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1. Introduction

Let X be a connected CW-space whose homotopy gratiisare trivial in
dimensiong > n+ 1. Such a space is termeti@motopy(n + 1)-type In the case
n = 0, classical homological algebra provides a purely algebraic description of the
integral homologyH.. (X) in terms of derived functors. Far= 1 it has recently
been shown [1] (cf. [2]) that the homology can be realised as the non-abelian
left derived functors of a certain abelianisation functbr(crossed modulgs—
(abelian groups Crossed modules are convenient algebraic models of homotopy
2-types. More generally, homotogy + 1)-types are modelled by ¢agroups [3]
or equivalently by crossed-cubes [4]. Our aim in this paper is to explain how
the methods of [1] extend to arbitrany> 0 and lead to a natural isomorphism

Hyyi1(X) ZLNG), i1, 1)

whereL;“(—) is theith non-abelian left derived functor of a certain abelianisation
functor A: (crossedi-cube$ — (abelian groupsand G is a suitable crossed
n-cube. We also explain how the relationship betwégn1(X) andLé“(G) can
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be expressed as an algebraic formula for the homology¥ aihalogous to the
Hopf type formula for the higher homology of a group obtained in [5].

The paper handles only the cases= 1,2 in full detail. The routine
modifications needed fat > 3 are largely left to the reader. In Section 2 we
recall some terminology and results of D. Quillen [6,7] on homology in algebraic
categories. In Section 3 we derive the following lemma from general results on
simplicial objects: ifG is a projective:-fold simplicial group themro(G) is a free
group andr; (G) =0 fori > 1. Isomorphism (1) is proved in Section 4, together
with various Hopf-type formulae foH, (X).

We adopt the following notation. The category of sets is denotedShy
The category of groups is denoted By The category of simplicial objects
of a categoryC is denoted bySC. Accordingly, SS denotes the category of
simplicial sets,SG the category of simplicial groups. The categorymafold
simplicial groups is denoted bg"G. We always identify an objeck of C
with the constant simplicial object a§C whose simplicial operators are all
equal to the identity morphism oX. The free group on a set is denoted
by (X)gr. The standardi-simplex is denoted by\” and characterised by the
property Hongs(A”, X) = X, for all simplicial setsX. The integral homology
of a simplicial set or CW-spac¥ is denoted byH, (X). For a simplicial group
G, we let M, (G) be the Moore complex of;, which is the non-abelian chain
complex defined by

M,(G) = ﬂ Kerad”,

O<i<gn

with d : M, (G) — M,,—1(G) induced byo.

2. Quillen homology

In this section we recall some ideas and results of Quillen (see [6,7]). het
a category with finite limits. We leX xy X denote the pull-back

X xy X—Pox
\Lpz lf
x—1 -y

of a morphismf : X — Y in C. The morphisny : X — Y is said to be aeffective
epimorphisnif, for any objectT, the diagram of sets

* 2
Home (Y, T) — = Home (X, T) == Home (X xy X, T)
s
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is exact. This means thgt* is an injective map and, §: X — T is a morphism
such thagpi = gp2, then there exists a (necessarily unique) morptisi — T
such thaig = Af.

An object P of C is projectiveif for any diagram

h lg
y

X T> Y
with f an effective epimorphism there exists a morphisn? — X such that
g = fh. We say that has sufficiently many projective objects if for any object
X there is a projective objed® and an effective epimorphisi — X.

Let us assume additionally th&tpossesses colimits. An obje&t is called
smallif Hom¢g (X, —) commutes with filtered colimits.

A classi/ of objects ofC is said togenerateC if for every objectX there is
an effective epimorphisn® — X where( is a coproduct of copies of members
of .

The category is said to be amlgebraic categoryf it possesses finite limits
and arbitrary colimits and has a set of small projective generators. We leave the
proof of the following easy fact to the reader.

Lemma 1. Let C be an algebraic category an8 c C be a full subcategory.
Suppose thaB ¢ C has a left adjointC : C — B and that the following condition
holds a morphismf : X — Y in B is an effective epimorphism @hif and only if
it is an effective epimorphism . ThenL P is a projective object i3 for each
projective objectP in C. ThusB is an algebraic category.

