q} ≤ C||∇f ||p

28



+ Sobolev and Logarithmic Sobolev ... AMIM Vol.17 No.2, 2012

with 1 ≤ p < q to conclude that the strong inequality (2) holds. Another
example is the equivalence between the Nash inequality

∀f ∈ C∞
0 (D) : ||f ||1+2/r

2 ≤ C||∇f ||2 · ||f ||21/r

and the Sobolev inequality

∀f ∈ C∞
0 (D) : ||f ||2r/(r−2) ≤ C||∇f ||2

when r > 2.The Nash inequality is weaker in the sense that it is easily
deduced from the Sobolev inequality above and Holder’s inequality. The
equivalence between weak and strong forms of Sobolev-type inequalities
turns out to be extremely useful when it comes to prove that a certain
manifold satisfies a Sobolev inequality. A basic tool used here is the notion
of pseudo-Poincare inequality. Given a smooth function f , let fr(x) denote
the mean off over the ball with center x and radius r. One says that D
satisfies an Lp-pseudo-Poincare inequality if for all ∀f ∈ C∞

0 (D) and all
r > 0:

||f − fr||p ≤ C|| ▽ f ||p.

In the case when p > n (see [2]) there exists a constant C = C(n, p)
such that for any set D of finite volume we have

∀f ∈ C∞
0 (D) : ||f ||∞ ≤ C{µ(D)}1/n−1/p|| ▽ f ||p. (4)

One crucial difference between the last statement and Sobolev inequality
(2) for 1 ≤ p < n is that the right-side of (4) depends on the set D on which
the function f is supported. As the measure of D tends to infinity, the term
{µ(D)}1/n−1/p also tends to infinity since p > n. In fact, when n ≤ p, there
is no way to control the size of f purely in terms || ▽ f ||p.

In mathematical analysis a class of Sobolev inequalities, is relating
norms including those of Sobolev spaces. These are used the Sobolev em-
bedding theorem, giving inclusions between certain Sobolev spaces, and
the Rellich Kondrachov theorem showing that under slightly stronger con-
ditions some Sobolev spaces are compactly embedded in others. They are
named after Sergei Lvovich Sobolev. On the other hand, the fundamental
role that Sobolev inequalities have played in the study of elliptic differential
operators is well known.

The theory of partial differential equations provides a most of impor-
tant applications of Sobolev inequalities. Consider, for instance, divergence
form, uniformly elliptic equation in Rn:

n∑
i=1

n∑
j=1

∂

∂xi
{ai,j

∂

∂xj
u(x)} = 0,
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where the coefficient ai,j are real measurable functions such that ||ai,j ||∞ <
c and

∀x ∈ Rn, ∀ξ ∈ Rn :

n∑
i=1

n∑
j=1

ai,j(x)ξiξj ≥ ϵ

n∑
i=1

ξ2i .

Moser’s elliptic Harnak inequality (which a striking application of Sobolev
inequalities) states that any positive weak solution u of this equation in an
Euclidian ball B satisfies

sup
B/2

{u} ≤ C inf
B/2

{u},

where C depends neither on u nor on B but only on the constants c, ϵ
above and the dimension n.

One might approach the problem of finding infinite dimensional ver-
sions of Sobolev’s inequalities from an intrinsic point of view. In this case
one should note that the equation q = (p−1 − n−1)−1 implies q → p as
the dimension goes to infinity, and consequently there is a loss of informa-
tion in the usual form of Sobolev’s inequality as the dimension gets larger.
Moreover, Lebesgue measure in infinite dimensional space is meaning-less.
The inequality (3), on the other hand, has a simple meaning in infinite di-
mensions and is valid there because the coefficients in (3) are independent
of dimension.

