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1. Introduction

Let X be a connected CW-space whose homotopy groupsπiX are trivial in
dimensionsi > n+1. Such a space is termed ahomotopy(n+1)-type. In the case
n= 0, classical homological algebra provides a purely algebraic description of the
integral homologyH∗(X) in terms of derived functors. Forn= 1 it has recently
been shown [1] (cf. [2]) that the homology can be realised as the non-abelian
left derived functors of a certain abelianisation functorA : (crossed modules)→
(abelian groups). Crossed modules are convenient algebraic models of homotopy
2-types. More generally, homotopy(n+1)-types are modelled by catn-groups [3]
or equivalently by crossedn-cubes [4]. Our aim in this paper is to explain how
the methods of [1] extend to arbitraryn� 0 and lead to a natural isomorphism

Hn+i+1(X)∼= LAi (G), i � 1, (1)

whereLAi (−) is theith non-abelian left derived functor of a certain abelianisation
functor A : (crossedn-cubes) → (abelian groups) andG is a suitable crossed
n-cube. We also explain how the relationship betweenHn+1(X) andLA0 (G) can
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be expressed as an algebraic formula for the homology ofX analogous to the
Hopf type formula for the higher homology of a group obtained in [5].

The paper handles only the casesn = 1,2 in full detail. The routine
modifications needed forn � 3 are largely left to the reader. In Section 2 we
recall some terminology and results of D. Quillen [6,7] on homology in algebraic
categories. In Section 3 we derive the following lemma from general results on
simplicial objects: ifG is a projectiven-fold simplicial group thenπ0(G) is a free
group andπi(G)= 0 for i � 1. Isomorphism (1) is proved in Section 4, together
with various Hopf-type formulae forH∗(X).

We adopt the following notation. The category of sets is denoted byS.
The category of groups is denoted byG. The category of simplicial objects
of a categoryC is denoted bySC. Accordingly,SS denotes the category of
simplicial sets,SG the category of simplicial groups. The category ofn-fold
simplicial groups is denoted bySnG. We always identify an objectX of C
with the constant simplicial object ofSC whose simplicial operators are all
equal to the identity morphism ofX. The free group on a setX is denoted
by 〈X〉gr. The standardn-simplex is denoted by∆n and characterised by the
property HomSS(∆n,X) ∼= Xn for all simplicial setsX. The integral homology
of a simplicial set or CW-spaceX is denoted byH∗(X). For a simplicial group
G, we letM∗(G) be the Moore complex ofG, which is the non-abelian chain
complex defined by

Mn(G)=
⋂

0<i�n
Ker∂ni ,

with d :Mn(G)→Mn−1(G) induced by∂n0 .

2. Quillen homology

In this section we recall some ideas and results of Quillen (see [6,7]). LetC be
a category with finite limits. We letX×Y X denote the pull-back

X×Y X p1

p2

X

f

X
f

Y

of a morphismf :X→ Y in C. The morphismf :X→ Y is said to be aneffective
epimorphismif, for any objectT , the diagram of sets

HomC(Y,T )
f ∗

HomC(X,T )
p∗

1

p∗
2

HomC(X×Y X,T )
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is exact. This means thatf ∗ is an injective map and, ifg :X→ T is a morphism
such thatgp1 = gp2, then there exists a (necessarily unique) morphismh :Y → T

such thatg = hf .
An objectP of C is projectiveif for any diagram

P

h
g

X
f

Y

with f an effective epimorphism there exists a morphismh :P → X such that
g = fh. We say thatC has sufficiently many projective objects if for any object
X there is a projective objectP and an effective epimorphismP →X.

Let us assume additionally thatC possesses colimits. An objectX is called
small if HomC(X,−) commutes with filtered colimits.

A classU of objects ofC is said togenerateC if for every objectX there is
an effective epimorphismQ→X whereQ is a coproduct of copies of members
of U .

