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Abstract. The effective sufficient conditions are found for the existence and unique-
ness of a solution of the problem

w(t) = Lu)(t) +q(t), wle)=c, ulb)=cy
where £ : C{[a, b]; R) - L([a, b}; B) is a monotone linear bounded operator, g € L([a, b]; K),

and ¢;,¢9 € R
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1. Statement of the Problem and the Main Notation. On the
interval |a, b], we consider the functional differential equation

(1) u"(t) = £(u)(t) + q(t)
with the boundary conditions
(2) u(a) = ¢, u(b) = ¢,
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520 S. MUKHIGULASHVILI AND J. SREMR

where £ : C{[a,b]; R) — L([a,b]; R) is a linear bounded operator, ¢ €
L([a, b]; R), and c¢1,¢2 € R.

By a solution of the equation (1) we understand an absolutely continuous
function u : [a,b] — R satisfying the equality (1) almost everywhere on the
interval [a,b]. A solution of the equation (1) satisfying (2) is said to be a
solution of the problem (1), (2).

As for ordinary differential equations, the problem on the solvability of
the Dirichlet problem is studied in detail (see, e.g., [2]), while this problem
for functional differential equations is still not sufficiently investigated. It
should be mentioned that the Dirichlet problem for ordinary and functional
differential equations has been studied, among others, in [6, 7, 8, 10, 11, 5, 9].

In the present paper, we consider the problem on the unique solvability
of (1), (2). The results obtained, on one hand generalize well-known results
of Lyapunov (see, e.g., [2, p. 346]) and, on the other hand, describe some
properties belonging only to the functional differential equations.

It follows from [10, Theorem 1.1.2,] and [8, Theorem 1.4] that the prob-
lem (1), (2) is uniquely solvable if

(3) / #1)(s)ds < 2

b—a
provided that the operator £ is nondecreasing. There is also shown that the
condition (3) is (in general) nonimprovable. In this paper, there is proved
that if the nondecreasing operator £ is concentrated on the set A C [a,b]
(see Definition 1 below), then the constant 16 on the right hand side of the
inequality (3) can be replaced by a constant d > 16 depending only on the
set A. Further, a similar result is established for nonincreasing operators.

The main results are concretized for the equation with a deviating argu-
ment

(4) u'(t) = p()u(r (1)) + g(t),

where p,q € L([a,b]; R) and 7 : [a,b] — [a,b] is a measurable function. The
optimality of the results obtained is verified by counter—examples.

If £ is a nondecreasing operator concentrated on the set A = [«, 8] (or
A = [a,a] U [B,b]), the results presented in this paper correspond to the
results in [11].

The following notation is used throughout the paper:

N is the set of all natural numbers.
R is the set of all real numbers, Ry = [0, +oc0[.
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C([a,b]; R) is the Banach space of continuous functions v : a,b] — R
with the norm

lullc = max{|u(t)] : t € |a, B},

Cla,b); Ry) = {u € C([a,b); R) : u(t) = 0 for ¢ € [a, b]}.

—..C{[a.B];R).is_the set of functions u : [a,b] — R, which are absolutely

continuous together with their first derivatives.
L(|a,b]; R) is the Banach space of Lebesgue integrable functions p :
la,b] — R with the norm

Iollz = [ tn(s)lds.

L{la,b}; By) = {p € L([a,b]; R) : p(t) > 0 for almost all ¢ &€ |a, b]} .

L is the set of linear bounded operators £ : C(a, b]; R) — L{{a, b}; R).

P, is the set of operators £ € Lg, mapping the set C{la, bl; R,) into the
set L{la, b]; Ry).

A is the closure of the set A

If z € R, then

e = 5llal +2),  falo = (el )
DerFmNITION 1. Let A C la,b] be o nonempty set. An operator £ € Ly
belongs to the set K (A) if
L(w)(t) =0 for almost oll 1t € [a,b],
whenever v € C([a, b]; R) is such that
plEy=0 for te A

We say in this case that the operator £ is concentrated on the set A.

Note also that throughout the paper the equalities and inequalities be-
tween the integrable functions are understood to hold almost everywhere.

2. Formulation of the Main Results. Let A C [, b] be a nonempty
set. Put

(5) pa(t) =inf {{t —s|: s € A} for t€ [a,b]
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and

(6) oalt) = pa(t) + pa (t + E_:im?-) for te [a, L b].

2

It is not difficult to verify that the function ¢4 is continuous on the interval

[a, 45%] (see Lemma 1 below). It allows us to denote

(7) 5nmin{cr,;(t):a§t§a;b}.

It 1s clear that

o
ml}

Further, put

(8) 'rmpﬂ(a;b)-

THEOREM 1. Let A C [a,b] be a nonempty set and let £ € K {A) N Py
be such that

(9) (1m4[ ])

where & is given by (7). Then the problem (1), (2) has a unigque solution.

