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HASTIC DERIVATIVE OPERATOR OF TWO-DIMENST
STO POISSON FUNCTIONALS i

Omar Purtukhia’, Vakhtang Jaoshvili®

Ivane Javakhishvili Tbilisi State University,
A. Razmadze Mathematical Institute of GNAS, Tbilisi, Georgia
lomar.purtukhia@tsu.ge, *vakhtangi.jaoshviil@gmail.com

T
0. In the theory of stochastic Ito’s integral I f(t,w)dw, , besides the fact that the integr-
0

i f(;,a)) is the measurable function of two variables, it should be the adapted (nonanticipat-

) PTOCESS: Startipg from the 70™ of the past century, many attempts were made to weak the re-
sirement for the integrand to be adapted for the integrand of the Ito’s stochastic integral as well
s in the theory of “the extension of filtration”. Skorokhod (1975) suggested absolutely different
qethod, it generalized the direct and inverse Ito’s integrals and did not require for the integrand
1 be independent of the future Wiener process. Towards this end, he required for the integrand
o be smooth in a certain sense, i.e., its stochastic differentiability. This idea was later on
jveloped in the works of Gaveau-Trauber (1982), Nualart, Zakai (1986), Pardoux (1982),
protter, Malliavin (1979), etc. In particular, Gaveau-Trauber have proved that the Skorokhod
gperator of stochastic integration coincides with the conjugate operator of a stochastic derivative
operat()l'.

For the class of normal martingales (a martingale M is called normal if (M, M), =t)
shich have the chaos representation property Ma, Protter and Martin (1998) have proposed an

aficipating integral and the stochastic derivative operator and the integral representation
formula of Ocone-Haussmann-Clark is established (which, in turn play an important role in the
nodern financial mathematics). This integral is analogous to the Skorohod integral as developed
by Nualart and Pardoux (1988). According to the Ocone-Haussmann-Clark formula if

Fe Dy}, then
i
F=EF)+["(D/'FdM,
0

is valid; here D% denotes the space of quadratically integrable functionals having the first
oider stochastic derivative, and ” (D,M F) is the predictable projection of the stochastic

derivative D,M F of the functional F'. There are many similarities between the above-

mentioned martingale anticipating integral and the Skorohod integral, but there are glso some
important differences. Many of these differences stem from one key fact: in the Wiener case

[w,#], = (w,w), =¢, while in the normal martingale case only (M ,M), =t ,and [M ,M), is
fandom, For example, there are two ways to describe the variational derivative and they are

Quivalent in the Wiener case but not in the martingale case. In [3] an example is given, which
Stows that the two definitions (Sobolev space and chaos expansion) are compatible if and only

1,11 ], is deterministic. Therefore in the martingale case the space D o (<7 =)
ot be defined in the usual way, i.e., by closing the class of smooth functionals leth respec(t1
Gomesponding norm, In work of Purtukhia (2003) the space D, (1< p <2)is propose

P,

T . : - ~Haussmann-
¢ 1255 of normal martingales and the integral representation formula of Ocone-Hau

S established for functionals from this space.
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2 DP(MS,MT)z[P(AMS +1,A/[r +])_P(Ms>MT +1)]I (
i ‘ (0,5,(¢
1)—P(Mq,Mr)]Ito.T1(’):V’P(]_V{S’MT DMV, P(g, o0
ctom 3.3 Fc;r any polynomial functions F(x,y) and G(x, ) we g M,
proposition >+ Mr)]"’G(MS*M7‘)DIF(MS,MT)+
+}’7(M Mr)DrG(MS’MT)+D’F(MS’MT)D'G('MS,MT).
f. Due to tsh’e definition 3.1 o0 the one hand we have
Pr;o[F(Ms,MﬂG(Ms,Mr)l=[F(M s *LM; +DG(Ms +1,M, +1)-
_ F(M My +DOM s My + Doy (O +IF (Mg, My +DG(M g, M, +1) -
'F(MS,MT)G(MS9MT)]]|(»,7‘1(1) =1, +1,.

On other hand, one can conclude that
GO, M, )D, F (M, M)+ F(Ms, Mp)D G(M, My ) +
+D,F(MS,M,,.)D,G(MS,MT‘) =1 +1,.
Theorem 3.2. Let u, is Skorokhod integrable and F'(x, y) is a polynomial function,

Then F(My,M)u, is Skorokhod integrable and we have
[Py, Mp)udM, = F(Ms. M) fuaM, -
[0,7] (0,7]
~ [u,D,[F(My,M;)laM, - [u,D,[F (Mg, M)t (P-as)
[0,7) [0,7]
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