Because, Sobolev inequalities relate the size of ∇f to the size of f , in
order to prove such inequalities, one may try to express f in terms of its
gradient. Let E and F be separable Banach spaces, and let f : E → F be
a given, possibly nonlinear, function. There are several ways to approach
the notion of derivative . The first notion of a derivative of a function on
a vector space is that of the Frechet deriva-tive. The second and weaker
notion of derivative is the Gateaux derivative. But these two notions of
differentiability are too strong for many purposes. Many pathologies arise
when dealing with infinite dimensional spaces that are not present in finite
dimensional ones. If we suppose that Banach space E supports a Gaussian
measure µ, and Hµ ⊂ E is the associated reproducing kernel Hilbert space,
then the Malliavin calculus concerns functions on E that are differentiable
in the directions of Hµ. It turns out that a function may be differentiable
in this weak sense, and yet not even be continuous on E!

2 Notation and preliminaries

The Malliavin derivative is a linear map from a space of random variables
to a space of processses indexed be a Hilbert space. Being a derivative, it
is not surprising that this operator is unbounded. If the random variable is
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differentiable (in Malliavin sense), the Clark-Ocone formula allows one to
explicitly compute the integrand in the martingale representation in terms
of the Malliavin derivative of ξ (see [5]). In turn, the Clark-Ocone for-
mula allow one to prove the Sobolev-Poincare type inequalities in Wiener
case. A further generalization of Clark-Ocone formula belongs to Ma, Prot-
ter and Martin (see [6]) for the so-called normal martingales classes (i.e.
⟨M,M⟩t = t) according to which if ξ ∈ DM

1,2, then the Clark-Haussmann-
Ocone representation

ξ = Eξ +

∫
(0.T ]

p(DM
t ξ)dMt (P − a.s.) (5)

is valid, where DM
1,2 denotes the space of square integrable functional hav-

ing a stochastic derivative of the first order, while p(DM
t ξ) denotes the

predictable projection of the stochastic derivative DM
t ξ of the functional ξ.

Let
∑

n be an increasing simplex of Rn
+:

∑
n = {(t1, ..., tn) ∈ Rn

+ :
0 < t1 < · · · < tn}, and extend a function f defined on

∑
n by making f

symmetric on Rn
+. Let ℜ = σ{Mt : t ≥ 0} be the σ-algebra generated by a

normal martingaleM . LetHn be the n-th homogeneous chaos, Hn = In(f),
where f ranges over all L2(

∑
n) and In(f) denotes the multiple stochastic

integral:

In(f) := n!

∫
∑

n

f(t1, ..., tn)dMt1 · · · dMtn .

If L2(ℜ, P ) =
⊕∞

n=0Hn, then we say that M possesses the chaos rep-
resentation property (CRP).

Let (Ω,F , {Ft}t≥0), P be a filtered probability space satisfying the usual
conditions. We assume that a normal martingale M with the CRP is
given on it and that ℑ is generated by M . Thus, for any random variable
ξ ∈ L2(ℜ, P ), we have by virtue of the CRP that there exists a sequence
of functions fn ∈ L2

s([0, 1]
n) (=h ∈ L2([0, 1]

n) : h is symmetric in all vari-
ables), n = 1, 2, ..., such that ξ =

∑∞
n=0 In(fn). Consider the following

subset DM
1,2 ⊂ L2(ℜ, P ):

DM
1,2 = {ξ =

∞∑
n=0

In(fn) : ξ =

∞∑
n=1

nn!||fn||2L2([0,1]n)
< ∞}.

Definition 1 (see [6]). The derivative operator is defined as a linear
operator DM from space DM

1,2 into the space L2([0, 1]×Ω) by the relation:

DM
t ξ :=

∞∑
n=1

nIn−1(fn(·, t)), t ∈ [0, 1],
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whenever ξ =
∑∞

n=0 nIn(fn).
As is well-known there are two ways to describe the variational deriva-

tive (also known as the Malliavin derivative in the Brownian case), and
they are equivalent in the Brownian case but not in the martngale case. In
the martingale case one cannot define the derivative operator in the usual
way to obtain the Sobolev space structure for the space DM

1,2 (in [4] an
example is given, which shows that the two definitions – Sobolev space and
chaos expansion – are compatible if and only if [M,M ]t is deterministic).
Therefore in martingale case the space DM

1,q (1 < q < 2) cannot be defined
in the usual way (i.e., by closing the class of smooth functional with respect
to the corresponding norm).