The following fundamental result is due to Quillen (see [6, Theorem 4,
Chapter Il, p. 4]).

Theorem 2. Let C be an algebraic category. Then there exists a unique closed
simplicial model category structure on the categSy of simplicial objects over

C such that a morphisnf in SC is a fibration(respectively weak equivalerjce

if and only if Homse (P, f) is a fibration (respectively weak equivalercef
simplicial sets for each projective obje&t of C. Moreover, ifX is a cofibrant
object inSC thenX,, is a projective object irf for all n > 0.

A simplicial resolutiorof an objectX of C can be defined as a fibratigh— X
in SC which is also a weak equivalence. If additionaflyis a cofibrant object
in SC then Q — X is called a simplicialcofibrant resolution. It is a formal
consequence of Theorem 1 that simplicial cofibrant resolutions exist and are
unigue up to homotopy equivalence, and up to homotopy depend functorially
onX.
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Let Cap denote the category of abelian group objects in the algebraic
categoryC. It can be shown thafy, is an abelian category and that moreover
the abelianisation functor

(—)ab:C— Cap, X+ Xap,

left adjoint to the forgetful functoCay C C, exists. Following [7] one defines
the Quillen homology of an objedf in C as the homology of the chain complex
associated to the simplicial obje@t, obtained by applying—)ap dimensionwise
to a simplicial cofibrant resolutio® of X. We let D, (X) denote the Quillen
homology ofX.

3. Projectiveobjectsin r-fold simplicial groups

The material in this section is well-known. Our goal is the following result:
a projective object i5"G has no homotopy in dimensiops1.

Let Z be a small category and I6¢ denote the category of functofs— G
from Z to the category of groups.

Lemma 3. A morphismf : X — Y in GZ is an effective epimorphism if and only
if £(i) is surjective for all objects € 7.

Proof. Assume f (i) is surjective for all objects € Z. Then HontY,T) —
Hom(X, T) is injective and, for any functoif :7 — G and any natural
transformation

g:X—>T
such that the diagram
X xy X—sx
",
X—2—>71
commutes, there exists a unique transformation
h:Y—>T
such thatg = if. The transformation is given by

hH () =g (fO ), yeY Q).
The condition ong implies thath is well-defined. Conversely, assunfeis an
effective epimorphism. Sét’(i) = Im(f)(i) C Y(i). Then eachX (i) — Y'(i) is
surjective and hencE — Y’ is an effective epimorphism. Therefore HGmZ)
and HontY’, Z) are both equalisers of the same diagram and hence coincide. It
follows thatY’' =Y. O
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Lemma 4. For each object € 7 let
hi'T—G
be the functor given by
J = (Homz (i, )y,
Then the collection(h;);c7 is a set of small projective generators in the

categoryG” .

Proof. The Yoneda lemma implies that
Homgz (h;, T) =T (i)

fori € Z, T € G and the result follows. O
Corollary 5. The categong? is an algebraic category.

In fact, one can prove that? is an algebraic category for any algebraic
categonyC. As a consequence of Corollary 5, we see that the categonyolid)
simplicial groups is algebraic. We need to identify the homotopy type of projective
objects inS"G.

Let A be the category of finite ordinals. We will assume that the objects are
the sets

[n]1={0,1,...,n}, n>=0

and morphisms are nondecreasing maps. T is the category of simplicial
groups. Since

A" = Homgop([n], —)

is the standardi-simplex, Lemma 4 shows that any projective object in the
category of simplicial groups is a retract of a simplicial group of the form

(LS <)

n>0

where(S,),>0 is a sequence of sets.

