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Abstract
We show that any regular (right) Schreier extension of a monoid M by a monoid A induces

an abstract kernel .
If an abstract kernel factors through , where 

 is the monoid of surjective endomorphisms of A, then we associate to it an
obstruction, which is an element of the third cohomology group of M with coefficients in
the abelian group  of invertible elements of the center  of A, on which M

acts via Φ.
An abstract kernel  (resp. ) is induced by a

regular weakly homogeneous (resp. homogeneous) Schreier extension of M by A if and
only if its obstruction is zero.
We also show that the set of isomorphism classes of regular
weakly homogeneous (resp. homogeneous) Schreier extensions inducing a given abstract

kernel  (resp. ), when it is not empty, is in bijection

with the second cohomology group of M with coefficients in .
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1 Introduction
The classification of extensions is a classical problem in group theory.
It is well known
that extensions with abelian kernel inducing the same action are classified by the 2-
dimensional cohomology group.
The case of non-abelian kernels was studied by Schreier
[25, 26]: to any group extension
 ,
he associated a group

homomorphism , called abstract kernel of the extension, and he

determined conditions on such a homomorphism Φ in order to get the existence of
extensions having it as abstract kernel.
(The notation for group extensions is borrowed
from Mac Lane’s book [16], and it is justified by the fact that we will use the multiplicative
notation for the group G and the additive one for the other groups.)
Later, Eilenberg and
Mac Lane [10] gave an interpretation of such results in terms of cohomology: to an
abstract kernel Φ can be associated an element , called obstruction of the abstract
kernel, of the third cohomology group , where  is the center of A and
the left G-module structure on  is induced by Φ.
Then Φ is induced by an extension
if and only if  is the zero element of .
Moreover, if there is an
extension inducing Φ, then the set of isomorphism classes of the extensions inducing it is
in bijection with the second cohomology group .
See, for example, [10, 16]
for a detailed account of this result.

The same kind of result was then extended to other algebraic structures, such as
associative algebras [12] and Lie algebras [13] over a field, rings [15], categories of
interest [19], categorical groups [11, 7].
A categorical approach to this problem was
initiated by Bourn in [1] and then generalized in [6, 2, 9, 8] to the context of semi-abelian
[14] action accessible [3] categories.

The situation for monoid extensions is more complicated.
Schreier extensions of
monoids, a direct generalization of group extensions, were introduced by Rédei [24].
In
[27], the Schreier extensions of a monoid M by an M-module A were classified by 

, the classical second cohomology group of M with coefficients in the M-
module A.
Then, in [20, 22], the Schreier extensions of a monoid M by an M-semimodule
A (i.e. a commutative monoid on which M acts) have been classified by means of the
second cohomology monoid , of a cohomology theory of monoids with
coefficients in semimodules [21, 22] which generalizes the classical Eilenberg–Mac Lane
cohomology of monoids.
The problem of classifying Schreier extensions of monoids
whose kernels are (not necessarily abelian) groups was studied in [27].
There the abstract
kernel is involved in the definition of the extension because the author of [27] was not

able to induce an abstract kernel, i.e. a monoid homomorphism , from a

given Schreier extension .

0 → A ↣ B ↠ G → 1

Φ : G →
Aut(A)

Inn(A)

Obs(Φ)

H 3 (G, Z (A)) Z (A)

Z (A)

Obs(Φ) H 3 (G, Z (A))

H 2 (G, Z (A))

H 2 (M, A)

H 2 (M, A)

Φ : M →
End(A)

Inn(A)

0 → A ↣ B ↠ M → 1
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In the present paper, we show how to induce an abstract kernel from a regular (see
Definition 3.7) Schreier extension of monoids, a particular case of which is a Schreier
extension of a monoid whose kernel is a group.
More specifically, in Section 3, we
associate to any regular Schreier extension of a monoid M by a monoid A a monoid

homomorphism , and in Section 4, we show that there is a canonical

representative of such a monoid extension, called the crossed product extension.
In

Section 5, we show that if the abstract kernel Φ takes values in , where 

is the monoid of surjective endomorphisms of A, then it is possible to associate to Φ an
element  of the third cohomology group , where  is
the abelian group of invertible elements of the center  of A, and the action of M on 

 is induced by Φ.
Moreover, we show that an abstract kernel Φ is induced by an
extension if and only if  is the zero element of the third cohomology group.
Finally, in Section 6, we show that the set  of isomorphism classes of
regular weakly homogeneous (resp. homogeneous) Schreier extensions of M by A (see

Definition 3.11) which induce the same abstract kernel  (resp. 

), when it is not empty, is in bijection with the second cohomology

group  of M with coefficients in the M-module .
This is
done, as for the classical case of extensions of groups, by showing that there is a simply
transitive action of the abelian group  on the set .
Hence our approach is very similar to the classical one for groups, yielding a new,
additional interpretation of the classical Eilenberg–Mac Lane cohomology in terms of
monoid extensions.

2 Preliminaries
In this section, we recall some notions we need in the rest of the paper, and we fix some
notations.

Given a monoid M, we will denote by  the center of M, namely

and by  the group of invertible elements of M.

Definition 2.1.
Given a monoid M and a subgroup H (i.e. a subgroup H of the group ), we say that H
is

• right normal if, for all , , where
  and

,

Φ : M →
End(A)

Inn(A)

SEnd(A)

Inn(A)
SEnd(A)

Obs(Φ) H 3 (M, U (Z (A))) U (Z (A))

Z (A)

U (Z (A))

Obs(Φ)

Ext(M, A, Φ)

Φ : M →
SEnd(A)

Inn(A)

Φ : M →
Aut(A)

Inn(A)

H 2 (M, U (Z (A))) U (Z (A))

H 2 (M, U (Z (A))) Ext(M, A, Φ)

Z (M)

Z (M) = {z ∈ M ∣ zm = mz for all m ∈ M} ,

U (M)

U (M)

m ∈ M mH ⊆ Hm mH = {mh ∣ h ∈ H}

Hm = {hm ∣ h ∈ H}



9/29/22, 4:21 PM On the classification of Schreier extensions of monoids with non-abelian kernel

https://www.degruyter.com/document/doi/10.1515/forum-2019-0164/html 4/31

• left normal if, for all , ,

• normal if it is both right and left normal, i.e., .

Note that H is right normal in M if and only if H is left normal in .

If H is a subgroup of a monoid M, the relation on M defined by

is an equivalence relation on M, called the right coset relation.
The equivalence class of an
element m is .
We will denote by  the quotient set.
Similarly, we can

define the left coset relation.

Proposition 2.2.
If H is right normal in M, then the operation
 
is well defined, and 

 is a monoid.

Proof.
If  and , then there exist  such that


and .
Hence .
Since H is right normal, there exists 
 such that , and so

which proves that .
∎

The same happens for the left coset relation, when H is left normal.

Example 2.3.
If A is a monoid,  is the monoid of endomorphisms of A (w.r.t. the usual
composition of functions, ), and  is the subgroup of inner
automorphisms induced by the invertible elements of A, then  is right normal, but
not left normal, in .
Indeed, if , , then

hence , which shows that  is right normal in .
But it is not

left normal, in general.
A concrete counterexample is the following.
If A is the symmetric
group , consider the endomorphism f of  defined by

Then, for every element , , and so , but the
endomorphism  is different from f; indeed,

m ∈ M Hm ⊆ mH

mH = Hm

M op

m1 ∼ m2 ⇔ m1 = hm2 for some h ∈ H

cl(m) = Hm M

H

Hm1 ⋅ Hm2 = Hm1m2

( , ⋅ , H)M
H

Hm1 = Hm′
1 Hm2 = Hm′

2 h1, h2 ∈ H m1 = h1m′
1

m2 = h2m′
2 m1m2 = h1m′

1h2m′
2

h3 ∈ H m′
1h2 = h3m′

1

m1m2 = h1m′
1h2m′

2 = h1h3m′
1m′

2,

Hm1m2 = Hm′
1m′

2

End(A)

(gf) (a) = g (f (a)) Inn(A)

Inn(A)

End(A) φ ∈ End(A) μg ∈ Inn(A)

φμg) (a) = φ (μg (a)) = φ (gag−1) = φ (g) φ (a) φ(g)
−1

= μφ(g) (φ (a)) = (μφ(g)φ) (a) ,

φμg = μφ(g)φ Inn(A) End(A)

S3 S3

f (id) = f ((123)) = f ((132)) = id, f ((12)) = f ((13)) = f ((23)) = (12) .

s ∈ S3 fμs = f f Inn(A) = {f}

μ(13)f
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and so  is not contained in .