The categoryC is said to be analgebraic categoryif it possesses finite limits
and arbitrary colimits and has a set of small projective generators. We leave the
proof of the following easy fact to the reader.

Lemma 1. Let C be an algebraic category andB ⊂ C be a full subcategory.
Suppose thatB ⊂ C has a left adjointL :C → B and that the following condition
holds: a morphismf :X→ Y in B is an effective epimorphism inC if and only if
it is an effective epimorphism inB. ThenLP is a projective object inB for each
projective objectP in C. ThusB is an algebraic category.

The following fundamental result is due to Quillen (see [6, Theorem 4,
Chapter II, p. 4]).

Theorem 2. Let C be an algebraic category. Then there exists a unique closed
simplicial model category structure on the categorySC of simplicial objects over
C such that a morphismf in SC is a fibration(respectively weak equivalence)
if and only if HomSC(P,f ) is a fibration (respectively weak equivalence) of
simplicial sets for each projective objectP of C. Moreover, ifX is a cofibrant
object inSC thenXn is a projective object inC for all n� 0.

A simplicial resolutionof an objectX of C can be defined as a fibrationQ→X

in SC which is also a weak equivalence. If additionallyQ is a cofibrant object
in SC thenQ → X is called a simplicialcofibrant resolution. It is a formal
consequence of Theorem 1 that simplicial cofibrant resolutions exist and are
unique up to homotopy equivalence, and up to homotopy depend functorially
onX.
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Let Cab denote the category of abelian group objects in the algebraic
categoryC. It can be shown thatCab is an abelian category and that moreover
the abelianisation functor

(−)ab:C → Cab, X �→Xab,

left adjoint to the forgetful functorCab ⊂ C, exists. Following [7] one defines
the Quillen homology of an objectX in C as the homology of the chain complex
associated to the simplicial objectQab obtained by applying(−)ab dimensionwise
to a simplicial cofibrant resolutionQ of X. We letD∗(X) denote the Quillen
homology ofX.

3. Projective objects in n-fold simplicial groups

The material in this section is well-known. Our goal is the following result:
a projective object inSnG has no homotopy in dimensions� 1.

Let I be a small category and letGI denote the category of functorsI → G
from I to the category of groups.

Lemma 3. A morphismf :X→ Y in GI is an effective epimorphism if and only
if f (i) is surjective for all objectsi ∈ I.

Proof. Assumef (i) is surjective for all objectsi ∈ I. Then Hom(Y,T ) →
Hom(X,T ) is injective and, for any functorT :I → G and any natural
transformation

g :X→ T

such that the diagram

X×Y X p1

p2

X

g

X
g

T

commutes, there exists a unique transformation

h :Y → T

such thatg = hf . The transformationh is given by

h(i)(y)= g(i)(f (i)−1(y)
)
, y ∈ Y (i).

The condition ong implies thath is well-defined. Conversely, assumef is an
effective epimorphism. SetY ′(i)= Im(f )(i)⊂ Y (i). Then eachX(i)→ Y ′(i) is
surjective and henceX→ Y ′ is an effective epimorphism. Therefore Hom(Y,Z)
and Hom(Y ′,Z) are both equalisers of the same diagram and hence coincide. It
follows thatY ′ = Y . ✷
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Lemma 4. For each objecti ∈ I let

hi :I → G

be the functor given by

j �→ 〈
HomI(i, j)

〉
gr.

Then the collection(hi)i∈I is a set of small projective generators in the
categoryGI .

Proof. The Yoneda lemma implies that

HomGI (hi , T )∼= T (i)
for i ∈ I, T ∈ GI and the result follows. ✷
Corollary 5. The categoryGI is an algebraic category.

In fact, one can prove thatCI is an algebraic category for any algebraic
categoryC. As a consequence of Corollary 5, we see that the category of (n-fold)
simplicial groups is algebraic. We need to identify the homotopy type of projective
objects inSnG.

