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DIFFERENT APPROACHES IN THE CONSTRUCTIVE
MARTINGALE REFRESENTATION OF BROWNIAN
FUNCTIONALS
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In this direction we are familiar with one sufficiently gep,
_called Clark-Ocone’s formula ([2]) by which fq ;c
tionals: w(Z, w):E[DtBF | 5/ 1), where D'F is e
vative of the functional F . It should be noted fhy
application of the Clark-Ocone's formula ?@?ds as a 1’11.199 ‘on the one hang,
essential efforts, and, on the other hand, in the cases if the functional F
has no stochastic derivative, its application is impossible.

In many papers using Malliavin calculus or some kind of
differential calculus for stochastic processes, the results are quite general
but unsatisfactory from the explicitness point of view: the integrands in
the stochastic integral representations always involve predictable
projections or conditional expectations and some kind of gradients. A
different method for finding the process (f,) was proposed D)
Shiryaev, Yor and Graversen (2003, 2006), which was based on the Ito
(generalized) formula and the Levy theorem for the Levy martingale

e B : 5 ;
M, =E[F|3J] associated with F . Later on, using the Clark-Ocone

fﬁ:ﬁﬂa’l Renaud and Remillard (2006) have established explict
()%3 earep resentations for path-dependent Brownian functionals.
the classj pproach with prof. Jaoshvili (2005-2009) in the framew
assical Ito calculus, on the basis of the standard L, theory and t
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d by the requirement of smoothness only of its condlltlonal
1 expectation. We (with prof. O. Glonti, 2017) canIdered
Is which are not stochastically differentiable. In
particular, we generalized the Clark-Ocone formu.la in case, w!men
functional is not stochastically smooth, but its conditional mathematical
expectation is stochastically differentiable and established the method of

finding of integrand.
A ~B o
Theorem 1 (Theorem 2.1. [3]). Suppose that g, = E[F|37] is

weakene
mathematica |
Brownian functiona

Malliavin differentiable ( g, eDfl ) for almost all t€[0,T). Then we
T

have the stochastic integral represemtation g, =F =EF+ _‘-VudB”
0

(P-as). where v, :=limE[D,g, | 3] inthe L([0,T1xQ).

Next, we have considered functionals which didn't satisfy even these
weakened conditions. To such functionals belong, for example, Lebesgue
integral (with respect to time variable) from stochastically non smooth
square integrable processes.

Theorem 2 (Corollary 2.2. [4]). For F =( j; Bds—K)" the

Jollowing stochastic integral representation holds

F=p(KB) /B~ K[1-D(KB)]+
[ 1-0{1-(BA-1"[K - [ (1~ 5)dB,1)}dB,.

where @ s the standard normal distribution function and @ ist density.
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