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1 Introduction and preliminaries. In the 80th of the past century, it turned
out ([1]) that the martingale representation theorems (along with the Girsanov’s measure
change theorem) play an important role in the modern financial mathematics. In particu-
lar, using the integrand of the stochastic integral appearing in the integral representation,
one can construct hedging strategies in the European options of different types. After
Clark ([2]) had obtained the formula for the stochastic integral representation for Wiener
functionals, many authors tried to find the integrand explicitly, and the corresponding
results were obtained when the functionals were smooth in some sense.

The first proof of the martingale representation theorem was implicitly provided by Ito
(1951). Many years later, Dellacherie (1974) gave a simple new proof of Ito’s theorem using
Hilbert space techniques. Many other articles were written afterward on this problem and
its applications but one of the pioneer works on explicit descriptions of the integrand is
certainly the one by Clark (1970). Those of Haussmann (1979), Ocone (1984), Ocone and
Karatzas (1991) and Karatzas, Ocone and Li (1991) were also particularly significant.
A nice survey article on the problem of martingale representation was written by Davis
(2005).

The constructive integral representation is based on the Malliavin (stochastic) deriva-
tive and in the Wiener case it is known as the Clark-Ocone formula ([3]): if F is differen-
tiable in the Malliavin sense, F ∈ DW

2,1, then the integrand in the Clark representation is
E[DW

t F |ℑW
t ], where DW

t is the so called Malliavin stochastic derivative of F .
It has turned out that the requirement of smoothness of functional can be weak-

ened by the requirement of smoothness only of its conditional mathematical expectation.
We (together with prof. O. Glonti, 2014) considered Wiener functionals which are not
stochastically differentiable and established the method of finding the integrand (see [8]).

The stochastic integral representation in the case of so called normal martingales1 M
for functionals from the class DM

2,1 is known as the Clark-Haussmann-Ocone formula ([4]):

1A martingale M is called normal if its predictable square characteristic ⟨M,M⟩t is deterministic.
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let M be a normal martingale with the CRP (chaos representation property), and let
F ∈ L2(Ω). If F ∈ DM

2,1, then

F = EF +

∫ T

0

p(DM
t F )dMt,

where p(DM
t F ) is the predictable projection of the stochastic derivative (DM

t F ) of the
functional F .

As we see, this representation analogously to the Wiener case requires existence of
a stochastic derivative. On the other hand, in this case, unlike the Wiener’s one, it is
impossible to define in a generally adopted manner an operator of stochastic differenti-
ation to obtain the structure of the Sobolev space DM

2,1. Here, the determination of the
stochastic derivative is based on the expansion in series of multiple stochastic integrals of
the functional, whereas the Wiener case involves, besides the above-mentioned approach,
the structure of Sobolev spaces.

For a class of normal martingales one fails to define the space DM
p,1 (1 ≤ p < 2) in a

commonly adopted manner (i.e., by closing a class of smooth functionals with respect to
the corresponding norm). In our work ([5]) we defined the space DM

p,1 (1 < p < 2) for
the normal martingales (the Banach space DM

p,1 which is closure of DM
2,1 under the norm

||F ||p,1 := ||F ||Lp(Ω) + E||DM
· F ||L2([0,T ])) and generalized the Clark-Haussmann-Ocone

formula for the functionals of this space.

2 Main result. Ma, Protter, Martin gave an example showing that two possible
ways of determination of a stochastic derivative coincide if and only if the quadratic mar-
tingale characteristic [M,M ] is the deterministic function (as, for example, in the Wiener
case [W,W ]t = t). Consequently, the Clark-Haussmann-Ocone formula makes it impossi-
ble to construct explicitly the operator of the stochastic derivative of the functionals of
the Compensated Poisson process, saying nothing on the construction of its predictable
projection.