Proposition 2.4.
If G is a group, then  is normal in the monoid  of epimorphisms of G.

Proof.
As we observed before,  is right normal in , and so it is right normal in 

, too.
Let us prove that it is also left normal.
If  and , let 
be such that  (since G is a group, φ is surjective).
Then, for all , we have

hence .
∎

3 Schreier extensions
Definition 3.1 ([24]).
Let

(3.1)
be a sequence of monoids and monoid homomorphisms such that σ is a surjection, κ is an
injection and  (i.e. κ is the kernel of σ). E is a (right) Schreier
extension of M by A (some authors would say “A by M” ) if, for every , there exists
an element  such that, for every , there exists a unique 
such that
 .
The elements , for , will be called the representatives
of E.
We will always choose  (we use the multiplicative notation for M and the
additive one for the other monoids involved).

Note that if (3.1) is a Schreier extension, then σ is the cokernel of κ.
Indeed, suppose that 
 is a monoid homomorphism such that  for all .
Define a map 
 by putting , .
If , then 

 and
 , whence .
Hence g is well
defined.
Clearly, g is a monoid homomorphism and .
The uniqueness of such a
homomorphism g is also clear.

Example 3.2.
Let  be the commutative monoid of natural numbers, with the usual sum, and let 
denote the multiplicative cyclic group of order m with generator t.
The sequence


,
where  and ,
is a Schreier extension of 
 by , with representatives given by .

μ(13)f ((12)) = μ(13)f ((13)) = μ(13)f ((23)) = (13) (12) (13)
−1

= (23) ,

Inn(A)f f Inn(A)

Inn(G) Epi(G)

Inn(G) End(G)

Epi(G) φ ∈ Epi(G) g ∈ G g′ ∈ G

φ (g′) = g x ∈ G

(μgφ) (x) = gφ (x) g−1 = φ (g′) φ (x) φ(g′)
−1

= φ (g′xg'−1) = (φμg′) (x) ,

φ Inn(G) = Inn(G)φ

E : 0 → A
κ

↣ B
σ
↠ M → 1

κ (A) = {b ∈ B|σ (b) = 1}

x ∈ M

ux ∈ σ−1 (x) b ∈ σ−1 (x) a ∈ A

b = κ (a) + ux ux x ∈ M

u1 = 0

f : B → C fκ (a) = 0 a ∈ A

g : M → C g (x) = f (b) b ∈ σ−1 (x) σ (b1) = x = σ (b2)

b1 = κ (a1) + ux b2 = κ (a2) + ux f (b1) = f (ux) = f (b2)

gσ = f

N Cm (t)

0 → N
¯̄m̄
↣ N

p
↠ Cm (t) → 1 ¯̄m̄ (1) = m p (1) = t

Cm (t) N 0, 1, …, m − 1
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From now on, we will treat κ just as an inclusion.

Proposition 3.3.
Let E be a Schreier extension as in (3.1), with representatives , .
An element 

 is another representative of x for E if and only if  for some 
.

Proof.
Since  is a representative, there exists a unique  such that .
Moreover,
if b is a representative for E, then there is a unique  such that .
Hence
we get
 .
By the uniqueness in the Schreier condition, we get .
Similarly, from the equality
 ,
we get , and so a is invertible.
Conversely, if  with , then, for every , there exists a
unique  such that

Moreover, if , then ; then the uniqueness in
the Schreier condition implies , and hence  because g is
invertible.
∎

Lemma 3.4.
Let E be a Schreier extension as in (3.1), with representatives , .
For , let 
be the unique element in A such that .
If , then ,
too.

Proof.
There exists a unique  such that .
From the equality 

, we obtain
 ,
and the uniqueness in
the Schreier condition implies .
Similarly, from the equality 

, we get
 ,
from where we obtain 
.
∎

Proposition 3.5.
Let E be a Schreier extension as in (3.1), and let  be representatives, for 

.
If  is a representative, then so is .

Proof.
Thanks to Proposition 3.3, we know that there exist  such that


, .
Moreover, there exists a unique  such that 

ux x ∈ M

b ∈ σ−1 (x) b = g + ux

g ∈ U (A)

ux a ∈ A b = a + ux

a′ ∈ A ux = a′ + b

b = a + a′ + b a + a′ = 0
ux = a′ + a + ux a′ + a = 0

b = g + ux g ∈ U (A) b′ ∈ σ−1 (x)

a′ ∈ A

b′ = a′ + ux = a′ − g + b.
a1 + b = a2 + b a1 + g + ux = a2 + g + ux

a1 + g = a2 + g a1 = a2

ux x ∈ M a ∈ A a′

ux + a = a′ + ux a ∈ U (A) a′ ∈ U (A)

a′′ ∈ A ux + (−a) = a′′ + ux

ux + a = a′ + ux ux = a′ + ux − a = a′ + a′′ + ux

a′ + a′′ = 0
ux + (−a) = a′′ + ux ux = a′′ + ux + a = a′′ + a′ + ux

a′′ + a′ = 0

ux, uy, vx, vy

x, y ∈ M ux + uy vx + vy

g1, g2 ∈ U (A)

vx = g1 + ux vy = g2 + uy h ∈ A
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, and such an h is invertible thanks to the previous lemma.
Then we
have
 ,
with .
Then the
thesis follows from Proposition 3.3.
∎

Let E be a Schreier extension as in (3.1), with representatives , .
We already
observed that, for all , there is a unique element  such that 
.
This defines a map  sending a to .

Proposition 3.6.
The following statements hold:

(a) for every , we have that ;

(b) if  is another representative, and  is the induced endomorphism of
A, then  with .

Proof.
(a) From the obvious equality , we get .
Moreover, on one
hand

while, on the other hand,

By the uniqueness, we get that .

(b) From Proposition 3.3, we know that  with .
Moreover, for all 
,

Therefore,

This means that
 
for all .∎

The previous proposition implies that, for a Schreier extension E as in (3.1), there is an
induced well-defined map

(3.2)

given by , such that  (see Proposition 2.2 and Example
2.3).
In order to have that Φ is a monoid homomorphism, we need an additional
assumption.

ux + g2 = h + ux

vx + vy = g1 + ux + g2 + uy = g1 + h + ux + uy g1 + h ∈ U (A)

ux x ∈ M

a ∈ A a′ ∈ A ux + a = a′ + ux

φ (x) : A → A a′

x ∈ M φ (x) ∈ End(A)

vx ψ (x) : A → A

ψ (x) = μgφ (x) g ∈ U (A)

ux + 0 = 0 + ux φ (x) (0) = 0

ux + a1 + a2 = φ (x) (a1 + a2) + ux,

ux + a1 + a2 = φ (x) (a1) + ux + a2 = φ (x) (a1) + φ (x) (a2) + ux.

φ (x) (a1 + a2) = φ (x) (a1) + φ (x) (a2)

vx = g + ux g ∈ U (A)

a ∈ A

vx + a = ψ (x) (a) + vx.

vx + a = g + ux + a = g + φ (x) (a) + ux = g + φ (x) (a) − g + vx.

ψ (x) (a) = g + φ (x) (a) − g = (μgφ (x)) (a) a ∈ A

Φ : M → ,
End(A)

Inn(A)

Φ (x) = cl(φ (x)) Φ (1) = cl(idA)
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Definition 3.7.
Let E be a Schreier extension as in (3.1).
We say that E is a regular Schreier extension if
whenever  and  are representatives for E, then so is  (such extensions are
called normal Schreier extensions in [22]).