REMARK 1. Ifthe set A C [a,b] 4s such that § = %52, then the condition
(9) holds for any £ € Ku(A) N Py,

On the other hand, if § < %2, then the condition (9) in Theorem I
cannot be replaced by the condition

(10) (1 = 4[ ] ) f£(1)(s)ds < —f'— +e,

no matter how small € > 0 would be (see Example 1).

THEOREM 2. Let A C [a,b] be a nonempty set and let —f € Ky (A)N Py
be such that

(1) (-4l ] £)s)lds < 5,
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where v is giwen by (8). Then the problem (1), (2) has a unique solution.

REMARK 2. If the set A C [a,b] 45 such that v = %2 (e, AC {a,b}),
then the condition (11} holds for any —£ € Ku(A) N Py,

On the other hand, if v < %5%, then the condition (11) in Theorem 2
cannot be replaced by the condition

no matter how small € > 0 would be (see Example 2).

Now we will formulate two consenquences of Theorems 1 and 2 for the
equation (4).

COROLLARY 1. Letp € L([a,b]; R.) and let at least one of the following
items be fulfilled:

a) there exists @ nonempty set A C |a,b] such that the condition

(13) pt)=0 if T(t)¢A
holds for t € |a,b] and

5 12\ f 16
(14) (1—4[5—_-;] ) / pls)ds <

where 6 is given by (7);
b) there exist o € [a,b] and § € |, b] such that

(15) 7(t) € o, 8] for t€|a,b]
and
1?2\ b
(o (145 - 521 [rorae < 25
¢) there exist a € [a,b] and § € o, b] such that
(17) r(t) € [a,a) U [B,b] for t€ [a,bl
and

N N e
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Then the problem (4), (2) has o unique solution.

COROLLARY 2. Let —p € L([a, b]; R}) and let at least one of the follow-
ing items be fulfilled:

a) there exists a nonempty set A C [a, b] such that (13) holds for t € [a, b]
and

(1) (1-4%]) f ple)lds <

where 7y is given by (8);
b) there ezist o € [a,b] and B € [, b] such that (15) holds and

b
4
BT s

(20) n [ I(e)lds < 5=,
where

_ 1 f=a]* fa=a 11*].
e o=t-ama{[f- S -4])

c) there exist a € [a,b] and B € [a, b] such that (17) and (20) hold, where
_ 1 B-a)2 Ta—a 172

I LR =i =N

Then the problem (4), (2) has a unigue solution.

Finally, we consider the ordinary differential equation
(23) u"(8) = p(thu(t) + a(t),

where p,q € L([a,b; R). If p(t) > 0 for t € [a,b], then it is clear that the
problem (23), (2) is uniquely solvable. In the opposite case, the following
statement is true.

COROLLARY 3. Let —p € L([a, bl; Ry) and let at least one of the follow-
ing items be fulfilled:
a) there exists a nonempty set A C [a,b] such that
(24) p() =0 for t€[ab]\A
and (19) 1s satisfied, where v is given by (8);
b) there exist o € [a,b] and B € o, b] such that
(25) p(t) =0 for tela,alUlB,b],

and (20) is satisfied, where vy is defined by (21).
Then the problem (23), (2) has a unique solution.
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3. Auxiliary Lemmas. To prove main results we need the following
auxiliary assertions.

Levma 1. Let A C [a,b] be a nonempty set. Then the function pa,
defined by (5), is continuous on the interval [a,b] and, moreover,

(26)

Proof. For any t1,ts,8 € [a,b] we have ||[{y — 8| — Jt1 — 8| < |ta — ).
Therefore, by virtue of (5), we get

palts) < jti—s| <|ta—ta| +tgi — s} for se A (=19
Consequently,
palts) — [t2 — t1] < palts—s) (i=1,2),
whence,
[a(t2) — pal(ty)] < 2 — t4],

i.e., the function p, is continuous on the interval {a, b].
Now we will show that (26) is satisfied. Since A C A, it is clear that

(27) pa(t) > pa(t) for t€|a,b].
Let ty € [a,b] be an arbitrary point. Then
palte) < to—s for se A

For any sy € A there exist s, € A (n € N) such that ﬂgrgm 8n == B
Therefore,

palto) < lm lto — s, = [to — so.
Consequently,

palte) < palto).

which, according to the arbitrariness of ¢y, guarantees

pa(t) S pa(t) for t€la,b].
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The last relation, together with (27), implies the equality (26). U

LEMMA 2. Leti € {0,1}, A C [a,b] be a nonempty set, and let £ € Lo
be such that (—1)4 € Py If £ € Ku(A), then the estimate

(28) min{v(s):s€ AHE(Q)(®)| < (-1)U(){t) <
< max{v(s):s € AHUL)(E)] for tE€[a,b]

holds for every v € C([a,b]; R).