Our approach (see [6], [7]) within the framework of nonanticipative stochastic calculus
of semimartingales allows one to construct explicitly the expression for the integrand of
the stochastic integral in the theorem of martingale representation for square integrable
Poisson functionals, in particular, we will generalize the Clark-Haussmann-Ocone formula
for Poisson functionals. We proposed a new approach to the definition of the stochastic
derivative of the operator of Poisson functionals and obtained the explicit form of the
integrand in the integral representation. Here a more convenient and practical form for
finding the explicit expression of the integrand expression in the Clark-Haussmann-Ocone
representation of functionals of the Poisson process N will be found. In particular, in the
conditional mathematical expectation of the above-mentioned integrand the σ-algebra

For example, among the known martingales, the normal martingale is the Wiener process Wt (because
⟨W,W ⟩t = t) and the Compensated Poisson process Mt = Nt− t (because ⟨M,M⟩t = t, but unlike to the
Wiener process, here the square martingale characteristic is not deterministic: ⟨M,M⟩t = Nt), where Nt

is the Poisson process.
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ℑN
t− = σ(∪s<tℑN

s ) can be replaced by a more natural σ-algebra ℑN
t = σ(Ns : 0 ≤ s ≤ t),

which, in turn, allows us to more effectively use the well-known properties of the Poisson
process.

Let (Ω,ℑ, (ℑt)0≤t≤T , P ) be a filtered probability space, satisfying the usual conditions.
Assume that the standard Poisson process Nt is given on it (Pk := P (Nt = k) = e−ttk/k!,
k = 0, 1, 2, . . .) and that ℑt is generated by N (ℑt = ℑN

t ), ℑ = ℑT . Let Mt := Nt − t (the
compensated Poisson process) and ∆Mt = Mt −Mt−.

Let Z+ = {0, 1, 2, . . .}; ∆−f(k) = f(k) − f(k − 1) (f(k) = 0, k < 0); ∆n
− := (∆−)

n

and define the Poisson-Sharle’s polynomials: Πn(k) = (−1)n∆n
−Pk/Pk, n ≥ 1; Π0 = 1.

It is known that the system of normalized Poisson-Charlier polynomials is a basis in
L2(Z

+) := {f :
∑∞

k=0 f
2(k) < ∞}.

Let

LT
2 := {f : e−T

∞∑
k=0

f 2(k)T k/k! < ∞}.

This is a Banach space with the basis {kne−TT k/k!}. Denote ∆x
+f(x) = f(x+1)−f(x)

(∆x
+f(MT ) := ∆x

+f(x)|x=MT
). The following theorem was proved in [7].

Theorem 1. Let f ∈ LT
2 and for some ϵ > 0 : ∆x

+f(· − T ) ∈ L
(1+ϵ)T
2 , then the stochastic

integral below is well defined and the following representation is valid:

f(MT ) = E[f(MT )] +

∫
(0;T ]

E[∆x
+f(MT )|ℑt−]dMt (P -a.s.).

Although we have established here explicit form of an integrand, which does not require
calculation of a stochastic derivative of functional and its predictable projection, we still
encounter practical difficulties. For example, calculation of conditional mathematical
expectation with respect to the σ-algebra ℑN

t− is quite a difficult task. It is much more
convenient to calculate the conditional mathematical expectation with respect to the
σ-algebra ℑN

t , since in this case the Markov property of the Poisson process can be used.
The class of smooth Poisson functionals SM is the class of random variables which has

the form

F = f(Mt1 , ...,Mtn), f ∈ C∞
p (Rn), ti ∈ [0, T ], n ≥ 1,

where C∞
p (Rn) is the set of all infinitely continuously differentiable functions f : Rn → R

such that f and all of its partial derivatives have polynomial growth.

Definition. The stochastic (Malliavin) derivative of a smooth random variable F ∈ SM

is the stochastic process DM
t F , given by

DM
t F =

n∑
k=1

∑
i1<···<ik

∆i1
+(· · ·(∆

ik
+f(Mt1 , ...,Mtn)))I[0,ti1 ](t)· · · I[0,tik ](t),

where ∆i
+f(x1, ..., xi, ..., xn) = f(x1, ..., xi + 1, ..., xn)− f(x1, ..., xi, ..., xn).
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Theorem 2. Let f ∈ LT
2 and for some ϵ > 0 : ∆x

+f(· − T ) ∈ L
(1+ϵ)T
2 , then the stochastic

integral below is well defined and the following representation is valid:

f(MT ) = E[f(MT )] +

∫
(0;T ]

E[∆x
+f(MT −∆Mt)|ℑt]dMt (P -a.s.).
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