Proposition 3.8.
If E is a regular Schreier extension, then the map (3.2) is a monoid homomorphism.

Proof.
Let , and let  and  be representatives.
We have the corresponding

with

for all .
Since E is regular,  is a representative, hence  for
some .
On one hand, we have

while, on the other hand,

Therefore,

whence

This means that , i.e. .
∎

Definition 3.9.
Given a regular Schreier extension E as in (3.1), the induced monoid homomorphism
(3.2)
is called the abstract kernel induced by the extension E.
More generally, we will call
abstract kernel any such homomorphism, even when it is not induced by an extension.

The following proposition gives examples of regular Schreier extensions.

Proposition 3.10.
Let E be a Schreier extension as in (3.1) such that A is a group (such extensions are called
special Schreier extensions in [4, 5, 17, 18]).
Then every element of B is a representative,
and therefore E is regular.

ux uy ux + uy

x, y ∈ M ux, uy uxy

φ (x) , φ (y) , φ (xy) ∈ End(A)

ux + a = φ (x) (a) + ux, uy + a = φ (y) (a) + uy, uxy + a = φ (xy) (a) + uxy

a ∈ A ux + uy ux + uy = g + uxy

g ∈ U (A)

ux + uy + a = g + uxy + a = g + φ (xy) (a) + uxy,

uy + a = ux + φ (y) (a) + uy = φ (x) (φ (y) (a)) + ux + uy = φ (x) (φ (y) (a)) + g + u

g + φ (xy) (a) = φ (x) (φ (y) (a)) + g,

φ (x) (φ (y) (a)) = g + φ (xy) (a) − g.

φ (x) φ (y) = μgφ (xy) Φ (x) Φ (y) = Φ (xy)
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Proof.
Let , and let  be a representative.
For every , there exists (a unique) 

 such that .
Being A a group, a is invertible.
Then it follows from
Proposition 3.3 that b is a representative.
Thus, every element of B is a representative, and
hence E is regular.
∎

Note that the extension of Example 3.2 serves as an example of Schreier extension which
is not regular.

Definition 3.11.
A Schreier extension E as in (3.1), with representatives , , is

(a) weakly homogeneous if, for all , there exists  such that 
,

(b) homogeneous if, for all , there is a unique such a.

Note that, thanks to Proposition 3.3, this definition does not depend on the choice of
representatives.
(Indeed, for any representative , we have , .
If
(a) holds, then

If (b) holds, then we have

The following proposition is a generalization of [5, Proposition 3.8], where only split
extensions were considered.

Proposition 3.12.
Let E be a Schreier extension as in (3.1), with representatives , .
Let 

 be the induced endomorphism of A relative to the element .
Then

(a) E is weakly homogeneous if and only if  is surjective for all ;

(b) E is homogeneous if and only if  for all .

Proof.
(a) Suppose that E is weakly homogeneous, and consider .
Given , there
exists  such that
 ,
from which we obtain that , and
so  is surjective.
Conversely, suppose that  is surjective.
Given ,
there exists a unique  such that  (because E is Schreier).
The surjectivity

x ∈ M ux b ∈ σ−1 (x)

a ∈ A b = a + ux

ux x ∈ M

b ∈ σ−1 (x) a ∈ A b = ux + a

b ∈ σ−1 (x)

vx ux = g + vx g ∈ U (A)

b = −g + g + b = −g + ux + a′ = vx + a′.

vx + a1 = vx + a2 ⟹ g + vx + a1 = g + vx + a2 ⟹ ux + a1 = ux + a2 ⟹ a1 = a2. )

ux x ∈ M

φ (x) : A → A x ∈ M

φ (x) x ∈ M

φ (x) ∈ Aut(A) x ∈ M

x ∈ M a ∈ A

a′ ∈ A a + ux = ux + a′ φ (x) (a′) = a

φ (x) φ (x) b ∈ σ−1 (x)

a ∈ A b = a + ux
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of  implies the existence of  such that .
Hence we have

.

(b) Suppose that E is homogeneous.
We already know that, for all ,  is
surjective.
Suppose that .
Then


,
and the uniqueness in the
definition of a homogeneous Schreier extension implies that , and so  is
injective.
Conversely, suppose that .
We already know that E is weakly
homogeneous.
If , then
 .
Being E
Schreier, this implies that , and the injectivity of  gives us
that .
∎

From now on,  denotes the monoid of surjective endomorphisms of a monoid A.

The previous proposition shows that a regular weakly homogeneous Schreier extension E

as in (3.1) induces a monoid homomorphism , while a regular

homogeneous Schreier extension induces a monoid homomorphism .

The following result is a generalization of [5, Proposition 3.4].

Proposition 3.13.
If  is a regular Schreier extension and M is a group, then E is
homogeneous.

Proof.
Given representatives , , with , consider the induced endomorphisms 

.
If , then , whence

.
Since E is regular,  is a representative of 1;

hence it is an invertible element of A (by Proposition 3.3).
This implies that , and
thus  is injective.
Moreover, since E is regular,



for some  (see Proposition 3.8).
Being  an automorphism, we deduce that  is surjective.
Then the thesis follows

from Proposition 3.12.
∎

Example 3.14.
Consider the sequence
 ,
where A is any monoid,  is the
cyclic group of order 2 with generator t, g is a fixed element of ,  acts on
the monoid A in a way that , and  is the cartesian product 
with the monoid operation defined by

φ (x) a′ ∈ A φ (x) (a′) = a

ux + a′ = φ (x) (a′) + ux = a + ux = b

x ∈ M φ (x)

φ (x) (a1) = φ (x) (a2)

ux + a1 = φ (x) (a1) + ux = φ (x) (a2) + ux = ux + a2

a1 = a2 φ (x)

φ (x) ∈ Aut(A)

ux + a1 = ux + a2 φ (x) (a1) + ux = φ (x) (a2) + ux

φ (x) (a1) = φ (x) (a2) φ (x)

a1 = a2

SEnd(A)

Φ : M →
SEnd(A)

Inn(A)

Φ : M →
Aut(A)

Inn(A)

E : 0 → A
κ

↣ B
σ
↠ M → 1

ux x ∈ M u1 = 0
φ (x) : A → A φ (x) (a1) = φ (x) (a2) ux + a1 = ux + a2

ux−1 + ux + a1 = ux−1 + ux + a2 ux−1 + ux

a1 = a2

φ (x)

φ (x) φ (x−1) = μgφ (xx−1) = μgφ (1) = μg g ∈ U (A)

μg φ (x)

A
κ

↣ A ×g C2 (t)
σ
↠ C2 (t) C2 (t)

U (Z (A)) C2 (t)

t ⋅ g = g A ×g C2 (t) A × C2 (t)
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It is straightforward to check that this operation is associative and that  is the
neutral element.
The morphism σ is just the canonical projection, while .
This sequence is a regular homogeneous Schreier extension.
In order to show that it is
Schreier, it suffices to choose the representatives  and .
Thanks to
Proposition 3.5, regularity is proved just by observing that the element

is a representative since  is invertible (see Proposition 3.3).
The previous proposition
implies that the extension is homogeneous.

Several other examples of Schreier and homogeneous Schreier extensions may be found
in [4, 5].

4 The crossed product extension
Let  be a regular Schreier extension, with representatives ,

.
Being E regular, we know that, for all , the element  is a
representative.
Thanks to Proposition 3.3, we get that there exists a unique element 

 such that .
This defines a map

for all  (because we are assuming that ).
Then we have, on one hand,

and, on the other hand,

where  is the map defined by
 
(as we
explained in the previous section).
Whence

(4.1)
Furthermore, for every  and every , we have, on one hand,

and, on the other hand,

whence

Being  invertible, the last equality implies that

(a1, 1) + (a2, 1) = (a1 + a2, 1) , (a1, 1) + (a2, t) = (a1 + a2, t) ,

(a1, t) + (a2, 1) = (a1 + t ⋅ a2, t) , (a1, t) + (a2, t) = (a1 + t ⋅ a2 + g, 1) .