Later, in [7] the Sobolev type spaces DM
1,q, where 1 < q < 2, were

introduced and a generalization of Clark-Haussmann-Ocone representation
was obtained for functionals from these spaces.

Definition 2 (see [7]). Fix 1 < q < 2 and introduce the norm

||ξ||1,q := ||ξ||q + ||||DMξ||L2([0,T ])||q

on DM
1,2, and denote by DM

1,q (1 < q < 2) the Banach space which is the

closure of DM
1,2 under the norm || · ||1,q.

Note that the stochastic derivative DMξ is well-defined on DM
1,q (1 <

q < 2) by the closure. Given ξ ∈ DM
1,q (1 < q < 2) we can find a measurable

stochastic process (t, ω) 7−→ DM
t ξ(ω) such that for a.e. ω ∈ Ω, the equality

DM
t ξ = DMξ(ω)(t) holds for almost all t ∈ [0, T ] (more precisely, t 7−→

DM
t ξ(ω) is in the equivalence class from L2([0, T ]) defined by DMξ(ω) ).

DM
t ξ(ω) is defined uniquely on [0, T ] × Ω up to sets of measure zero (in

general, if η : Ω → L2[0, T ] is measurable random element, then there exists
a (B)([′, T ])⊗ℑ-measurable stochastic process, {η(t, ω) : (t, ω) ∈ [0, T ]×Ω},
such that η(·, ω) = η(ω) holds almost surely. In this case, we shall identify
η(ω)(t) with η(t, ω)).

If now M is a normal martingale with the chaos representation property
and ξ ∈ Lq(Ω)

∩
DM

1,q (1 < q < 2), then the representation (5) is true (see
Theorem 2.1 [7]).

On the other hand, an explicit construction of the stochastic derivative
operator for compensated Poisson functionals, which was introduced by
us in [8] and which is not based on the chaos expansion of func-tionals
as it is in Ma, Protter and Martin’s work, allow us to receive the Clark-
Haussmann-Ocone explicit formula in Poisson cases. Our aims, using the
above-mentioned Clark-Haussmann-Ocone representations on the one hand
to prove the Sobolev-Poincare type inequalities in general case for a class of
normal martingales and on the other hand to give more explicit estimations
in special case for Poisson functionals [10].

32



+ Sobolev and Logarithmic Sobolev ... AMIM Vol.17 No.2, 2012

3 Auxiliary results

Let (Ω,F , {Ft}t∈[0,T ], P ) be a filtered probability space satisfying the usual

conditions. Let Nt be the standard Poisson process (P (Nt = k) = tke−t/k!,
k = 0, 1, 2, ... ) and ℑt is generated by N (ℑt = ℑN

t ), ℑ = ℑt. Let Mt be
the compensated Poisson process (Mt = Nt − t). Let us denote:

∇xf(x) := f(x+ 1)− f(x);

∇xf(MT ) := ∇xf(x)|x=MT
;

D
M
t [(Ms)

n] := [∇x(x
n)]|x=Mt ·D

M
t [Ms] := [∇x(x

n)]|x=Mt · I[0,s](t)

and
D

M
t [Pm(Mt1 ,Mt2 , ...,Mtn)] :=

:=

n∑
k=1

∑
1≤i1<i2<···<ik≤n

∇xi1
∇xi2

· · · ∇xik
[Pm(Mt1 ,Mt2 , ...,Mtn)]×

×I[0,t1](t)I[0,t2](t) · · · I[0,tk](t)

for any polynomial function Pm(x1, x2, ..., xn) (as we see, if n = 1, then
the stochastic derivative for Wiener and Poisson processes formally are the
same. The difference begins from n = 2. Indeed, if we take here n = 2, we
obtain that

D
M
t [(Ms)

2] := [∇x(x
2)]|x=Mt ·D

M
t [Ms] = (2Ms + 1)I[0,s](t),

whereas in the Wiener process cases

Dw
t [(ws)

2] =
∂

∂x
(x2)|x=ws ·Dw

t [ws] = 2wsI[0,s](t).