Let ∆ be the category of finite ordinals. We will assume that the objects are
the sets

[n] = {0,1, . . . , n}, n� 0

and morphisms are nondecreasing maps. ThenG∆op
is the category of simplicial

groups. Since

∆n = Hom∆op
([n],−)

is the standardn-simplex, Lemma 4 shows that any projective object in the
category of simplicial groups is a retract of a simplicial group of the form〈 ⊔

n�0

(
Sn ×∆n)〉

gr
,

where(Sn)n�0 is a sequence of sets.
It is well known that the standardn-simplex is simplicially contractible (see,

for example,ρ in [8, p. 151]) and therefore the projection of
⊔
n�0Sn ×∆n to

the constant simplicial set
⊔
n�0Sn is a simplicial homotopy equivalence. Since

any degreewise extension of a functorS → G preserves the homotopy relation,
we see that the simplicial group〈⊔n�0Sn ×∆n〉gr is homotopy equivalent to the
constant simplicial group〈⊔n�0Sn〉gr. As a consequence we obtain the following
corollary.
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Corollary 6. If P is a projective object in the category of simplicial groups,
thenP is degree-wise free. Moreover,π0P is a free group andP is homotopy
equivalent to a constant simplicial group, henceπiP = 0 for i � 1.

We now consider bisimplicial groups. Given a bisimplicial groupG, we let
Gv
n andGh

m denote thenth vertical andmth horizontal parts; both are simplicial
groups. We letπv

i G andπh
i G denote the simplicial groups obtained by taking the

ith homotopy group ofGv
n andGh

m. We letπiG denote theith homotopy group
of the diagonal simplicial group(Gn,n)n�0. For simplicial setsX andY we let
X� Y denote the bisimplicial set whose(m,n)th component isXm × Yn.

By Corollary 5 the category of bisimplicial groups is an algebraic category and
any projective object is a retract of a bisimplicial group of the form〈⊔

n,m

Sn,m × (
∆n �∆m

)〉
gr
,

where (Sn,m)n,m�0 is a family of sets. Thus each vertical or horizontal part
is a projective object in the category of simplicial groups. Moreover, ifP is
a projective object in the category of bisimplicial groups, then

πv
nP = 0 = πh

nP, n� 1,

and bothπv
0P andπh

0P are projective objects in the category of simplicial groups.
Thus

πh
i π

v
j P = 0

as soon asi > 0 or j > 0. So the spectral sequence [9]

E2
pq = πv

pπ
h
qP ⇒ πp+qP

implies thatπiP = 0 for i � 1. Sinceπ0P = πv
0π

h
0P , we see thatπ0P is a free

group.
The situation for multisimplicial groups is analogous. We leave as an exercise

to the reader the modifications required to obtain the following result.

Lemma 7. LetG be a projective object in the categorySnG of n-fold simplicial
groups. In each directionG is homotopy equivalent to a constant simplicial object
in the categorySn−1G of (n−1)-fold simplicial groups, which is also a projective
in Sn−1G. In particular,πiG= 0 for i � 1, andπ0P is a free group, whereπiG
denotes theith homotopy group of the diagonal ofG.

4. Homology of catn-groups and crossed n-cubes

Recall [3] that a catn-group consists of a groupG together with 2n
endomorphismssi, ti :G→G satisfying



J.M. Casas et al. / Journal of Algebra 256 (2002) 583–598 589

sisi = si , si ti = ti , ti ti = ti , tisi = si ,
si tj = tj si (i �= j),[
Ker(si),Ker(ti)

]= 0,

for 1 � i � n. A morphismof catn-groups(G, si , ti) → (G′, s′i , t ′i ) is a group
homomorphismG → G′ that preserves thesi and ti . We let CG denote the
category of cat1-groups, andCnG the category of catn-groups. Note that a cat0-
group is just a group.