It is well known that the standang-simplex is simplicially contractible (see,
for example,p in [8, p. 151]) and therefore the projection |gfn>0 S, x A" to
the constant simplicial s¢1]n>0 S, is a simplicial homotopy equivalence. Since
any degreewise extension of a funct®r G preserves the homotopy relation,
we see that the simplicial groub_]n>0 Sn X A™)gr is homotopy equivalent to the
constant simplicial grougl_|,,~q S»)gr- As a consequence we obtain the following
corollary.
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Corallary 6. If P is a projective object in the category of simplicial groups,
then P is degree-wise free. MoreovergP is a free group andP is homotopy
equivalent to a constant simplicial group, henge®? =0fori > 1.

We now consider bisimplicial groups. Given a bisimplicial gradpwe let
GY andG" denote therth vertical andnth horizontal parts; both are simplicial
groups. We letr} G andnihG denote the simplicial groups obtained by taking the
ith homotopy group o&Y and Gf},. We letr; G denote theth homotopy group
of the diagonal simplicial groupG, ,).>0. For simplicial setsX andY we let
X XY denote the bisimplicial set whose:, n)th componentis,, x Y,,.

By Corollary 5 the category of bisimplicial groups is an algebraic category and
any projective object is a retract of a bisimplicial group of the form

<|_| Spm % (A" K A’")> ,

n,m gr

where (S,,m)n,m>0 iS a family of sets. Thus each vertical or horizontal part
is a projective object in the category of simplicial groups. Moreover ifs
a projective object in the category of bisimplicial groups, then

’P=0=n"P, n>1,

and bothry P andngP are projective objects in the category of simplicial groups.
Thus

JTthT}/P =0
as soon as> 0 or j > 0. So the spectral sequence [9]
2 _ _v_h
E,, =mpmgP=mp14P

implies thatr; P = 0 fori > 1. SincergP = ng)’ngP, we see thatrgP is a free
group.

The situation for multisimplicial groups is analogous. We leave as an exercise
to the reader the modifications required to obtain the following result.

Lemma 7. Let G be a projective object in the catego/ G of n-fold simplicial
groups. In each directioy is homotopy equivalent to a constant simplicial object
in the categorys”~1G of (n — 1)-fold simplicial groups, which is also a projective
in §"~1G. In particular, 7;G = 0 for i > 1, andnoP is a free group, wherer; G
denotes theéth homotopy group of the diagonal 6f.

4. Homology of cat”-groupsand crossed rn-cubes

Recall [3] that a cdtgroup consists of a groupG together with 2
endomorphisms;, t; : G — G satisfying
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SiSi =Si, siti =1, Lt =1, 18 =Si,
sitj=tjsi (A #])),
[Ker(si), Ker(;)] =0,

for 1 <i < n. A morphismof cat'-groups(G, s;, ;) — (G', s/, t)) is a group
homomorphismG — G’ that preserves the; and . We let CG denote the
category of cdt-groups, and’"G the category of catgroups. Note that a ¢t
group is just a group.

A cat'-group(G, s, 1) is equivalent to a category object¢h The arrows are
the elements ofs, the identity arrows are the elementsdt= Im(s) = Im(z), the
source and target maps arandz, and composition of arrows . € G is given by

g oh = g(sg)~1h. Thus the nerve of a category provides a fun®torCG — SG.

Lemma 8. (i) NV is a full and faithful
(i) VV possesses a left adjoifit: SG — CG and the functoN o7 : SG — SG
preserves the homotopy relation. Moreover, for any simplicial gi6umne has

JTi(NOT(G)) =m;(G) ifi=01 and
(N oT(G)=0 if i >1;

(iii) A morphism finCG is an effective epimorphism if and onlyAf f is an
effective epimorphism i§G;

(iv) CG is an algebraic category. Moreover (6, s, t) is a projective object in
the categonCG of catt-groups, thent; (N (G)) = 0 for i > 0 and 7o\ (G)) is
free group.

