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Abstract. We generalize the Clark-Ocone’s stochastic integral representation formula in

case, when the Wiener functional isn’t stochastically (in the Malliavin sense) smooth, but

its conditional mathematical expectation with respect to natural filtration (generated by

Wiener process) is stochastically differentiable and established the method of finding the

corresponding integrand.
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In the stochastic process theory, the representation of functionals of Wiener process
by stochastic integrals, also known as martingale representation theorem, it is stated
that a functional that is measurable with respect to the filtration generated by a Wiener
process can be written in terms of Ito’s stochastic integral with respect to this Wiener
process. The theorem only asserts the existence of the representation and does not
help to find it explicitly.

It is possible in many cases to determine the form of the representation using
Malliavin calculus, if a functional is Malliavin differentiable. We consider nonsmooth
(in the Malliavin sense) functionals and have developed some methods of obtaining
constructive martingale representation theorems. The obtained results can be used
to establish the existence of a hedging strategy in various European Options with
corresponding pay off functions.

The first proof of the martingale representation theorem was implicitly provided
by Ito (1951) himself. This theorem states that any square-integrable Wiener func-
tional is equal to a stochastic integral with respect to the Wiener process. Many years
later, Dellacherie (1974) gave a simple new proof of Its theorem using Hilbert space
techniques.

Many other articles were written afterwards on this problem and its applications
but one of the pioneer works on explicit descriptions of the integrand is certainly the
one by Clark (1970). Those of Haussmann (1979), Ocone (1984), Ocone and Karatzas
(1991) and Karatzas, Ocone and Li (1991) were also particularly significant. A nice
survey article on the problem of martingale representation was written by Davis (2005).

In spite of the fact that this problem is closely related to important issues in ap-
plications, for example finding hedging portfolios in finance, much of the work on the
subject did not seem to consider explicitness of the representation as the ultimate
goal. In many papers using Malliavin calculus or some kind of differential calculus for
stochastic processes, the results are quite general but unsatisfactory from the explic-
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itness point of view: the integrands in the stochastic integral representations always
involve predictable projections or conditional expectations and some kind of gradients.

Shiryaev and Yor (2003) proposed a method based on Ito’s formula to find explicit
martingale representations for Wiener functionals which yields in particular the ex-
plicit martingale representation of the running maximum of the Wiener process. Even
though they consider Clark-Ocone formula as a general way to find stochastic integral
representations, they raise the question if it is possible to handle it efficiently even in
simple cases.

On the probability space (Ω,ℑ, P ) is given the standard Wiener process w = (wt),
t ∈ [0, T ] and (ℑw

t ), t ∈ [0, T ] is the natural filtration generated by the Wiener process
w. The stochastic integral as a process from the adapted square integrable process
represents the square integrable martingale. The well-known Clark’s theorem ([1])
gives an answer to the inverse question. If F is the square integrable ℑw

T -measurable
random variable, then there exists square integrable random process ψt, adapted to
the filtration ℑw

t , such that

F = EF +

∫ T

0

ψtdwt.

If the functional is stochastically smooth then Clark-Ocone’s ([2]) formula proves,
that the integrand from Clark representation of this functional, represents the condi-
tional expectation of Malliavin derivative, i.e. ψt = E(DtF |ℑw

t ), where Dt is the so
called Malliavin’s stochastic derivative.

Despite the fact that Clark-Ocone’s formula gives integrand construction, there are
problems with practical realizations (from the viewpoint of stochastic derivative cal-
culation, as well as conditional mathematical expectation). We generalized this result
([4]) in case, when the functional isn’t stochastically smooth, but its filter (conditional
mathematical expectation) is stochastically differentiable and established the method
of finding this integrand. This method demands smoothness only for conditional math-
ematical expectation of the considered functional, instead of the usual requirement of
smoothness of the functional (as it was in the Clark-Ocone’s formula). For example, the
offered method allows us obtain the integral representations for the indicator I{wt≤x},
which is not differentiable in the Malliavin sense (indicator of event A is Malliavin
differentiable if and only if probability P (A) is equal to zero or one). Our aim to
characterize a class of such functionals. Below we try to make the first step in this
direction.

It is well known, that if a random variable is stochastically differentiable (in the
Malliavin sense), then its conditional mathematical expectation is differentiable too
([3]): in particular, if F ∈ D2,1, then E(F |ℑw

s ) ∈ D2,1 and

Dt[E(F |ℑw
s )] = E(DtF |ℑw

s )I[0,s](t),

where D2,1 denotes the Hilbert space which is the closure of the class of smooth Wiener
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functionals S1 with respect to the norm

||F ||1,2 = {E[F 2] + E[||D·F ||2L2([0,T ])]}1/2.

