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ON KAN FIBRATIONS FOR MALTSEV ALGEBRAS

M. JIBLADZE AND T. PIRASHVILI

Abstract. We prove that any surjective homomorphism of Maltsev algebras
is a Kan fibration.
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It is well known that simplicial groups are Kan complexes and, more generally,
any surjective homomorphism of simplicial groups is a Kan fibration. Among
other things, from the results in [1] the following statements follow:

Theorem 1. Any simplicial model of a Maltsev theory is a Kan complex.

Theorem 2. If T is an algebraic theory such that any simplicial T-model is
a Kan complex, then T is a Maltsev theory.

This note has two aims: firstly, to give direct proofs of these facts without
using the category theory machinery and, secondly, to get sharper results. In
particular we prove that any surjective homomorphism of Maltsev algebras is a
Kan fibration.

A Maltsev operation in an algebraic theory T is a ternary operation [ , , ]
in T satisfying the identities

[a, a, b] = b and [a, b, b] = a.

An algebraic theory is called Maltsev if it possesses a Maltsev operation. Clearly,
the theory of groups is a Maltsev theory by taking [a, b, c] = ab−1c. More gen-
erally, the theory of loops is a Maltsev theory; this latter fact has already been
used in the homotopy theory (see [3]). An example of another sort of a Maltsev
theory is the theory of Heyting algebras.

We start by proving a stronger version of Theorem 2. Let

S1 = ∆1/∂∆1

be the smallest simplicial model of the circle. Moreover, let S1
T be the simplicial

T-model which is obtained by applying degreewise the free T-model functor
to S1.
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Proposition 1. Let T be an algebraic theory such that S1
T satisfies the (1, 2)-

th Kan condition in dimension 2. That is, for any 1-simplices x1, x2 with d1x1 =
d1x2 there is a 2-simplex x with d1x = x1 and d2x = x2. Then T is a Maltsev
theory.

Proof. Denote the unique nondegenerate 1-simplex of S1 by σ and the unique
vertex d0σ = d1σ by ∗. So S1

T in dimension zero is the free T-model gener-
ated by ∗. Similarly, S1

T in dimension one is the free T-model generated by
s0∗ and σ, and in dimension two it is the free T-model generated by s1s0∗,
s0σ, and s1σ. Since d1s0∗ = d1σ = ∗, the (1, 2)-th Kan condition implies the
existence of a 2-simplex x of S1

T with d1x = s0∗ and d2x = σ. This means
there is an element x(s1s0∗, s0σ, s1σ) in the free T-model with three gener-
ators s1s0∗, s0σ, s1σ such that the equalities x(d1s1s0∗, d1s0σ, d1s1σ) = s0∗
and x(d2s1s0∗, d2s0σ, d2s1σ) = σ hold in the free T-algebra with two gener-
ators s0∗, σ. Applying standard simplicial identities we see that this means
x(s0∗, σ, σ) = s0∗ and x(s0∗, s0∗, σ) = σ, i. e., that x is a Maltsev operation.

The following Theorem shows that if T is a Maltsev theory, then all surjec-
tive homomorphisms of simplicial T-models are Kan fibrations, which obviously
implies Theorem 1. Our proof uses exactly the same inductive argument as the
one given in [2] for simplicial groups (see page 130 in [2]) except that we put a
new input for w0.

Theorem 3. Any surjective homomorphism f : X → Y of simplicial models
of a Maltsev theory is a Kan fibration.

Proof. For n > 0 and 0 6 k 6 n, given y ∈ Yn with diy = f(xi) for i 6= k,
0 6 i 6 n, where xi are elements of Xn−1 with matching faces, we have to find
x ∈ Xn with f(x) = y and dix = xi for i 6= k. Take x′ ∈ f−1(y) and then put

w0 = [s0x0, s0d0x
′, x′],

wj = [wj−1, sjdjwj−1, sjxj]

for 0 < j < k; in case k < n put

wn = [wk−1, sn−1dnwk−1, sn−1xn],

wj = [wj+1, sj−1djwj+1, sj−1xj]

for n > j > k.
We then have

f(w0) = [s0f(x0), s0d0f(x′), f(x′)] = [s0d0y, s0d0y, y] = y,

f(wj) = [f(wj−1), sjdjf(wj−1), sjf(xj)]

= [y, sjdjy, sjdjy] = y

for 0 < j < k and, if k < n, then

f(wn) = [f(wk−1), sn−1dnf(wk−1), sn−1f(xn)] = [y, sn−1dny, sn−1dny] = y,

f(wj) = [f(wj+1), sj−1djf(wj+1), sj−1f(xj)] = [y, sj−1djy, sj−1djy] = y
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for n > j > k. Furthermore,

d0w0 = [d0s0x0, d0s0d0x
′, d0x

′] = [x0, d0x
′, d0x

′] = x0,

diwj = [diwj−1, disjdjwj−1, disjxj]

=





[xi, sj−1dj−1diwj−1, sj−1dixj]

= [xi, sj−1dj−1xi, sj−1dj−1xi] = xi, i < j,

[djwj−1, djwj−1, xj] = xj, i = j

for 0 < j < k and, if k < n, then

diwn = [diwk−1, disn−1dnwk−1, disn−1xn]

=





[xi, sn−2dn−1diwk−1, sn−2dixn]

= [xi, sn−2dn−1xi, sn−2dn−1xi] = xi, 0 6 i < k,

[dnwk−1, dnwk−1, xn] = xn, i = n,

diwj = [diwj+1, disj−1djwj+1, disj−1xj]

=





[xi, sj−2dj−1diwj+1, sj−2dixj]

= [xi, sj−2dj−1xi, sj−2dj−1xi] = xi, 0 6 i < k,

[xi, sj−1djdiwj+1, sj−1di−1xj]

= [xi, sj−1djxi, sj−1djxi] = xi, j < i 6 n,

[djwj+1, djwj+1, xj] = xj, i = j

for n > j > k.
Thus if one takes x = wk−1 for k = n and x = wk+1 for k < n, one obtains

f(x) = y and dix = xi for i 6= k, 0 6 i 6 n, as desired.
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