Proof. (i) is obvious. The statement (i) is well-known and it follows for example
from [10, Proposition 3]. By [10] the chigroup 7G has underlying group
G1/33(M2(G)); the mapss andt are induced by/s andd}. One easily checks
that for any simplicial grougs the Moore complex alV o 7 (G) is isomorphic to

- = 0— M1(G)/33(M2(G)) — Mo(G)

and thereforer; (N o T(G)) = 7;(G) if i =0,1 andm;(N o T(G)) =0 if

i > 1. In order to verify (iii), note that the argument given in the proof of
Lemma 3 shows thaf is an effective epimorphism if and only f is surjective

(as a homomorphism of groups). Byt is surjective if and only ifN f is
degreewise surjective which, by Lemma 3, is equivaleittp being an effective
epimorphism. By (iii) the assumptions of Lemma 1 hold and therefgrés an
algebraic category. The last statement of (iv) follows easily from Lemma 6 and
from (i). O

A cat?-groupG is equivalent to a category object@. It is thus equivalent to
a group endowed with two compatible category structures, a horizontal one and
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a vertical one. The nerv& VG of the vertical category structure is a category
object inSG. By then taking the nerve of the horizontal category structure, we
obtain a full and faithful functor
NZ=NNVY:C?%G — 8%
into bisimplicial groups. Moreover a morphisfris an effective epimorphism (i.e.
surjective as a group homomorphism)dfgG if and only if V2 f is an effective
epimorphism (i.e. dimensionwise surjective}3AG. The functot\/ 2 admits a left
adjoint
T2:58%G - %

which is defined by first applyin@” dimensionwise to a bisimplicial grou@ to
obtain a simplicial cdtgroup7 G, and then applying™ again to obtain a c&t
group73G.

By Corollary 5 and Lemma 1, the categat§g of caf-groups is an algebraic
category. Moreover, ifG, s1, s, 11, 12) is @ projective object in the categaf§fG
of cat-groups, then the horizontal and vertical'egtoups are projective in the
category of cdtgroups. Moreoverg; (N 2(G)) = 0 for i > 0 andwo(NV 2(G))
is free group. These facts follows easily from Lemma 7 bec&usespects the
homotopy relations.

The situation for cdtgroups is similar. We leave as an exercise for the reader
the routine modifications needed to establish the following lemma.

Lemma9. The categorg” g of cat’-groups is an algebraic category. Moreover, if
(G,si, tj),i =1,...,nis aprojective object in the catego} G, then each ‘face’
of G is a projective object in the catego&f—1G. Furthermorer; (N (G)) = 0
fori > 0 andmxo(N"(G)) is a free group.

An abelian group object iG"G is just a cdt-group whose underlying group is
abelian. The abelianisation functor
(5)ap:C"G — (C"G) o
sends a cétgroup G = (G, s;,t;) to the cat-group with underlying group
Gap= G/[G, G] and induced homomorphisms ¢; : Gap — Gap. The Quillen
homology of a cét-group G is obtained from a cofibrant simplicial resolution

0 — G by abelianising the simplicial cagroup @ dimensionwise and taking
the homology of the associated chain complex or associated Moore complex:

Di(G) = m;(Qab)-
Note thatD; (G) is an abelian cétgroup for each > 0. Below we define the
group H; (G)quillen &s a subgroup of the underlying groupf_1(G).
There is an alternative way to define the homology of &-gabup G, based
on the composite functor

diagonal

B:cnGg - sng N gniig SS
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from cat'-groups to simplicial set§: > 0). The functor\: S"G — S"t1S is
defined by considering groups as categories and taking the nerve degreewise. The
geometric realization3G| is by definition theclassifying spacef the cat-group

G and induces an equivalence between the (suitably defined) homotopy categories
of cat'-groups and connected CW-spacdewvith 7; X =0 fori > n + 2 (see [3]).

The integral homology ofBG| is a natural homology to associate@ and so

we set

H;(G)top= H,'(|BG|), i>0.

We refer the reader to [11,12] for more information &f(G)1op in the case
n = 1. Our principal aim in this paper is a comparison of the algebraically defined
homologyD. (G) with the topologically defined homolog¥..(G)Top.