Proof. Let v € C(la,b]; B) be an arbitrary function. Put gy = inf A,
by = sup A,

wt) =min{s € A:t<s}, vt)=max{scA:t>s} for t€ |ag, bol,

and
v(ag) for tela,af
v(t) for te A
20f) =\ ) (1)) 4 v(u(t)  for € fao,bo) \ A
v(bo) for ¢ €]bg, b

Clearly, vy € C([a,b); R},
(29) min{v(s):s€ A} < () < max{v(s):s€ A} for € [a,b],
and
(30} vo(t) =w{t) for te A
It follows from (29) and the assumption (~1)*¢ € P,; that
(81) min{o(s) : s € ANEDD] < (~1)Lwo)(8) <
< max{v(s) :s € A}L)(®)| for t€ [a,b].
On the other hand, by virtue of {30) and the assumption £ € K,,{A4), we get
(32) L(wg)(t) = £(v)(t) for t€ [a,b].
Consequently, (31) and (32) guarantee the estimate (28). 0O

LeMMA 3. Let A C [a,bl be a nonemply set and let ¢ €a,b] be such
that

(33) Anja,c # 0, Ane, b # 0.
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Then the estimate

g
(C - tl)(tl = !l)(b =, tg)(tz = C) 2 b—a 62
P -
i ( (¢ —a)(b—c) - 8 2(b—a)
holds for t; € A. and t; € B, where § is given by (7) and
@) A=Anfad,  B.=A4Anfl.
Proof. Put
a+c “+ b
(36) 01=PA( 5 ), 02=PA(62 )
It is clear that
(37) o1ty 2 6,

where 6 is given by (7). Obviously, either

(38) max{o;, 02} > 6
or
(39) ma;X{O']_, 0'2} <&

By virtue of (33), (35), and (36), it is not difficult to verify that
max{(c—t){t1 —a): t; € A} = (e —])(t] — a)

and
max{{(b—1t2)(ts —¢) : s € B.} = (b—£3)(t5 — ¢),
where
. ac o D
txﬁ 2 B V) I t2~”~"3—2———'0'2.
Therefore, in view of the inequality 4zy < (z + y)?, we get
1
{c—t1)(t1 —a)(b—1t)(ta — ¢} \?
4 <
m (S .

g x4 2 \ 3
Sl . fb—¢c o3 2<
- 4 c—a 4 b—c/ —

b-'- 2 2
< 1 P, B for t; € A, ty € B..
4 c—a b-—c¢

-2
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First suppose that (38) holds. Obviously,

e o} " (max{oy, 09})* % 62

c—a b-e¢c™ b—a = g’

which, together with (40), guarantees the estimate (34) for t; € A, and
iy € B,.

Now suppose that (39) is satisfied. By virtue of (36) and Lemma 1, there
exist o, B € A such that

& c+b
(41) alzl 5 """CY]1 02;—2—*16]-
Further, it is clear that
b—a o} oy
(42) - - (8- a) - (o),
where
T v b — 8)2
n(t) = e =) + - for te€la,b.

t—a b—1t
It is easy to verify that the function 7 achieves its minimum at the point

(a—a)b«%(b——ﬁ)a'

R gy 7 g

Hence, (42) yields

b—a o} ol B -«

= s <(b—a—(B— .
(43) 4 c—a b—c_(b il a))b“a
On the other hand, put
(44) o = min{oy, 09}
It is clear from (41) that either
(45) aciIl_,
2

or
(46) a> 4o,
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and either
(47) g2,
or

S R - 5%3 —a.

First suppose that (45) bolds. We will show that in this case the in-
equality (47) is satisfied. Indeed, if (48) is fulfilled, then from (41), (45), and
(48) we get

(a—%~c a)<a+c P o
PA ) =3 e 3

c+b c+b
’”A(“'z'_"")ST””’ﬁ“”“”'

These inequalities, in view of (44), imply

aA(a;c - e:r) <Aay — @) + {09 — 0) = max{o, 07} — 0,

which, by virtue of (39), contradicts (7). The contradiction obtained proves
the validity of (47). Consequently, from (41), (45), and (47) we obtain

- _atc a ___ﬁ_&ﬂ
1= 5 &, P 5
Hence,
- _ 2
(19) Y ot el W

b—a 4 b—a

Now suppose that (46) holds. It can be proved in a similar manner as
above that in this case the inequality (48) is satisfied. Consequently, from
(41), (46), and (48) we obtain

B 5 a-tc U__c—l-«b 8
I wr 21 2 == 2 H

and thus the equality (49) holds.
We have proved that, in both cases (45) and (46), the equality (49) is
satisfied. However, in view of (37), the equality (49) yields