This fact can be explained as follows: in theWiener case in the definition
of stochastic derivative the main component is a usual (classical) derivative,
whereas in the Poisson case the main component is the operator ∇ and if
n = 1 we have x

′
= ∇x = 1, while if n = 2, then 2x = (x2)

′ ̸= ∇x2 =
2x+ 1).

We denote by WM
1,2 the Hilbert space of real random variables ξ in the

domain of D
M

such that

E(ξ2) + E(||DM
· ξ||2L2([0,T ])) < +∞.

with corresponding scalar product.
Proposition 1. For every random variable ξ from the space WM

1,2 we
have the differentiation rule

D
M
· ξ2 = (2ξ + 1)D

M
· ξ.
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before we formulate the logarithmic Sobolev type estimation, let’s make
the following remark and verifying the Cauchy-Bunyakovsky type inequality
for the conditional mathematical expectation.

Remark. Note that, due to the classical Cauchy-Bunyakovsky inequal-
ity if g ∈ L2 and h ∈ L2, one can only state that gh ∈ L1. Hence, if g ∈ L2,
then the truth it is yet not known that lng and ln(g2) belongs or not to
L2, but also in this case we can only state that glng ∈ L1 and gln(g2) ∈ L1

and not say anything about square integrability of the function g2ln(g2).
Proposition 2. Let ξ and η are square integrable random variables and

G is sub-σ-algebra of F . Then P -a.s is fulfilled the relation

[E(|ξη||G)]2 ≤ [E(ξ2|G)]1/2[E(η2|G)]1/2. (6)

Proof. Note at firs that the inequality is true on the set where the any
random variable from the right side of (6) P -a.s. is equal to zero. Indeed,
on the set A = {ω : E(ξ2|G)(ω) = 0}, it is obvious that

E(IAξ
2) = E[E(IAξ

2|G)] = E[IAE(ξ2|G)] = 0.

Hence, using the well-known properties of the conditional expectation and
the classical Cauchy-Bunyakovsky inequality, one can easily ascertain that

0 ≤ E[IAE(|ξη||G)] = E[E(IA|ξη||G)] = E[IA|ξη|] =

= E[(IA|ξ|)(IA|η|)] ≤ [E(IA|ξ2)]1/2[E(IA|η2)]1/2 = 0,

i.e., E[IAE(|ξη||G)] = 0. Therefore, on the set A we have

E(|ξη||G) = 0 (P − a.s.)

(if the mathematical expectation from the nonnegative random variable is
zero, then this random variable P -a.s. is zero) and, hence, [E(|ξη||G)]2 = 0.
Analogously, it is obvious, that the (6) is true on the set {ω : E(η2|G)(ω) =
0}.

Further, without community restriction we can suppose that P -a.s.:
E(ξ2|G) > 0 and E(η2|G) > 0. Let’s enter the following designations

ξ =
ξ

[E(ξ2|G)]1/2
; η2 =

η

[E(η2|G)]1/2
.

According to the well-known properties of the conditional expectation,
one can easily see that:

E(ξ
2
) = E[E(ξ

2|G)] = E[E(
ξ2

E(ξ2|G)
|G)] = E[

E(ξ2|G)

E(ξ2|G)
] = 1,
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E(η2) = E[E(η2|G)] = E[E(
η2

E(η2|G)
|G)] = E[

E(η2|G)

E(η2|G)
] = 1.