We remark that the classifying functét behaves nicely with respect to the
inclusion functorC"G — SC"G and also with respect to the inclusion functors
incl;:C"G — C"*1G (1 < j < n+1) which insert identity morphisms, ¢;. By
taking nerves and diagonals appropriately one obtains a fuiciS€"G — SS
from simplicial cat-groups to simplicial sets such that the triangle of functors

e inclusion SCnG
X lB
SS

commutes. The triangle of functors

incl;

cng Cn+1g

R

also commutes for each

To facilitate the comparison off,(G)top and H,(G)quillen We recall from
[4] some details on the categorical equivalence betwedngratps and crossed
n-cubes. Acrossed:-cubeconsists of a collection of groupd, indexed by the 2
subsets C {1, ..., n}, together with homomorphisms: My, — M\ ;) fori e o
and commutator type functiorts M, x Mg — Mqug. For present purposes it is
unnecessary to recall precise details of the commutator functions or the axioms
satisfied by the structure. A crossed 1-cube

M{]_}%M@
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is just a crossed module, the action being giverfiyx My — My, (x,y) —
h(x,y)y. A crossed 2-cube

A
M) —2> My,

.

My —2 > My

coincides with the notion of a crossed square introduced by Loday [3]. A mor-
phism(My) — (M],) of crossedi-cubes is a family of structure preserving group
homomorphisma4, — M/,. We letXG denote the category of crossed modules,
andX" g the category of crossedcubes.

It has long been known that a crossed module is equivalent to a category object
in G, that is, to a cdtgroup (see [13]). Loday [3] proved that crossed squares are
equivalent to c&tgroups, and this equivalence was extended [4] to one between
crossedi-cubes and cétgroups. The functorial equivalence

E:.C"G— X"G
sends a cétgroupG = (G, s;, t;) to the crossed-cubeEG with
EGq =(\Ker(s)) N () Ims)).
ica jea

wherea denotes the complementefin {1, ..., n}. The morphismsg,; :£G, —
EG,q\ iy are the restriction of, and the functions are all given by commutation
in the groupG. Itis convenient to let G denote the group

0G=EGu..n= [ Kers).
1<i<n

The inverse equivalencé1: X"G — C"G is described in [4]. For a crossed
n-cubeM we setBM = B(E~1M).

The equivalenc€ :CG — X G induces an equivalenég: SCG — SXG such
that the diagram

cG inclusion SCG
E lg
XG inclusion SXG

commutes.
We need the following easily verified description of the crossedbef (G ap)
associated to the abelianisation of d'egtoupG.
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Lemma 10. Let G be acat'-group with associated crossedcubelG = (My).
Then the crossed-cube associated t6 gp has the forn€ (Gap) = (M) where

Mo=Mo/ ] (Mg M)
BUy=a, BNy=y

are commutator subgroups being defined via commutation in the underlying group
of G.

The comparison of,.(G)1op With D, (G) is facilitated by setting
H;(G)quillen = 0 D;—1(G), i2>=1, Ho(G)quillen=Z.
We also denote by; (G)quillen the corresponding reduced groups. Thus
Ho(G)quilen=0 and H;(G)quilen= H;(G)quilen fori > 0.

Then bothH,.(G)1op and H,(G)quillen are functor®”G — Ab to the category of
abelian groups. Whem = 0 we have functor$i,(—)top, H«(—)quillen: G — Ab
and it is well known that

H*(G)Top = H, (G)Quillen

in this case. We denote both of these homology functorgby?).

Let us now considet = 1. A catt-groupG is equivalent to a crossed module
A1:EGqy — E£Gyg which for simplicity we denote by : M — P. To the groupP
we can associate the crossed modute . The inclusion morphism of crossed

modules(0—0> P)— (M A P) induces a map of simplicial sets

0 M
fG:B<¢)—>B< W)
p P

We denote by Caiz) the homotopy cofibre off;. The following theorem,
modulo some notation, was proved in [1]. (A more general version of the result for
homology and cohomology with arbitrary coefficient module is contained in [14].)

Theorem 11. For anycatt-group G there is an isomorphism
H;(G)quillen= Hi1(]Cof(G)]) (i =0)
and consequently an exact sequence
o+ = Hi11(P) — Hi+1(G)1op —> Hi(G)Quilen— Hi(P) — --- (i 21).