A cat1-group(G, s, t) is equivalent to a category object inG. The arrows are
the elements ofG, the identity arrows are the elements ofN = Im(s)= Im(t), the
source and target maps ares andt , and composition of arrowsg,h ∈G is given by
g ◦h= g(sg)−1h. Thus the nerve of a category provides a functorN :CG → SG.

Lemma 8. (i) N is a full and faithful;
(ii) N possesses a left adjointT :SG → CG and the functorN ◦T :SG → SG

preserves the homotopy relation. Moreover, for any simplicial groupG one has

πi
(
N ◦ T (G))= πi(G) if i = 0,1, and

πi
(
N ◦ T (G))= 0 if i > 1;

(iii) A morphism f inCG is an effective epimorphism if and only ifNf is an
effective epimorphism inSG;

(iv) CG is an algebraic category. Moreover if(G, s, t) is a projective object in
the categoryCG of cat1-groups, thenπi(N (G))= 0 for i > 0 andπ0(N (G)) is
free group.

Proof. (i) is obvious. The statement (ii) is well-known and it follows for example
from [10, Proposition 3]. By [10] the cat1-group T G has underlying group
G1/∂

2
0(M2(G)); the mapss andt are induced byd1

0 andd1
1. One easily checks

that for any simplicial groupG the Moore complex ofN ◦T (G) is isomorphic to

· · · → 0 →M1(G)/∂
2
0

(
M2(G)

)→M0(G)

and thereforeπi(N ◦ T (G)) = πi(G) if i = 0,1 and πi(N ◦ T (G)) = 0 if
i > 1. In order to verify (iii), note that the argument given in the proof of
Lemma 3 shows thatf is an effective epimorphism if and only iff is surjective
(as a homomorphism of groups). Butf is surjective if and only ifNf is
degreewise surjective which, by Lemma 3, is equivalent toNf being an effective
epimorphism. By (iii) the assumptions of Lemma 1 hold and thereforeCG is an
algebraic category. The last statement of (iv) follows easily from Lemma 6 and
from (ii). ✷

A cat2-groupG is equivalent to a category object inCG. It is thus equivalent to
a group endowed with two compatible category structures, a horizontal one and
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a vertical one. The nerveN vG of the vertical category structure is a category
object inSG. By then taking the nerve of the horizontal category structure, we
obtain a full and faithful functor

N 2 =N hN v :C2G → S2G
into bisimplicial groups. Moreover a morphismf is an effective epimorphism (i.e.
surjective as a group homomorphism) inC2G if and only if N 2f is an effective
epimorphism (i.e. dimensionwise surjective) inS2G. The functorN 2 admits a left
adjoint

T 2 :S2G → C2G
which is defined by first applyingT dimensionwise to a bisimplicial groupG to
obtain a simplicial cat1-groupT G, and then applyingT again to obtain a cat2-
groupT 2G.

By Corollary 5 and Lemma 1, the categoryC2G of cat2-groups is an algebraic
category. Moreover, if(G, s1, s2, t1, t2) is a projective object in the categoryC2G
of cat2-groups, then the horizontal and vertical cat1-groups are projective in the
category of cat1-groups. Moreover,πi(N 2(G)) = 0 for i > 0 andπ0(N 2(G))

is free group. These facts follows easily from Lemma 7 becauseT respects the
homotopy relations.

The situation for catn-groups is similar. We leave as an exercise for the reader
the routine modifications needed to establish the following lemma.

Lemma 9. The categoryCnG of catn-groups is an algebraic category. Moreover, if
(G, si, ti ), i = 1, . . . , n is a projective object in the categoryCnG, then each ‘face’
ofG is a projective object in the categoryCn−1G. Furthermoreπi(N n(G))= 0
for i > 0 andπ0(N n(G)) is a free group.

An abelian group object inCnG is just a catn-group whose underlying group is
abelian. The abelianisation functor

(−)ab:CnG → (
CnG

)
ab

sends a catn-group G = (G, si , ti) to the catn-group with underlying group
Gab = G/[G,G] and induced homomorphismssi , ti :Gab → Gab. The Quillen
homology of a catn-groupG is obtained from a cofibrant simplicial resolution
Q→ G by abelianising the simplicial catn-groupQ dimensionwise and taking
the homology of the associated chain complex or associated Moore complex:

Di(G)= πi(Qab).