(0, 1)

κ (a) = (a, 1)

u1 = (0, 1) ut = (0, t)

ut + ut = (0, t) + (0, t) = (g, 1) = (g, 1) + (0, 1) = (g, 1) + u1

(g, 1)

E : 0 → A
κ

↣ B
σ
↠ M → 1 ux

x ∈ M x, y ∈ M ux + uy

f (x, y) ∈ U (A) ux + uy = f (x, y) + uxy

f : M × M → U (A) such that f (x, 1) = f (1, y) = 0

x, y ∈ M u1 = 0

ux + uy + uz = f (x, y) + uxy + uz = f (x, y) + f (xy, z) + uxyz,

y + uz = ux + f (y, z) + uyz = φ (x) (f (y, z)) + ux + uyz = φ (x) (f (y, z)) + f (x, yz) +

φ : M → End(A) ux + a = φ (x) (a) + ux

φ (x) (f (y, z)) + f (x, yz) = f (x, y) + f (xy, z) for all x, y, z ∈ M.

x, y ∈ M a ∈ A

uy + a = ux + φ (y) (a) + uy = φ (x) φ (y) (a) + ux + uy = φ (x) φ (y) (a) + f (x, y) + u

ux + uy + a = f (x, y) + uxy + a = f (x, y) + φ (xy) (a) + uxy,

φ (x) φ (y) (a) + f (x, y) = f (x, y) + φ (xy) (a) .

f (x, y)



9/29/22, 4:21 PM On the classification of Schreier extensions of monoids with non-abelian kernel

https://www.degruyter.com/document/doi/10.1515/forum-2019-0164/html 12/31

Thus
 
for all .

Proposition 4.1.
Let monoids  and maps ,  such that, for all 

,

be given.
Then the set  of all pairs  with the operation
defined by

is a monoid, and the sequence

is a regular Schreier extension of M by A, called the crossed product extension, such that

the induced monoid homomorphism  sends  to the equivalence

class of .
Furthermore, a pair  is a representative if and only if .

Proof.
It is straightforward to show that the operation is associative and that  is its neutral
element.
The maps i and p are clearly monoid homomorphisms, p is surjective and i is
injective, and the image of i is the kernel of p.
Let us show that we get a regular Schreier
extension.
For any , we consider the element .
These elements are
representatives: indeed, every element  can be written as


,
and such writing is unique because the equality


implies , and hence .
So the

extension is Schreier.
Proposition 3.3, together with the equality ,
implies that  is a representative if and only if .
It remains to show that the
extension is regular.
For all , we have

and then, since ,  is a representative by Proposition 3.3.
Hence,
thanks to Proposition 3.5, the extension is regular.
Furthermore, for all , we have

which means that Φ sends  to the equivalence class of .
∎

Remark 4.2.

φ (x) φ (y) (a) = f (x, y) + φ (xy) (a) − f (x, y) .

φ (x) φ (y) = μf(x,y)φ (xy) x, y ∈ M

M, A φ : M → End(A) f : M × M → U (A)

x, y, z ∈ M

φ (1) = idA, f (x, 1) = f (1, y) = 0, φ (x) φ (y) = μf(x,y)φ (xy) ,
φ (x) (f (y, z)) + f (x, yz) = f (x, y) + f (xy, z) ,

[A, φ, f, M] (a, x) ∈ A × M

(a1, x) + (a2, y) = (a1 + φ (x) (a2) + f (x, y) , xy)

A
i

↣ [A, φ, f, M]
p
↠ M , i (a) = (a, 1), p (a, x) = x,

Φ : M →
End(A)

Inn(A)
x ∈ M

φ (x) (a, x) a ∈ U (A)

(0, 1)

x ∈ M ux = (0, x)
(a, x) ∈ A × M

(a, x) = (a, 1) + (0, x)

(a1, 1) + (0, x) = (a2, 1) + (0, x) (a1, x) = (a2, x) a1 = a2

(a, x) = (a, 1) + (0, x)

(a, x) a ∈ U (A)

x, y ∈ M

ux + uy = (0, x) + (0, y) = (0 + φ (x) (0) + f (x, y) , xy) = (f (x, y) , xy)
= (f (x, y) , 1) + (0, xy) = (f (x, y) , 1) + uxy,

f (x, y) ∈ U (A) ux + uy

a ∈ A

x + i (a) = (0, x) + (a, 1) = (φ (x) (a) , x) = (φ (x) (a) , 1) + (0, x) = i (φ (x) (a)) + ux,

x ∈ M φ (x)
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If, in the previous proposition, we have that , then the crossed
product extension is weakly homogeneous.
Indeed, every element  can be
written as
 ,
where  is such that  (such an
element exists since  is surjective).

If we have that , then the crossed product extension is homogeneous.
Indeed, if

then

(See Definition 3.11 and the note after it.)

We recall from [23] the following version of the Short Five Lemma for monoid extensions.

Proposition 4.3 ([23, Proposition 4.5]).
Consider the following commutative diagram of monoid homomorphisms:

where the two rows are Schreier extensions and the homomorphism β sends
representatives to representatives.
Then,

• if α
and γ
are injective, then β
also is;

• if α
and γ
are surjective, then β
also is;

• if α
and γ
are isomorphisms, then β
is an isomorphism, too.

This fact allows us to prove the following.

Proposition 4.4.
Given an abstract kernel , where A and M are monoids, fix an

endomorphism  for every element  (with ).
Then every
regular Schreier extension E as in (3.1) which induces the abstract kernel Φ is isomorphic

to the crossed product extension
 .

Proof.
We take representatives , , of E, with .
Then, for all  and all ,
we get that
 
for some .
Then, for each ,



for some , i.e., for all ,

φ : M → SEnd(A)

(a, x) ∈ A × M

(a, x) = (0, x) + (a′, 1) a′ ∈ A φ (x) (a′) = a

φ (x)

φ : M → Aut(A)

(0, x) + (a1, 1) = (0, x) + (a2, 1) ,

(φ (x) (a1) , x) = (φ (x) (a2) , x)⟹ φ (x) (a1) = φ (x) (a2)⟹ a1 = a2.

Φ : M →
End(A)

Inn(A)

φ (x) ∈ Φ (x) x ∈ M φ (1) = idA

A
i

↣ [A, φ, f, M]
p
↠ M

vx x ∈ M v1 = 0 a ∈ A x ∈ M

vx + a = ψ (x) (a) + vx ψ (x) ∈ Φ (x) x ∈ M

φ (x) = μg(x)ψ (x) g (x) ∈ U (A) a ∈ A
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We define new representatives by putting  for .
Choosing 
, we get .
Since E is regular, for all ,  is a representative,

hence
 
with .
Furthermore, for all  and
all ,

that is,
 .
Then the maps  and 
 satisfy the conditions of Proposition 4.1 (see the considerations

before this proposition) and therefore we have the crossed product extension 
.
Consider now the diagram

where the map β is defined by , where  and a is the unique element
of A such that .
Then β is a monoid homomorphism: clearly, 

, and moreover,

Furthermore,

hence the diagram is commutative.
Finally, , and if  is another
representative of E, then , , whence , and
so the representatives are preserved by β (see Proposition 3.3).
Thanks to Proposition 4.3,
β is an isomorphism.
∎

5 The obstruction of an abstract kernel
The aim of this section is to show that, to any abstract kernel  (resp. 

), it is possible to associate an element of the third Eilenberg–Mac Lane

cohomology group of M with coefficients in the M-module , called the

obstruction of Φ.
Moreover, we will show that the abstract kernel 

(resp. ) is induced by a regular weakly homogeneous (resp.

homogeneous) Schreier extension if and only if its obstruction is the zero element of the
cohomology group.
In order to do this, we first describe how to get from Φ a structure of
M-module on .