Therefore, using the elementary inequality 2|ab| ≤ a2 + b2, due to the
well-known properties of the conditional expectation, it is not difficult to
see that P -a.s.:

2E(|ξ · η||G) = 2E(
|ξ|

[E(ξ2|G)]1/2
· |η|
[E(η2|G)]1/2

|G) ≤

≤ E[
ξ2

E(ξ2|G)
|G] + E[

η2

E(η2|G)
|G] = 2,

i.e.,

E(
|ξ|

[E(ξ2|G)]1/2
· |η|
[E(η2|G)]1/2

|G) ≤ 1.

On the other hand, because

E(
|ξ|

[E(ξ2|G)]1/2
· |η|
[E(η2|G)]1/2

|G) =
E(|ξη||G)

[E(ξ2|G)]1/2[E(η2|G)]1/2
,

we have
E(|ξη||G)

[E(ξ2|G)]1/2[E(η2|G)]1/2
≤ 1,

hence,

E(|ξη||G) ≤ [E(ξ2|G)]1/2[E(η2|G)]1/2,

that is equivalent to the statement of a proposition.

4 Main results

Theorem 1. Let M be a normal martingale with the chaos representation
property and ξ ∈ Lq(Ω)

∩
DM

1,q (1 < q ≤ 2). Then the following estimation
is fulfilled

||ξ − Eξ||q ≤ ||{||p(DM
· ξ)||2L2([0,T ])}||2. (7)

Proof. Due to the theorem 2.1 from [7] (in the case of q = 2 see
[6]), the representation (5) is fulfilled for the functionals ξ from the space
Lq(Ω)

∩
DM

1,q (1 < q < 2). Hence, (P − a.s.) we have

ξ − Eξ =

∫
(0.T ]

p(DM
t ξ)dMt.
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Then, according to Lyapunov inequality, using the well-known properties
of stochastic integral with respect to the normal martingale, we can write

{E|ξ − Eξ|q}2/q ≤ E|
∫
(0.T ]

p(DM
t ξ)dMt|2 = E

∫
(0.T ]

|p(DM
t ξ)|2dt. (8)

By the definition of predictable projection one can conclude that if
X ≥ 0 then pX ≥ 0 and p(X − Y ) = pX − pY . Therefore, if X ≤ Y , then
pX ≤p Y . Due to the elementary inequality 2ab ≤ a2 + b2 we can write
that a2 ≥ 2ab− b2 = 2b(a− b) + b2 for any a, b ∈ R1. Taking here a = |Xt|
and b = p|Yt| we see that

|Xt|2 ≥ 2p(|X|)[|X| − p(|X|)] + (p|X|)2.

Thus, taking the predictable projection from the both side of above
inequality, we conclude that

p(|Xt|2) ≥ 2p(|X|)[p(|X|)− p(|X|)] + (p|X|)2 = (p|X|)2. (9)

Therefore, summing up the above-mentioned relations, using the Fubini
theorem and the well-known properties of predictable projection, from the
inequality (8) we ascertain that

{E|ξ − Eξ|q}2/q ≤ E

∫
(0.T ]

[p(DM
t ξ)]2dt ≤

∫
(0.T ]

E{p[(DM
t ξ)2]}dt =

=

∫
(0.T ]

E[(DM
t ξ)2]dt = E

∫
(0.T ]

(DM
t ξ)2dt = ||||DM

t ξ||2L2([0,T ])||
2
2.

It is obvious that the last relation is equivalent to an inequality (7).
Theorem 2. For every random variable ξ from the space WM

1,2 we have
the relation

E(ξ2) ≤ (Eξ)2 +E(||DM
· ξ||2L2([0,T ])).

Proof. According to the results from [8], for every random variable ξ
from the space WM

1,2 we have the representation

ξ = Eξ +

∫
(0.T ]

p(D
M
t ξ)dMt (P − a.s.)

Taking the mathematical expectation from the second degree of the
both side of above relation, using the well-known properties of the stochastic
integral, we conclude that

E(ξ2) = (Eξ)2 + E[

∫
(0.T ]

p(D
M
t ξ)dMt]

2.
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Farther, Due to the well-known properties of stochastic integral and
normal martingale, we can write

E[

∫
(0.T ]

p(D
M
t ξ)dMt]

2 = E

∫
(0.T ]

[p(D
M
t ξ)]2d[M,M ]t = E

∫
(0.T ]

[p(D
M
t ξ)]2dt.