Note thatDi(G) is an abelian catn-group for eachi � 0. Below we define the
groupHi(G)Quillen as a subgroup of the underlying group ofDi−1(G).

There is an alternative way to define the homology of a catn-groupG, based
on the composite functor

B :CnG N n

SnG N Sn+1S diagonal SS
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from catn-groups to simplicial sets(n � 0). The functorN :SnG → Sn+1S is
defined by considering groups as categories and taking the nerve degreewise. The
geometric realization|BG| is by definition theclassifying spaceof the catn-group
G and induces an equivalence between the (suitably defined) homotopy categories
of catn-groups and connected CW-spacesX with πiX = 0 for i � n+ 2 (see [3]).
The integral homology of|BG| is a natural homology to associate toG, and so
we set

Hi(G)Top =Hi
(|BG|), i � 0.

We refer the reader to [11,12] for more information onHi(G)Top in the case
n= 1. Our principal aim in this paper is a comparison of the algebraically defined
homologyD∗(G) with the topologically defined homologyH∗(G)Top.

We remark that the classifying functorB behaves nicely with respect to the
inclusion functorCnG → SCnG and also with respect to the inclusion functors
inclj :CnG −→ Cn+1G (1 � j � n+1)which insert identity morphismssj , tj . By
taking nerves and diagonals appropriately one obtains a functorB :SCnG → SS
from simplicial catn-groups to simplicial sets such that the triangle of functors

CnG inclusion

B
SCnG

B

SS

commutes. The triangle of functors

CnG
inclj

B
Cn+1G

B

SS

also commutes for eachj .
To facilitate the comparison ofH∗(G)Top andH∗(G)Quillen we recall from

[4] some details on the categorical equivalence between catn-groups and crossed
n-cubes. Acrossedn-cubeconsists of a collection of groupsMα indexed by the 2n

subsetsα ⊂ {1, . . . , n}, together with homomorphismsλi :Mα →Mα\{i} for i ∈ α
and commutator type functionsh :Mα ×Mβ →Mα∪β . For present purposes it is
unnecessary to recall precise details of the commutator functions or the axioms
satisfied by the structure. A crossed 1-cube

M{1} λ1 M∅
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is just a crossed module, the action being given byM∅ ×M{1} →M{1}, (x, y) �→
h(x, y)y. A crossed 2-cube

M{1,2} λ1

λ2

M{2}
λ2

M{1} λ1 M∅

coincides with the notion of a crossed square introduced by Loday [3]. A mor-
phism(Mα)→ (M ′

α) of crossedn-cubes is a family of structure preserving group
homomorphismsMα →M ′

α . We letXG denote the category of crossed modules,
andX nG the category of crossedn-cubes.

It has long been known that a crossed module is equivalent to a category object
in G, that is, to a cat1-group (see [13]). Loday [3] proved that crossed squares are
equivalent to cat2-groups, and this equivalence was extended [4] to one between
crossedn-cubes and catn-groups. The functorial equivalence

E :CnG → X nG

sends a catn-groupG= (G, si, ti ) to the crossedn-cubeEG with

EGα =
⋂
i∈α

Ker(si )∩
⋂
j∈ᾱ

Im(sj ),

whereᾱ denotes the complement ofα in {1, . . . , n}. The morphismsλi :EGα →
EGa\{i} are the restriction ofti , and the functionsh are all given by commutation
in the groupG. It is convenient to letσG denote the group

σG= EG{1,...,n} =
⋂

1�i�n
Ker(si ).

The inverse equivalenceE−1 :X nG → CnG is described in [4]. For a crossed
n-cubeM we setBM = B(E−1M).