Proposition 5.1.

φ (x) (a) = g (x) + ψ (x) (a) − g (x) .
ux = g (x) + vx x ∈ M

g (1) = 0 u1 = 0 x, y ∈ M ux + uy

ux + uy = f (x, y) + uxy f (x, y) ∈ U (A) a ∈ A

x ∈ M

ux + a = g (x) + vx + a = g (x) + ψ (x) (a) + vx = g (x) + ψ (x) (a) − g (x) + ux,
ux + a = φ (x) (a) + ux φ : M → End(A)

f : M × M → U (A)

[A, φ, f, M]

β (b) = (a, x) σ (b) = x

b = a + ux

β (0) = β (0 + u1) = (0, 1)

ux + a2 + uy) = β (a1 + φ (x) (a2) + ux + uy) = β (a1 + φ (x) (a2) + f (x, y) + uxy)
= (a1 + φ (x) (a2) + f (x, y) , xy) = (a1, x) + (a2, y) = β (a1 + ux) + β (a2

βκ (a) = β (a + u1) = (a, 1) = i (a) and pβ (a + ux) = p (a, x) = x = σ (a + ux) ;
β (ux) = (0, x) wx

wx = g + ux g ∈ U (A) β (wx) = i (g) + (0, x)

Φ : M →
SEnd(A)

Inn(A)

Φ : M →
Aut(A)

Inn(A)

U (Z (A))

Φ : M →
SEnd(A)

Inn(A)

Φ : M →
Aut(A)

Inn(A)

U (Z (A))



9/29/22, 4:21 PM On the classification of Schreier extensions of monoids with non-abelian kernel

https://www.degruyter.com/document/doi/10.1515/forum-2019-0164/html 15/31

Given an abstract kernel , where A and M are monoids, the center 

 of A is an M-semimodule w.r.t. the action defined by
 
for , 
 and .

Proof.
We first show that  for all ,  and .
Consider
an element .
Being  surjective, there exists  such that .
Then

Now, it remains to show that the definition above does not depend on the choice of the

representative  of the class  in the quotient .
To do that, consider

another representative .
Then there is an element  such that 
.
So we get

where we are using that .
This concludes the proof.
∎

Corollary 5.2.
Given an abstract kernel , where A and M are monoids, the group 

 of A is an M-module w.r.t. the action defined by
 
for , 
 and .

Proof.
It is immediate to observe that if , then  is also invertible, with inverse 

, so the action of M on  restricts to .
∎

Now we describe how to associate an obstruction to an abstract kernel.
Given a monoid

homomorphism , we choose a representative  for any 

, with .
We have that

for some , with .
Now, given , we
have, on one hand,

and, on the other hand,

Φ : M →
SEnd(A)

Inn(A)

Z (A) x ⋅ c = φ (x) (c) x ∈ M

c ∈ Z (A) φ (x) ∈ Φ (x)

x ⋅ c ∈ Z (A) x ∈ M c ∈ Z (A) φ (x) ∈ Φ (x)

a ∈ A φ (x) a′ ∈ A φ (x) (a′) = a

a + φ (x) (c) = φ (x) (a′) + φ (x) (c) = φ (x) (a′ + c)
= φ (x) (c + a′) = φ (x) (c) + φ (x) (a′) = φ (x) (c) + a.

φ (x) Φ (x)
SEnd(A)

Inn(A)

ψ (x) ∈ SEnd(A) g ∈ U (A)
ψ (x) = μgφ (x)

ψ (x) (c) = μgφ (x) (c) = g + φ (x) (c) − g = φ (x) (c) + g − g = φ (x) (c) ,

φ (x) (c) ∈ Z (A)

Φ : M →
SEnd(A)

Inn(A)

U (Z (A)) x ⋅ g = φ (x) (g) x ∈ M

g ∈ U (Z (A)) φ (x) ∈ Φ (x)

g ∈ U (Z (A)) x ⋅ g

x ⋅ (−g) Z (A) U (Z (A))

Φ : M →
SEnd(A)

Inn(A)
φ (x) ∈ Φ (x)

x ∈ M φ (1) = idA

φ (x) φ (y) = μf(x,y)φ (xy)

f (x, y) ∈ U (A) f (x, 1) = f (1, y) = 0 x, y, z ∈ M

φ (x) φ (y) φ (z) = φ (x) μf(y,z)φ (yz) = μφ(x)(f(y,z))φ (x) φ (yz)
= μφ(x)(f(y,z))μf(x,yz)φ (xyz) = μφ(x)(f(y,z))+f(x,yz)φ (xyz) ,
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Comparing the two expressions, and using the fact that  is surjective, we get the
equality

namely
 ,
which tells us that

This means that there exists a unique element  such that

Clearly, .

Definition 5.3.
The function  we get this way is the obstruction of the
abstract kernel Φ.

Proposition 5.4.
An obstruction k of an abstract kernel Φ as above is a 3-cocycle of the cohomology of M
with coefficients in the M-module .

Proof.
Given elements , we compute the expression



in two different ways.
On one hand, we
have

where the last equality holds since k takes values in the center of A.
On the other hand, we
have

Since , this is equal to

φ (x) φ (y) φ (z) = μf(x,y)φ (xy) φ (z) = μf(x,y)μf(xy,z)φ (xyz) = μf(x,y)+f(xy,z)φ (xyz) .

φ (xyz)

μφ(x)(f(y,z))+f(x,yz) = μf(x,y)+f(xy,z),

μφ(x)(f(y,z))+f(x,yz)−(f(x,y)+f(xy,z)) = idA

φ (x) (f (y, z)) + f (x, yz) − (f (x, y) + f (xy, z)) ∈ U (Z (A)) .
k (x, y, z) ∈ U (Z (A))

φ (x) (f (y, z)) + f (x, yz) = k (x, y, z) + f (x, y) + f (xy, z) .

k (x, y, 1) = k (x, 1, z) = k (1, y, z) = 0

k : M × M × M → U (Z (A))

U (Z (A))

x, y, z, t ∈ M

φ (x) (φ (y) (f (z, t)) + f (y, zt)) + f (x, yzt)

φ (x) (φ (y) (f (z, t)) + f (y, zt)) + f (x, yzt)
= φ (x) (k (y, z, t) + f (y, z) + f (yz, t)) + f (x, yzt)
= x ⋅ k (y, z, t) + φ (x) (f (y, z)) + φ (x) (f (yz, t)) + f (x, yzt)
= x ⋅ k (y, z, t) + k (x, y, z) + f (x, y) + f (xy, z) − f (x, yz)

+k (x, yz, t) + f (x, yz) + f (xyz, t) − f (x, yzt) + f (x, yzt)
= x ⋅ k (y, z, t) + k (x, y, z) + k (x, yz, t) + f (x, y) + f (xy, z) + f (xyz, t) ,

(φ (y) (f (z, t)) + f (y, zt)) + f (x, yzt) = φ (x) φ (y) (f (z, t)) + φ (x) (f (y, zt)) + f (x, y

φ (x) φ (y) = μf(x,y)φ (xy)

(x, y) + φ (xy) (f (z, t)) − f (x, y) + φ (x) (f (y, zt)) + f (x, yzt)
= f (x, y) + k (xy, z, t) + f (xy, z) + f (xyz, t) − f (xy, zt) − f (x, y) + k (x, y, zt)

+f (x, y) + f (xy, zt) − f (x, yzt) + f (x, yzt)
= k (xy, z, t) + k (x, y, zt) + f (x, y) + f (xy, z) + f (xyz, t) ,
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where, once again, the last equality holds since k takes values in the center of A.
Comparing the two expressions, and using the fact that f takes values in , we obtain
the equality

Since , we have that k is a 3-cocycle.
∎

In the construction of the obstruction of an abstract kernel Φ, we used the fact that, given 
, there exists an element  such that 

.
Such an element is not unique.
However, if we replace it with an  with the same
properties, the cohomology class of the corresponding 3-cocycle  is the same.