We wish to explain how this result generalises td' egtoups,n > 1. To pave
the way we recall the proof for the case= 1.

Proof. Let 0 — G be a cofibrant simplicial resolution @, that is a fibration
in S(CG) which is also a weak equivalence and whe&eis cofibrant. Then
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BQ — BG is a weak equivalence i8S. Moreover, it is readily checked that
B(EQg) — B(EGy) is also a weak equivalence. The map and cofibre CafQ)
are defined analogously t¢; and CofG). The homology exact sequences
associated to the cofibratiorfg;, fo show that CofQ) — Cof(G) induces an
isomorphism in homology. Since G@?) and CofG) are both 1-connected it
follows that Cof Q) — Cof(G) is a weak equivalence.

The simplicial set CdfQ) is obtained as the diagonal of a bisimplicial set
X with X, = Cof(Q,), whereQ, is the pth component of0. The homology
spectral sequence for the bisimplicial 3ehas the form

E}, = Hy(Cof(Q,)) = Hp4(Cof(G)).

Now Cof(Q,) is the cofibre of the map(r,) — B(M, — P,) whereM, —

P, is the crossed module equivalent@,. SinceQ, is a projective catgroup

it follows that M, — P, is a projective crossed module. It is readily seen that
P, must be a free group. Part (iv) of Lemma 8 implies that both classifying
spaces here have free fundamental group and trivial higher homotopy groups. So
Cof(Q,) is simply connected and the homology exact sequence of a cofibration
implies thatH; (Cof(Q,)) =0 fori > 2 and

H(Cof(Q,)) = Ker((Py)ab— (Pp/Mp)ab).
Lemma 8 implies thaP, /M, is free. Henced>(P,/M,) =0 and
O—M,— P,— P,/M,—0
is a split short exact sequence. It follows that
Ker((Pp)ab— (Pp/Mp)an) = M, /[Mp, Pp].
Thus
Hy(Cof(Q,)) = M, /(M. Pyl
Hence
EL =0 ifg#00r2  Elg=2, and El,=M,/[M,, P,l.

Thus Ell,0 is a constant simplicial abelian group. HenE%0 =0 for p > 0.
Therefore the spectral sequence degenerates and gives the isomorphism
Hi12(COof(G)) = m; (M /My, Py]), i>0.
Lemma 10 implies
M, :U< 0. )
[M, Pl [Qx, O«]
and so

T (M*/[M*, P*]) = Hi+1(G)quillen o
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Corollary 12. Let M — P denote the crossed module associated tod-
groupG. If P is a free group then there are natural isomorphisms

Hi+1(G)Top§ Hi(G)QuiIIen i =2),
H2(G)1op = Ker(M/[M, P]— P/[P, P]).

The description of H>(G)top given in the corollary can be viewed as
a generalization of Hopf’s formula for the second integral homology of a gkbup
To see this, note that #1G = K, 72G = 0 in the corollary, ther is a normal
subgroup of the free group with K = P/M, and H2(G)1op = H2(K,Z). We
thus recover Hopf's formulal>(K,Z) =M N [P, P]/[M, P].

Consider nows = 2. An arbitrary cat-group G is equivalent to a crossed
square€ G which, for simplicity, we denote by

L—N

R

M—=P

By applying the classifying functoB: X?G — SS to a diagram of crossed
squares we obtain the following diagram of simplicial sets:

B(ifi)’ig(ilj)

(o) =0 h)

There is a natural map
gG : cofibre( £2) — cofibre( f2)

from the homotopy cofibre ofé to the homotopy cofibre ofGZ. We denote by
Cof(G) the cofibre of this magg.

Lemma 13. Let G be acaf-group equivalent to the crossed square
L—N

A

M—P
If G is a projective object in the categoi§?G, then | Cof(G)| is homotopy
equivalent to a wedge & spheres and

H3(|Cof(G)|) = LML Pl
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Proof. By Lemma 9 bothN — P and M — P are projective objects in the
category of crossed modules and hence are injections. By [1, Proposition 1]
Cof(f(l;) is a wedge of 2-spheres and

N

The mapfg yields the following epimorphism of free groups after applying the
functorsy

P/M — P/MN.