The equivalenceE :CG → XG induces an equivalenceE :SCG → SXG such
that the diagram

CG inclusion

E

SCG
E

XG inclusion SXG

commutes.
We need the following easily verified description of the crossedn-cubeE(Gab)

associated to the abelianisation of a catn-groupG.
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Lemma 10. LetG be acatn-group with associated crossedn-cubeEG= (Mα).
Then the crossedn-cube associated toGab has the formE(Gab)= (�Mα) where

�Mα =Mα
/ ∏
β∪γ=α, β∩γ=∅

[Mβ,Mγ ],

are commutator subgroups being defined via commutation in the underlying group
ofG.

The comparison ofH∗(G)Top with D∗(G) is facilitated by setting

Hi(G)Quillen = σDi−1(G), i � 1, H0(G)Quillen = Z.

We also denote by�Hi(G)Quillen the corresponding reduced groups. Thus

�H0(G)Quillen = 0 and �Hi(G)Quillen =Hi(G)Quillen for i > 0.

Then bothH∗(G)Top andH∗(G)Quillen are functorsCnG → Ab to the category of
abelian groups. Whenn = 0 we have functorsH∗(−)Top, H∗(−)Quillen:G → Ab
and it is well known that

H∗(G)Top ∼=H∗(G)Quillen

in this case. We denote both of these homology functors byH∗(G).
Let us now considern= 1. A cat1-groupG is equivalent to a crossed module

λ1 :EG{1} → EG∅ which for simplicity we denote byλ :M → P . To the groupP
we can associate the crossed module 0→ P . The inclusion morphism of crossed

modules(0
0→P)−→ (M

λ→P) induces a map of simplicial sets

fG :B
(

0

P

)
→ B

(
M
λ

P

)
.

We denote by Cof(G) the homotopy cofibre offG. The following theorem,
modulo some notation, was proved in [1]. (A more general version of the result for
homology and cohomologywith arbitrary coefficient module is contained in [14].)

Theorem 11. For anycat1-groupG there is an isomorphism

�Hi(G)Quillen ∼=Hi+1
(|Cof(G)|) (i � 0)

and consequently an exact sequence

· · · →Hi+1(P )→Hi+1(G)Top →Hi(G)Quillen →Hi(P )→ ·· · (i � 1).

We wish to explain how this result generalises to catn-groups,n� 1. To pave
the way we recall the proof for the casen= 1.

Proof. Let Q→ G be a cofibrant simplicial resolution ofG, that is a fibration
in S(CG) which is also a weak equivalence and whereQ is cofibrant. Then
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BQ→ BG is a weak equivalence inSS. Moreover, it is readily checked that
B(EQ∅)→ B(EG∅) is also a weak equivalence. The mapfQ and cofibre Cof(Q)
are defined analogously tofG and Cof(G). The homology exact sequences
associated to the cofibrationsfG, fQ show that Cof(Q)→ Cof(G) induces an
isomorphism in homology. Since Cof(Q) and Cof(G) are both 1-connected it
follows that Cof(Q)→ Cof(G) is a weak equivalence.

The simplicial set Cof(Q) is obtained as the diagonal of a bisimplicial set
X with X∗p = Cof(Qp), whereQp is thepth component ofQ. The homology
spectral sequence for the bisimplicial setX has the form

E1
pq =Hq

(
Cof(Qp)

)⇒Hp+q
(
Cof(G)

)
.

Now Cof(Qp) is the cofibre of the mapB(Pp)−→ B(Mp → Pp) whereMp →
Pp is the crossed module equivalent toQp . SinceQp is a projective cat1-group
it follows thatMp → Pp is a projective crossed module. It is readily seen that
Pp must be a free group. Part (iv) of Lemma 8 implies that both classifying
spaces here have free fundamental group and trivial higher homotopy groups. So
Cof(Qp) is simply connected and the homology exact sequence of a cofibration
implies thatHi(Cof(Qp))= 0 for i > 2 and

H2
(
Cof(Qp)

)∼= Ker
(
(Pp)ab→ (Pp/Mp)ab

)
.