Proposition 5.5.
Consider an abstract kernel , with chosen representatives 

 for any , with .
If, for any , we have

with
  and ,
then the 3-cocycles k and 
constructed using f and  are cohomologous.

Proof.
From the equality
 ,
we get  because 

is surjective.
This means that
 .
Hence

so we get a map
 
such that .
From the
equality

valid for all , and from the definition of the cocycles k and , we get

Thus .
∎

Conversely, starting with cohomologous cocycles:

Proposition 5.6.

U (A)

x ⋅ k (y, z, t) + k (x, yz, t) + k (x, y, z) = k (xy, z, t) + k (x, y, zt) .

k (x, y, 1) = k (x, 1, z) = k (1, y, z) = 0

x, y ∈ M f (x, y) ∈ U (A) φ (x) φ (y) = μf(x,y)φ (xy)

f ′ (x, y)

k′

Φ : M →
SEnd(A)

Inn(A)

φ (x) ∈ Φ (x) x ∈ M φ (1) = idA x, y ∈ M

φ (x) φ (y) = μf(x,y)φ (xy) = μf ′(x,y)φ (xy)

f (x, 1) = 0 = f (1, y) f ′ (x, 1) = 0 = f ′ (1, y) k′

f ′

μf(x,y)φ (xy) = μf ′(x,y)φ (xy) μf(x,y) = μf ′(x,y) φ (xy)

μf(x,y)−f ′(x,y) = idA

h (x, y) = f (x, y) − f ′ (x, y) ∈ U (Z (A)) ,

h : M × M → U (Z (A)) h (x, 1) = 0 = h (1, y)

f (x, y) = h (x, y) + f ′ (x, y) ,

x, y ∈ M k′

= φ (x) (f (y, z)) + f (x, yz) − f (xy, z) − f (x, y)
= φ (x) (h (y, z) + f ′ (y, z)) + h (x, yz) + f ′ (x, yz) − [h (xy, z) + f ′ (xy, z)] − [h (x, y) +
= φ (x) (f ′ (y, z)) + f ′ (x, yz) − f ′ (xy, z) − f ′ (x, y) + x ⋅ h (y, z) − h (xy, z) + h (x, yz) −

= k′ (x, y, z) − δ2h (x, y, z) .

k′ − k = δ2h
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Consider an abstract kernel , with chosen representatives 

 for any , with .
Let  be a map with 
 and  for any , and let 

 be the 3-cocycle induced by f.
If  is a 3-cocycle which is
cohomologous to k, then there exists a map , with 

, such that
 
and the 3-cocycle

induced by  is precisely .

Proof.
By assumption, there exists
 , with ,
such that .
We define  by putting


.
Clearly, .
Moreover,


since .
Therefore,


.
Furthermore, for any , we have

It remains to check what happens if, given an abstract kernel , we

consider two different representatives  and  of .

Proposition 5.7.
Consider an abstract kernel , with chosen representatives 

 for any , with .
Let  be a map with 
 and  for any , and let 

 be the 3-cocycle induced by f.
If one chooses other
representatives , again with , there exists a map 

, with , such that


and its induced 3-cocycle is precisely k.

Proof.
Since  for all , they differ by an inner automorphism of A.
In
other terms, there is a map , with , such that


.
Then, for , we get

Φ : M →
SEnd(A)

Inn(A)

φ (x) ∈ Φ (x) x ∈ M φ (1) = idA f : M × M → U (A)

φ (x) φ (y) = μf(x,y)φ (xy) f (x, 1) = 0 = f (1, y) x, y ∈ M

k : M × M × M → U (Z (A)) k′′

f ′′ : M × M → U (A)

f ′′ (x, 1) = 0 = f ′′ (1, y) φ (x) φ (y) = μf ′′(x,y)φ (xy)

f ′′ k′′

h : M × M → U (Z (A)) h (x, 1) = 0 = h (1, y)

k − k′′ = δ2h f ′′ : M × M → U (A)
f ′′ (x, y) = h (x, y) + f (x, y) f ′′ (x, 1) = 0 = f ′′ (1, y)

μf ′′(x,y) = μh(x,y)μf(x,y) = μf(x,y) h (x, y) ∈ U (Z (A))

φ (x) φ (y) = μf ′′(x,y)φ (xy) x, y, z ∈ M

′′ (y, z)) + f ′′ (x, yz) − f ′′ (xy, z) − f ′′ (x, y)
= φ (x) (h (y, z) + f (y, z)) + h (x, yz) + f (x, yz) − [h (xy, z) + f (xy, z)] − [h (x, y) + f
= φ (x) (f (y, z)) + f (x, yz) − f (xy, z) − f (x, y) + x ⋅ h (y, z) − h (xy, z) + h (x, yz) − h

= k (x, y, z) − δ2h (x, y, z) = k′′ (x, y, z) .∎
Φ : M →

SEnd(A)

Inn(A)

φ (x) φ′ (x) Φ (x)

Φ : M →
SEnd(A)

Inn(A)

φ (x) ∈ Φ (x) x ∈ M φ (1) = idA f : M × M → U (A)

φ (x) φ (y) = μf(x,y)φ (xy) f (x, 1) = 0 = f (1, y) x, y ∈ M

k : M × M × M → U (Z (A))
φ′ (x) ∈ Φ (x) φ′ (1) = idA

f ′ : M × M → U (A) f ′ (x, 1) = 0 = f ′ (1, y)

φ′ (x) φ′ (y) = μf ′(x,y)φ
′ (xy)

φ (x) , φ′ (x) ∈ Φ (x) x ∈ M

g : M → U (A) g (1) = 0

φ′ (x) = μg(x)φ (x) x, y ∈ M
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Thus, defining
 ,
we obtain that 
, and obviously .
It remains to

check that the induced 3-cocycle is k.
We have

and this concludes the proof.
∎

The previous propositions give the following.

Theorem 5.8.
Any abstract kernel  determines in an invariant way an element 

 of the third cohomology group  of the monoid M with

coefficients in the M-module .
An abstract kernel  is induced

by a regular weakly homogeneous Schreier extension if and only if  is the zero
element of .

Proof.
The fact that the element  is uniquely determined is a
consequence of the previous propositions.
If the abstract kernel Φ is induced by a regular
weakly homogeneous Schreier extension, we observed at the beginning of Section 4 that
there exists a map  such that  and

φ′ (x) φ′ (y) = μg(x)φ (x) μg(y)φ (y) = μg(x)μφ(x)(g(y))φ (x) φ (y)

= μg(x)μφ(x)(g(y))μf(x,y)φ (xy) = μg(x)μφ(x)(g(y))μf(x,y)μ
−1
g(xy)

φ′ (xy)

= μg(x)μφ(x)(g(y))μf(x,y)μ−g(xy)φ
′ (xy) = μg(x)+φ(x)(g(y))+f(x,y)−g(xy)φ

′ (xy) .

f ′ (x, y) = g (x) + φ (x) (g (y)) + f (x, y) − g (xy)
φ′ (x) φ′ (y) = μf ′(x,y)φ

′ (xy) f ′ (x, 1) = 0 = f ′ (1, y)

y, z)) + f ′ (x, yz) − f ′ (xy, z) − f ′ (x, y)
φ′ (x) [g (y) + φ (y) (g (z)) + f (y, z) − g (yz)] + g (x) + φ (x) (g (yz)) + f (x, yz) − g (xy

−[g (xy) + φ (xy) (g (z)) + f (xy, z) − g (xyz)] − [g (x) + φ (x) (g (y)) + f (x, y) − g
μg(x) [φ (x) (g (y)) + φ (x) φ (y) (g (z)) + φ (x) (f (y, z)) − φ (x) (g (yz))] + g (x) + φ (x)