On the other hand, it is possible that conditional mathematical expectation can
be smooth even if the random variable isn’t stochastically smooth ([4]): for example,
I{wT>x} /∈ D2,1 (as it was mentioned above), but

[E[I{wT>x}|ℑw
t ] = 1− ϕ(

x− wt√
T − t

) ∈ D2,1,

where ϕ is the standard normal distribution function.
Remark 1. However, it should be noted that in many practical cases (which are

interesting from the point of view of financial mathematics) it is impossible to count
on smoothnesses even of conditional mathematical expectation of the functional. For
example, if the functional is represented as the Lebesgue integral (with respect to the
time variable) the from square integrable process which isn’t stochastically smooth,
but its filter is a stochastically smooth process, then the conditional mathematical
expectation of the functional won’t be stochastically smooth. Indeed, on the one hand
(see, Theorem 2 in [5]), if the square integrable random process us for almost all

s ∈ [0, T ] does not belong to D2,1, then the average process
T∫
0

us(ω)ds does not belong

to the space D2,1 either. On the other hand, it is well-known (see, for example, [3])

that if us(ω) ∈ D2,1 for all s, then
T∫
0

us(ω)ds ∈ D2,1 and

Dt{
T∫

0

us(ω)ds} =

T∫
0

Dtus(ω)ds.

Therefore, in this case the conditional mathematical expectation of the functional
T∫
0

us(ω)ds is not stochastically smooth, because we have:

E[

∫ T

0

us(ω)ds|ℑw
t ] =

∫ t

0

us(ω)ds+

∫ T

t

E[us(ω)|ℑw
t ]ds,

where the first summand (integral) is analogous that the initial integral and therefore it
is not Malliavin differentiable, but the second summand is differentiable in the Malliavin
sense when us satisfied our weakened condition (if E[us(ω)|ℑt] ∈ D2,1 for almost all s
and E[us(ω)|ℑw

t ] is Lebesgue integrable for a.a. ω, then (see, for example, [3])

T∫
0

E[us(ω)|ℑt]ds ∈ D2,1).

1Here S denotes the class of random variables which has the form F = f(wt1 , ..., wtn), f ∈
C∞

p (Rn), ti ∈ [0, T ], n ≥ 1, where C∞
p (Rn) is the set of all infinitely continuously differentiable

functions f : Rn → R such that f and all of its partial derivatives have polynomial growth.
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Let p(s, t, ws, A) be the transition probability of the Wiener process w, i.e. p(wt ∈
A|ℑw

s ) = p(s, t, ws, A), where 0 ≤ s ≤ t, A is a Borel subset of R and

p(s, t, x, A) =
1√
t− s

∫
A

φ

(
y − x√
t− s

)
dy

=
1√

2π(t− s)

∫
A

exp{−(y − x)2

2(t− s)
}dy.

For the computation of conditional mathematical expectation below we use the
well-known statement:

Proposition 1. For all bounded or positive measurable functions f we have the
relation

E[f(wt)|ℑw
s ] =

∫
R

f(y)p(s, t, ws, dy) (P − a.s.).

Let L2([0, T ] × Ω) = L2([0, T ] × Ω,B([0, T ]) ⊗ ℑ, λ × P ) (where B([0, T ]) is the
Borel σ− algebra on [0, T ] and λ is the Lebesgue measure) the set of square integrable
processes, and L2

a([0, T ] × Ω) represents the subspace of adapted (to the filtration
(ℑw

t ), t ∈ [0, T ]) processes; L2([0, T ]) = L2([0, T ],B([0, T ]), λ). Let L2,T denote the set
of measurable functions h : R → R, such that h(·)ρ(·, T ) ∈ L2 := L2(R,B(R), λ),
where ρ(x, T ) = exp{− x2

2T
}.

Proposition 2. L2,T be a Banach space with basis {xnρ(x, T )}, n = 0, 1, 2, ....
Proof. The proposition directly follows from the statement VIII.4.3 [6], according

to which if the measurable function f on (a, b) (−∞ ≤ a < b ≤ +∞) differs from zero
and satisfies the condition |f(x)| ≤ Ce−δ|x|, where δ > 0, then the system of functions
xnf(x) (n = 0, 1, ...) is full in L2(a, b).

As it was in the Malliavin calculus, we introduce the space L2,1 (see Definition 3.
3 [7]).