Lemma 8 implies thatPp/Mp is free. HenceH2(Pp/Mp)= 0 and

0 →Mp → Pp → Pp/Mp → 0

is a split short exact sequence. It follows that

Ker
(
(Pp)ab→ (Pp/Mp)ab

)∼=Mp/[Mp,Pp].
Thus

H2
(
Cof(Qp)

)∼=Mp/[Mp,Pp].
Hence

E1
pq = 0 if q �= 0 or 2, E1

p0 = Z, and E1
p2 =Mp/[Mp,Pp].

ThusE1
p0 is a constant simplicial abelian group. HenceE2

p0 = 0 for p > 0.
Therefore the spectral sequence degenerates and gives the isomorphism

Hi+2
(
Cof(G)

)∼= πi
(
M∗/[M∗,P∗]

)
, i � 0.

Lemma 10 implies

M∗
[M∗,P∗]

∼= σ
(

Q∗
[Q∗,Q∗]

)
and so

πi
(
M∗/[M∗,P∗]

)∼=Hi+1(G)Quillen. ✷
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Corollary 12. Let M → P denote the crossed module associated to thecat1-
groupG. If P is a free group then there are natural isomorphisms

Hi+1(G)Top ∼=Hi(G)Quillen (i � 2),

H2(G)Top ∼= Ker
(
M/[M,P ] → P/[P,P ]).

The description ofH2(G)Top given in the corollary can be viewed as
a generalization of Hopf’s formula for the second integral homology of a groupK.
To see this, note that ifπ1G=K, π2G= 0 in the corollary, thenM is a normal
subgroup of the free groupP with K ∼= P/M, andH2(G)Top ∼= H2(K,Z). We
thus recover Hopf’s formulaH2(K,Z)∼=M ∩ [P,P ]/[M,P ].

Consider nown = 2. An arbitrary cat2-groupG is equivalent to a crossed
squareEG which, for simplicity, we denote by

L N

M P

.

By applying the classifying functorB :X 2G → SS to a diagram of crossed
squares we obtain the following diagram of simplicial sets:

B
(

0 0

0 P

)
f 1
G

g1
G

B
(

0 N

0 P

)

g2
G

B
(

0 0

M P

)
f 2
G B

(
L N

M P

)
.

There is a natural map

gG : cofibre
(
f 1
G

)→ cofibre
(
f 2
G

)
from the homotopy cofibre off 1

G to the homotopy cofibre off 2
G. We denote by

Cof(G) the cofibre of this mapgG.

Lemma 13. LetG be acat2-group equivalent to the crossed square

L N

M P

.

If G is a projective object in the categoryC2G, then |Cof(G)| is homotopy
equivalent to a wedge of3-spheres and

H3
(∣∣Cof(G)

∣∣)∼= L

[M,N][L,P ] .
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Proof. By Lemma 9 bothN → P andM → P are projective objects in the
category of crossed modules and hence are injections. By [1, Proposition 1]
Cof(f 1

G) is a wedge of 2-spheres and

H2
(∣∣Cof

(
f 1
G

)∣∣)∼= N

[P,N] .

The mapf 2
G yields the following epimorphism of free groups after applying the

functorπ1

P/M → P/MN.

Since|Cof(f 2
G)| is connected it follows that|Cof(f 2

G)| is 1-connected. On the
other hand, both spacesB(M → P) andB(G) are homotopy equivalent to wedges
of 1-spheres thanks to Lemmas 8 and 9. Thus it follows from the homology exact
sequence that|Cof(f 2

G)| is homotopy equivalent to the wedge of 2-spheres and
the sequence

0 →H2
(∣∣Cof

(
f 2
G

)∣∣)→ (P/M)ab → (P/MN)ab → 0

is exact. SinceG is projective, we haveL=M ∩N becauseπ2(N (G))= 0. Thus

H2
(∣∣Cof

(
f 2
G

)∣∣)∼= N

[P,N] ∩M .