+f (x, yz) − g (xyz) + g (xyz) − f (xy, z)
−φ (xy) (g (z)) − g (xy) + g (xy) − f (x, y) − φ (x) (g (y)) − g (x)

g (x) + φ (x) (g (y)) + φ (x) φ (y) (g (z)) + φ (x) (f (y, z)) − φ (x) (g (yz)) − g (x) + g (x
+φ (x) (g (yz)) + f (x, yz) − f (xy, z) − φ (xy) (g (z)) − f (x, y) − φ (x) (g (y)) − g

g (x) + φ (x) (g (y)) + φ (x) φ (y) (g (z)) + φ (x) (f (y, z)) + f (x, yz) − f (xy, z)
−φ (xy) (g (z)) − f (x, y) − φ (x) (g (y)) − g (x)

g (x) + φ (x) (g (y)) + μf(x,y)φ (xy) (g (z)) + k (x, y, z) + f (x, y)
−φ (xy) (g (z)) − f (x, y) − φ (x) (g (y)) − g (x)

k (x, y, z) + g (x) + φ (x) (g (y)) + f (x, y) + φ (xy) (g (z)) − f (x, y) + f (x, y)
−φ (xy) (g (z)) − f (x, y) − φ (x) (g (y)) − g (x)

k (x, y, z) ,

Φ : M →
SEnd(A)

Inn(A)

Obs(Φ) H 3 (M, U (Z (A)))

U (Z (A)) Φ : M →
SEnd(A)

Inn(A)

Obs(Φ)

H 3 (M, U (Z (A)))

Obs(Φ) ∈ H 3 (M, U (Z (A)))

f : M × M → U (A) f (x, 1) = 0 = f (1, y)

φ (x) (f (y, z)) + f (x, yz) = f (x, y) + f (xy, z) for all x, y, z ∈ M.
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Hence the element  associated to the abstract kernel Φ induced by the extension is

zero.
Conversely, if the obstruction of an abstract kernel  is zero, then

the crossed product extension built in Proposition 4.1 (which is weakly homogeneous by
Remark 4.2) induces Φ.
∎

In particular, for abstract kernels which factor through , i.e.
abstract kernels of the

form , we get the following.

Theorem 5.9.
Any abstract kernel  determines in an invariant way an element 

of the third cohomology group  of the monoid M with coefficients in

the M-module .
An abstract kernel  is induced by a regular

homogeneous Schreier extension if and only if  is the zero element of 
.

If the monoid A is a group, then  and every Schreier extension of M
by A is regular (see Proposition 3.10).
Recalling that such extensions are called special
Schreier in [4, 5, 17, 18], it is worth mentioning the following particular case of the
previous theorems.

Corollary 5.10.
Let M be a monoid and A a group.
Any abstract kernel  (resp. 

) determines in an invariant way an element  of the third

cohomology group  of the monoid M with coefficients in the M-module 

.
An abstract kernel  (resp. ) is induced by a

weakly homogeneous (resp. homogeneous) special Schreier extension if and only if 
 is the zero element of .

We observe that the particular case described in the previous corollary could also be
obtained from the results of [27].

6 The classification of regular weakly homogeneous
and regular homogeneous Schreier extensions
In this section, we show that the set  of isomorphism classes of regular
weakly homogeneous (resp. homogeneous) Schreier extensions (3.1) which induce the

same abstract kernel  (resp. ), when it is not empty, is

Obs(Φ)

Φ : M →
SEnd(A)

Inn(A)

Aut(A)

Inn(A)

Φ : M →
Aut(A)

Inn(A)

Φ : M →
Aut(A)

Inn(A)
Obs(Φ)

H 3 (M, U (Z (A)))

U (Z (A)) Φ : M →
Aut(A)

Inn(A)

Obs(Φ)

H 3 (M, U (Z (A)))

SEnd(A) = Epi(A)

Φ : M →
Epi(A)

Inn(A)

Φ : M →
Aut(A)

Inn(A)
Obs(Φ)

H 3 (M, Z (A))

Z (A) Φ : M →
Epi(A)

Inn(A)
Φ : M →

Aut(A)

Inn(A)

Obs(Φ) H 3 (M, Z (A))

Ext(M, A, Φ)

Φ : M →
SEnd(A)

Inn(A)
Φ : M →

Aut(A)

Inn(A)
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in bijection with the second cohomology group  of M with coefficients
in the M-module .
In order to do this, we show that there is a simply transitive
action of the abelian group  on the set .

We start by recalling that an action of a group G on a set S is simply transitive if, for all 
, there exists a unique  such that .
Given a simply transitive

action of G on S, every element  determines then a bijection , defined by 
.

Suppose now that an abstract kernel  is induced by a regular weakly

homogeneous Schreier extension (3.1), i.e. that the set  is not empty.
For
every , we choose a representative , with .
We define an
action of  on  as follows.
Given elements 

 and , Proposition 4.4 tells us that E is
isomorphic to a crossed product extension , where  is a
map with  and
 ,
and such that the

equality (4.1) holds.
Consider the function  defined by

.
Clearly,

and, since , we also have

Furthermore,

where we are using that , that h is a 2-cocycle and
equality (4.1).
Thus

Thanks to this equality, we can build the crossed product extension ,
which is weakly homogeneous by Remark 4.2.
The action of  on 

 we are looking for is then defined by

(6.1)

Theorem 6.1.
The action (6.1) is well defined and simply transitive.

Proof.

H 2 (M, U (Z (A)))
U (Z (A))

H 2 (M, U (Z (A))) Ext(M, A, Φ)

s, s′ ∈ S g ∈ G g ⋅ s = s′

s ∈ S α : G → S

α (g) = g ⋅ s

Φ : M →
SEnd(A)

Inn(A)

Ext(M, A, Φ)

x ∈ M φ (x) ∈ Φ (x) φ (1) = idA

H 2 (M, U (Z (A))) Ext(M, A, Φ)
cl(h) ∈ H 2 (M, U (Z (A))) cl(E) ∈ Ext(M, A, Φ)

[A, φ, f, M] f : M × M → U (A)

f (x, 1) = 0 = f (1, y) φ (x) φ (y) = μf(x,y)φ (xy)

h + f : M × M → U (A)

(h + f) (x, y) = h (x, y) + f (x, y)

(h + f) (x, 1) = 0 = (h + f) (1, y) ,
h (x, y) ∈ U (Z (A))

φ (x) φ (y) = μ(h+f)(x,y)φ (xy) .

y, z) + f (y, z)) + h (x, yz) + f (x, yz) = φ (x) (h (y, z)) + φ (x) (f (y, z)) + h (x, yz) + f
= φ (x) (h (y, z)) + h (x, yz) + φ (x) (f (y, z)) + f
= h (x, y) + h (xy, z) + f (x, y) + f (xy, z)
= h (x, y) + f (x, y) + h (xy, z) + f (xy, z) ,

h (x, yz) , h (xy, z) ∈ U (Z (A))

φ (x) (h + f) (y, z) + (h + f) (x, yz) = (h + f) (x, y) + (h + f) (xy, z) .
[A, φ, h + f, M]

H 2 (M, U (Z (A)))

Ext(M, A, Φ)

cl(h) ⋅ cl(E) = cl([A, φ, h + f, M]).
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We first prove that the action is well defined, i.e. that it does not depend on the choice of
the representatives.
If  and , with  isomorphic to the
crossed product extension , then
 .
Since , there exists a commutative diagram

where ζ is an isomorphism.
For every , we have  with 
.
Indeed, ζ sends representatives to representatives, and  is, by

Proposition 4.1, a representative if and only if .
Moreover,

,
whence .
So we get a map  with 

.
Furthermore, for all  and , we have

Using this equality, one gets

Comparing the two expressions, we obtain

(6.2
Moreover, since , there is a 1-cochain  such that

(6.3)
Consider now the diagram

where the map ξ is defined by .
Clearly, the diagram is
commutative.
Using the equalities (6.2) and (6.3), and the fact that  and γ take values
in , it is straightforward to check that ξ is a monoid homomorphism.
Moreover,
it sends representatives to representatives since , and 

 whenever  (see Proposition 4.1).
Then Proposition
4.3 implies that ξ is an isomorphism.
This shows that the action is well defined.
It is
obviously an action since