On the other hand, according to the relation (8), using the Fubini the-
orem and the well-known properties of predictable projection, we ascertain
that

E

∫
(0.T ]

[p(D
M
t ξ)]2dt ≤ E

∫
(0.T ]

p[(D
M
t ξ)2]dt = E

∫
(0.T ]

[(D
M
t ξ)2]dt.

Summing up the above-obtained relations, we complete the proof of the
theorem.

Theorem 3. For every random variable ξ ∈ WM
1,2, with ξ2(ω) ≥ ϵ > 0

(for some ϵ > 0), the following inequality holds

E[ξ2ln(ξ2)] ≤ (Eξ)2ln[E(ξ2)] + 2(4 +
1

ϵ
)E(||DM

· ξ||2L2([0,T ])).

Proof. Suppose that the random variable ξ ∈ WM
1,2 is bounded. It is

not difficult to see that in this case (ξ)2 ∈ WM
1,2. Therefore, if we denote

Qt := E(ξ2|ℑt−), then due to the results from [8], (P-a.s.) we have the
representation

QT = ξ2 = E(ξ2) +

∫
(0.T ]

p[D
M
t (ξ)2]dMt.

Hence,

Qt = E(ξ2) +

∫
(0.t]

p[D
M
s (ξ)2]dMs (P − a.s.)

and, due to the proposition 1, using the well-known properties of the pre-
dictable projection, we have

Qt = E(ξ2) +

∫
(0.t]

E[(2ξ + 1)D
M
s ξ|ℑs−]dMs.

Further, according to the Ito’s formula, we write

Qtln(Qt) = E(ξ2)ln[E(ξ2)] +

∫
(0.t]

[1 + ln(Qs−)]dQs + [Qt, ln(Qt)]t.
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Taking the mathematical expectation from the both side of the above
relation, using the well-known properties of the normal martingale, one can
write that

E[ξ2lnE(ξ2)] = E(ξ2)ln[E(ξ2)]+E

∫
(0.T ]

{E[(2ξ + 1)D
M
t ξ|ℑt−]}2

Qt
dt. (10)

On the other hand, according the elementary inequality (a + b)2 ≤
2(a2 + b2), using the Proposition 2 and the Jensen inequality, it is not
difficult to see that

E

∫
(0.T ]

{E[(2ξ + 1)D
M
t ξ|ℑt−]}2

Qt
dt

= E

∫
(0.T ]

{2E(ξD
M
t ξ|ℑt−) + E(D

M
t ξ|ℑt−)}2

Qt
dt

≤ E

∫
(0.T ]

2{4E(ξD
M
t ξ|ℑt−)

2 + E(D
M
t ξ|ℑt−)

2}
Qt

dt

≤ E

∫
(0.T ]

2{4E(ξ2|ℑt−)E[(D
M
t ξ)2|ℑt−] + E[(D

M
t ξ)2|ℑt−]}

Qt
dt

= E

∫
(0.T ]

2E[(D
M
t ξ)2|ℑt−](4Qt + 1)

Qt
dt

= 8

∫
(0.T ]

E[(D
M
t ξ)2]dt+ 2E

∫
(0.T ]

E[(D
M
t ξ)2|ℑt−]

E[ξ2|ℑt−]
}dt

= 8E||(DM
t ξ)2||2L2([0,T ]) + 2E

∫
(0.T ]

E[(D
M
t ξ)2|ℑt−]

ϵ
}

= 2E||(DM
t ξ)2||2L2([0,T ])(4 +

1

ϵ
).

Combining now this last estimation with the relation (10), we com-
plete the proof of theorem in the case when the random variable ξ ∈ WM

1,2

is bounded.The general case we easily obtain by a standard localization
argument based o monotone cut-offs of ξ.
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