The map Cof(f 1
G)→ Cof(f 2

G) yields the following epimorphism of groups by
applying the functorH2:

N

[P,N] → N

[P,N] ∩M .
Hence the homology exact sequence shows that|Cof(G)| is a wedge of
3-spheres and thatH3(Cof(Q)) = L/[N,P ] ∩M. SinceP/N is a free group
the Hopf formula forH2(P/N) implies that[N,P ] = N ∩ [P,P ] and hence
thatH3(Cof(Q)) = L/L ∩ [P,P ]. The Hopf type formula for the third integral
homology of a group [5] states that

H3(P/MN)∼= L∩ [P,P ]
[M,N][L,P ] .

SinceP/MN is a free group it follows that

H3
(
Cof(Q)

)∼= L

[M,N][L,P ] . ✷
The following theorem is the main result.

Theorem 14. For anycat2-groupG there is an isomorphism

�Hi(G)Quillen ∼=Hi+2
(|Cof(G)|), (i � 0).
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Proof. LetQ→G be a cofibrant simplicial resolution ofG. The cofibre Cof(Q)
is defined analogously to Cof(G). It is readily checked that there are weak
equivalences

B(Q) → B(G),
B(EQ{1} → EQ∅) → B(EG{1} → EG∅),
B(EQ{2} → EQ∅) → B(EG{2} → EG∅),

B(BQ∅) → B(G∅).
The homology exact sequences associated to the cofibrations

B(EG{1} → EG∅) → B(G)→ cofibre
(
f 2
G

)
,

B(EQ{1} → EQ∅) → B(Q)→ cofibre
(
f 2
Q

)
show that the map cofibre(f 2

Q)→ cofibre(f 2
G) is a homology equivalence and

hence a weak equivalence. Similarly the map cofibre(f 1
Q) → cofibre(f 1

G) is
a weak equivalence. Hence there is a weak equivalence

Cof(Q)
�→Cof(G).

The simplicial set Cof(Q) is obtained as the diagonal of a bisimplicial set
X with X∗p = Cof(Qp), whereQp is a projective cat2-group. The homology
spectral sequence for the bisimplicial setX has the formE1

pq =Hq(Cof(Qp))⇒
Hp+q(Cof(G)).

NowQp is equivalent to a projective crossed square

Lp Np

Mp Pp

.

According to Lemma 13 we have

E1
pq = 0 if q �= 0 or 3, E1

p0 = Z, and E1
p3 = Lp

[Mp,Np][Lp,Pp] .

SoE2
p0 = 0 for p > 0 and the spectral sequence yields the isomorphism

Hi+3
(
Cof(G)

)∼= πi
(

Lp

[Mp,Np][Lp,Pp]
)
, i � 0.

Lemma 10 implies

Lp

[Mp,Np][Lp,Pp]
∼= σ

(
Q∗

[Q∗,Q∗]
)

;
and so

πi

(
Lp

[Mp,Np][Lp,Pp]
)

∼=Hi+1(G)Quillen. ✷
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Corollary 15. In the crossed square associated to acat2-groupG suppose that
the groupP is free and the crossed modulesM → P , N → P are projective in
XG. Then

Hi+2(G)Top ∼=Hi(G)Quillen (i � 2),

H3(G)Top ∼= Ker

(
L

[M,N][L,P ] → P

[P,P ]
)
.

Proof. The isomorphism follows from the homology exact sequences aris-
ing from the various cofibration sequences involved in the construction of
Cof(G). ✷

The description ofH3(G)Top in the corollary can be viewed as a generalization
of the Hopf-type formula for the third integral homology of a group given in [5].
Interestingly, the formula in [5] plays a key role in the proof of this generalisation.

We leave as an exercise for the reader the formulation and proof of Theorem 14
and Corollary 15 for the casen� 3.
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