The next step of the proof consists in showing that the action is simple, namely,

If , we have a commutative diagram

cl(h) = cl(h′) cl(E) = cl(E ′) E ′

[A, φ, f ′, M] cl(h′) ⋅ cl(E ′) = cl([A, φ, h′ + f ′, M])

cl(E) = cl(E ′)

x ∈ M ζ (0, x) = (r (x) , x)

r (x) ∈ U (A) (a, x)
a ∈ U (A)

(r (1) , 1) = ζ (0, 1) = (0, 1) r (1) = 0 r : M → U (A)

r (1) = 0 a ∈ A x ∈ M

ζ (a, x) = ζ ((a, 1) + (0, x)) = ζ (a, 1) + ζ (0, x) = (a, 1) + (r (x) , x)
= (a + φ (1) r (x) + f ′ (1, x) , x) = (a + r (x) , x) .

x) + (a2, y)) = ζ (a1 + φ (x) (a2) + f (x, y) , xy) = (a1 + φ (x) (a2) + f (x, y) + r (xy) ,
ζ ((a1, x) + (a2, y)) = ζ (a1, x) + ζ (a2, y) = (a1 + r (x) , x) + (a2 + r (y) , y)

= (a1 + r (x) + φ (x) (a2) + φ (x) (r (y)) + f ′ (x, y) , xy) .

+ φ (x) (a2) + f (x, y) + r (xy) = a1 + r (x) + φ (x) (a2) + φ (x) (r (y)) + f ′ (x, y) .

cl(h) = cl(h′) γ : M → U (Z (A))

h (x, y) + γ (xy) = h′ (x, y) + x ⋅ γ (y) + γ (x) .

ξ (a, x) = (γ (x) + a + r (x) , x)

h, h′

U (Z (A))

ξ (a, x) = (γ (x) + a + r (x) , x)
γ (x) + a + r (x) ∈ U (A) a ∈ U (A)

(cl(h) + cl(h′)) ⋅ cl(E) = cl(h) ⋅ (cl(h′) ⋅ cl(E)) and cl(0) ⋅ cl(E) = cl(E).

cl(h1) ⋅ cl(E) = cl(h2) ⋅ cl(E)⟹ cl(h1) = cl(h2).

cl(h1) ⋅ cl(E) = cl(h2) ⋅ cl(E)
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where η is an isomorphism.
As we did for ζ in the first part of the proof, one can check that

Let us prove that b is in fact a 1-cochain with .
If  and , then
there exists  such that  because .
Then we get

hence , which means that  for all .
Moreover,

Therefore,

whence

and this tells us that  and the action is simple.

It remains to prove that it is transitive, i.e. that, for all ,
there exists

Given , we know from Proposition 4.4 that E and  are
isomorphic to crossed product extensions  and  respectively,
where, for all , the following equalities hold:

Being  surjective, this implies that , and so 

.
Let us then define the function 
 by putting

A straightforward calculation (using equality (4.1) and the fact that h takes values in 
) shows that h is a 2-cocycle.
Then we get

and the action is transitive.
∎

η (a, x) = (a + b (x) , x), with b : M → U (A), b (1) = 0.

h1 − h2 = δ1b a ∈ A x ∈ M

a′ ∈ A φ (x) (a′) = a φ (x) ∈ SEnd(A)

(a + b (x) , x) = η (a, x) = η (φ (x) (a′) , x) = η ((0, x) + (a′, 1)) = η (0, x) + η (a′, 1)
= (b (x) , x) + (a′, 1) = (b (x) + φ (x) (a′) , x) = (b (x) + a, x) ,

a + b (x) = b (x) + a b (x) ∈ U (Z (A)) x ∈ M

η ((0, x) + (0, y)) = η (h1 (x, y) + f (x, y) , xy) = (h1 (x, y) + f (x, y) + b (xy) , xy) ,
η ((0, x) + (0, y)) = η (0, x) + η (0, y) = (b (x) , x) + (b (y) , y)

= (b (x) + φ (x) (b (y)) + h2 (x, y) + f (x, y) , xy) .

h1 (x, y) + f (x, y) + b (xy) = b (x) + φ (x) (b (y)) + h2 (x, y) + f (x, y) ,

h1 (x, y) − h2 (x, y) = φ (x) (b (y)) − b (xy) + b (x) = δ1b (x, y) ,

cl(h1) = cl(h2)

cl(E), cl(E ′) ∈ Ext(M, A, Φ)

cl(h) ∈ H 2 (M, U (Z (A))) such that cl(h) ⋅ cl(E) = cl(E ′).

cl(E), cl(E ′) ∈ Ext(M, A, Φ) E ′

[A, φ, f, M] [A, φ, f ′, M]

x, y ∈ M

φ (x) φ (y) = μf(x,y)φ (xy) = μf ′(x,y)φ (xy) .

φ (xy) μf ′(x,y)−f(x,y) = idA

f ′ (x, y) − f (x, y) ∈ U (Z (A))

h : M × M → U (Z (A))

h (x, y) = f ′ (x, y) − f (x, y) .

U (Z (A))

cl(h) ⋅ cl(E) = cl([A, φ, h + f, M]) = cl([A, φ, f ′, M]) = cl(E ′),
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The previous theorem gives then the desired bijection between  and 
.

Corollary 6.2.
For any fixed , the map from  to 

 which sends  to  is bijective.

If  (in particular, if  or ), then both 
 and  are the trivial groups.
This means that, for

every abstract kernel , .
Hence we get the following.

Corollary 6.3.
If , then, for every abstract kernel , there exists, up to

isomorphism, a unique weakly homogeneous Schreier extension of M by A which induces
Φ.
If , then also , and so the abstract kernel is a monoid
homomorphism , i.e. an action of M on A.
In this case, the unique
weakly homogeneous extension is the semidirect product of M and A via the action Φ.

It is immediate to see that the results of this section are valid, in particular, for abstract

kernels of the form  and regular homogeneous Schreier extensions.
Let

us state them explicitly.

Theorem 6.4.
Given an abstract kernel , if the set  of isomorphism

classes of regular homogeneous Schreier extensions of M by A which induce Φ is not
empty, then (6.1) is a simply transitive action of the abelian group  on

.
This action induces a bijection between  and 
.

Corollary 6.5.
If the monoid A is such that , for every abstract kernel ,

there exists, up to isomorphism, a unique homogeneous Schreier extension of M by A
which induces Φ.
If , then also , and so the abstract kernel is a
monoid homomorphism , i.e. an action of M on A.
In this case, the
unique homogeneous extension is the semidirect product of M and A via the action Φ.

Finally, note that if A and M are both groups, then Theorem 6.4 turns into the classical
cohomological classification of group extensions with non-abelian kernel (see, e.g., [16]).

Ext(M, A, Φ)

H 2 (M, U (Z (A)))

cl(E) ∈ Ext(M, A, Φ) H 2 (M, U (Z (A)))

Ext(M, A, Φ) cl(h) cl(h) ⋅ cl(E)

U (Z (A)) = 0 U (A) = 0 Z (A) = 0

H 2 (M, U (Z (A))) H 3 (M, U (Z (A)))

Φ : M →
SEnd(A)

Inn(A)
Obs(Φ) = 0

U (Z (A)) = 0 Φ : M →
SEnd(A)

Inn(A)

U (A) = 0 Inn(A) = 0

Φ : M → SEnd(A)

Φ : M →
Aut(A)

Inn(A)

Φ : M →
Aut(A)

Inn(A)
Ext(M, A, Φ)

H 2 (M, U (Z (A)))

Ext(M, A, Φ) Ext(M, A, Φ)
H 2 (M, U (Z (A)))

U (Z (A)) = 0 Φ : M →
Aut(A)

Inn(A)

U (A) = 0 Inn(A) = 0

Φ : M → Aut(A)
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