Definition 1. Let L2,1 denote the class of scalar processes u ∈ L2([0, T ]×Ω) such
that ut ∈ D2,1 for a.a. t and there exists a measurable version of Dsut verifying

E

∫ T

0

∫ T

0

|Dsut|2dsdt <∞.

L2,1 is the Hilbert space with the norm

||u||L2,1 := (E

∫ T

0

|ut|2dt)1/2 + (E

∫ T

0

∫ T

0

|Dsut|2dsdt)1/2.

Denote

L2,1
C := {F ∈ L2(Ω) : E(F |ℑw

t ) ∈ L2,1 for a.a. t},

||F ||L2,1
C

:= (EF 2)1/2 + (E

∫ T

0

|E(F |ℑw
t )|2dt)1/2

+(E

∫ T

0

∫ T

0

|DsE(F |ℑw
t )|2dsdt)1/2.
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Definition 2. Let L
2,1

C denote the space which is the closure of the space L2,1
C with

respect to the norm ||· ||L2,1
C
, i.e. if G ∈ L

2,1

C , then there exist a sequence Fn ∈ L2,1
C such

that
lim

n−→∞
||Fn −G||L2,1

C
= 0.

Theorem 1. The conditional mathematical expectation of the functional wn
T I{wT>K}

is stochastically smooth and the following relation:

Ds{E[wn
T I{wT>K}|ℑw

t ]} =
Kn

√
T − t

φ(
K − wt√
T − t

)I[0,t](s)

+
n√
T − t

∫ ∞

K

yn−1φ(
y − wt√
T − t

)dyI[0,t](s) (1)

takes place (where φ is the standard normal distribution density function).
Moreover, for all s < t we have

E[Ds{E[wn
T I{wT>K}|ℑw

t ]}|ℑw
s ] =

Kn

√
T − s

φ(
K − ws√
T − s

)

+
n√
T − s

∫ ∞

K

yn−1φ(
y − ws√
T − s

)dy. (2)

Proof. Due to Proposition 1, it is not difficult to see that

Ds{E[wn
T I{wT>K}|ℑw

t ]} = Ds{
1√
T − t

∫ ∞

−∞
ynI{y>K}φ(

y − wt√
T − t

)dy}

=
1√

2π(T − t)

∫ ∞

K

ynDs[exp{−
(y − wt)

2

2(T − t)
}]dy

=
1√

2π(T − t)3/2

∫ ∞

K

yn(y − wt) exp{−
(y − wt)

2

2(T − t)
}dy· I[0,t](s).

Therefore, using the standard technique of integration and the well-known property
of the normal distribution density function, we easily ascertain that (1) is fulfilled.
Hence, according to Proposition I.2.3 [3], the conditional mathematical expectation of
the considered functional is stochastically smooth.

On the other hand, using again Proposition 1, for all s < t we have

E[Ds{E[wn
T I{wT>K}|ℑw

t ]}|ℑw
s ]

=
−ws

(t− s)
√
2π(T − s)

∫ ∞

K

yn exp{−(y − ws)
2

2(T − s)
}dy

+
1

(T − s)3/2
√
2π

∫ ∞

K

yn+1 exp{−(y − ws)
2

2(T − s)
}dy

+
ws(T − t)

(t− s)(T − s)3/2
√
2π

∫ ∞

K

yn exp{−(y − ws)
2

2(T − s)
}dy.
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From here, by analogy of the transformations made at calculation of the conditional
mathematical expectation (1), it is not difficult to obtain the relation (2).

Corollary 1. In the case n = 1 we have

Ds{E[wT I{wT>K}|ℑw
t ]} =

K√
T − t

φ(
K − wt√
T − t

)I[0,t](s)

+
1√
T − t

[1− ϕ(
y − wt√
T − t

)]I[0,t](s).

Theorem 2. Let the function f ∈ C1 such that |f(x)| ≤ c exp{αx2} for some
constant 0 < α < 1/[2(T − t)]. Then the conditional mathematical expectation of the
functional f(wT )I{wT>K} is stochastically smooth and we have the following relation:

Ds{E[f(wT )I{wT>K}|ℑw
t ]} =

f(K)√
T − t

φ(
K − wt√
T − t

)I[0,t](s)

+
1√
T − t

∫ ∞

K

f ′(y)φ(
y − wt√
T − t

)dyI[0,t](s). (3)

Remark 2. It should be noted that in the future we are going to investigate

functionals from the space L
2,1

C .
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