Since| Cof(f(z;)l is connected it follows tha]tCof(fé)l is 1-connected. On the
other hand, both spac&M — P) andB(G) are homotopy equivalentto wedges

of 1-spheres thanks to Lemmas 8 and 9. Thus it follows from the homology exact
sequence thatCof(f§)| is homotopy equivalent to the wedge of 2-spheres and
the sequence

0— Hy(|Cof(f&)|) = (P/M)ap— (P/MN)ap— O
is exact. Sinc&; is projective, we havé = M N N becauser2(NV (G)) = 0. Thus

N

Ha(|CoNfE)) = 5 xmar

The map Coff}) — Cof(f2) yields the following epimorphism of groups by
applying the functoi,:
N N
—> .
[P, N] [P,N]INM
Hence the homology exact sequence shows {l@tf(G)| is a wedge of
3-spheres and that3(Cof(Q)) = L/[N, PN M. Since P/N is a free group
the Hopf formula forH2(P/N) implies that[N, P] = N N [P, P] and hence

that H3(Cof(Q)) = L/L N [P, P]. The Hopf type formula for the third integral
homology of a group [5] states that

H3(P/MN) = LOLR P
3 =M, NIL, PI
SinceP/MN is a free group it follows that
L
H3(Cof R —
(CHD) =

The following theorem is the main result.

Theorem 14. For anycaf-group G there is an isomorphism
H;(G)quilen= Hi2(] Cof(G)]), (i >0).
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Proof. Let 9 — G be a cofibrant simplicial resolution ¢f. The cofibre CofQ)
is defined analogously to C@¥). It is readily checked that there are weak
equivalences
B(Q) — B(G),
B(EQu — £Qp) — B(EGu — EGy),
B(EQp — £Qp) — B(EGp — EGy),
B(BQg) — B(Gy).
The homology exact sequences associated to the cofibrations

B(EGp — EGy) — B(G) — cofibre £Z),
B(E Q1 — £Qp) — B(Q) — cofibre( £3)

show that the map cofib@é) — cofibre(fé) is a homology equivalence and

hence a weak equivalence. Similarly the map co(iﬁée — cofibre(f(l;) is
a weak equivalence. Hence there is a weak equivalence

Cof(Q) > Cof(G).

The simplicial set CafQ) is obtained as the diagonal of a bisimplicial set
X with X, = Cof(Q,), whereQ, is a projective c&tgroup. The homology
spectral sequence for the bisimplicial ¥ehas the formE;q = H,(Cof(Q))) =
H,.4(Cof(G)).
Now Q, is equivalent to a projective crossed square
L,—N,
M,— P,
According to Lemma 13 we have
L,

EL —0 if Oor El. =7, and El,= )
Pq q7#00r3 PO 73~ M, N,I[L,. P,]

So Eﬁo =0 for p > 0 and the spectral sequence yields the isomorphism

Cof(G)) = Ly i >0
H;3(Cof(G)) :m<[Mp,Np][Lp, Pp])’ i >0
Lemma 10 implies
Ly 20( 0. )

(Mp, Npl[Lp, Pp] [0+ Q1)
and so

m( Ly ) = H;+1(G)quillen. O

(Mp, Npl[Lp, Pp]
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Corollary 15. In the crossed square associated taaf-group G suppose that
the groupP is free and the crossed modulgés— P, N — P are projective in
XG.Then

Hi+2(G)Top = Hi(G)QuiIIen i=2),

- L P
H3(G)1op = Ker( (M. NIL. P] — P. P])

Proof. The isomorphism follows from the homology exact sequences aris-
ing from the various cofibration sequences involved in the construction of
Cof(G). O

The description off3(G)Top in the corollary can be viewed as a generalization
of the Hopf-type formula for the third integral homology of a group given in [5].
Interestingly, the formulain [5] plays a key role in the proof of this generalisation.
We leave as an exercise for the reader the formulation and proof of Theorem 14
and Corollary 15 for the case> 3.
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