_ _ 2
g a<b a 6 ,
b—a = 4 b—a

(b-a—(B-a))
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which, together with (40) and (43), guarantees the estimate (34) for ¢, € A,
andtpe B.. 0

LeMMA 4. Let A C [a,b] be a nonempty set. Then the estimate

(b——t)(t—a)<b—a__ 2
b—a T 4 b—a

(50) for te A

holds, where «y is given by (8).
Proof. According to (8), it is clear that

max{(t—a)(b—1t):t€ A} = (b—t")(t" - a),

where

_a+bh
B

Therefore, the estimate (50) is valid. O

t’k

4,

4. Proofs of the Main Results. Along with the problem (1), (2), we
consider the corresponding homogeneous problem

(51) u'(t) = L(u)(t),
(52) u(a) =0, wu(b)=0.

The following result is well-known from the general theory of boundary value
problems for functional differential equations (see, e.g., [1, 3, 12, 4]).

ProposITION 1. The problem (1), (2) is uniquely solvable if and only
if the corresponding homogeneous problem (51), (52) has only the trivial so-
lution.

Proof of Theorem 1. According to Proposition 1, it is sufficient to show
that the homogeneous problem (51), (52) has only the trivial solution. As-
sume the contrary that the problem (51}, (52) has a nontrivial solution .

First suppose that u does not change its sign on the set A. Then there
exists o € {~1,1} such that

ou(t) >0 for te A
By virtue of Lemma 2 (with i = 0), the equation (51) yields

(53) ou(t) = Llouw)(t) 20 for te a,b],
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which, together with (52), guarantees ocu(t) < 0 for ¢ € [a,b]. Therefore, the
assumption £ € P,; implies

ou)(t) <0 for te€[a,b.
Consequently, from (53) we get
(54) w(t)=0 for te€lab].

However, u satisfies (52) and thus, (54) vields v = 0, a contradiction.
Now suppose that » changes its sign on the set A. Then there exist
t;,t, € A such that

(55)  u(t;) = min{u(s):s € 4}, u(ty) = max {u(s) : s € A},
Obviously,
(56) uty) <0, u(ty) > 0,

and without loss of generality we can assume that {; < ¢3. Consequently,
there exists ¢ € |#1, ;[ such that

(57) u(c) = 0.

It is not difficult to verify that, in view of (51), (52), and (57), the function
u satisfies '

(58) wll)= = (s)ds —
- (u)(s)ds for te€ la,d,
(59) () = ~ %%f@—qmm@@—

b
t—c
Sl tf(b — s)f(u)(s)ds for t€lcb].
By virtue of (55), (56), and Lemma 2 (with ¢ = 0), from (58) and (59) we
get

0<t$;_ /(—)an@@+%

/'\

f— a £
- f(c — 8)8(1)(s)ds

133

b
0< Iu(tz 7 “_t2 /(s —¢)é(1)(s)ds —I— b ccf(b — s)¢(1)(s)ds.

ta
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These conditions, in view of the inequalities a < #; < ¢ < ty3 < b, result in

(60) 'Zgj‘ (e ti (tl [ #(1)(s)ds,
(61) ﬁﬁf;f(b ‘;j)(t? 9 [ #(1)(s)ds.

Therefore, by virtue of the inequality 4zy < (z + ¥)?, from (60) and (61) we
obtain

% b
(62) 1< -;- ((C = tl)(&,: Z;Ez - i‘;)(tz - C)) j 2(1)(s)ds.

On the other hand, according to Lemma 3, the inequality (62} implies

1 < (”;6“ - 4(b‘si a)) fb 2(1)(s)ds,

where § is given by (7). However, it contradicts (9). O

Proof of Theorem 2. According to Proposition 1, it is sufficient to show
that the homogeneous problem (51), (52) has only the trivial solution. As-
sume the contrary that the problem (51), (52) has a nontrivial solution «.

If u(t) = 0 for t € A, then, according to Lemma 2 (with 1 = 1), we
get £(u)(t) = 0 for ¢t € [g,b]. Consequently, (51) implies (54). However, u
satisfies (52) and thus, (54) yields » = 0, a contradiction.

Therefore,

max {|u(s)| : s € A} > Q.
Obviously, there exists t, € A such that

(63) lu(to)| = max {lu(s)| : s € A}
Without loss of generality we can assume that

It is not difficult to verify that, in view of (51) and (52), the function u
satisfies

(65) ult) = —

~ 8)0(u)(s)ds for tela,b]
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By virtue of (63), (64), and Lemma 2 (with ¢ = 1), from {65) we get

b

b_—t;) j(s — a)l8(1)(s)lds + e

z? = ; f (b — s)|£(1)(s)|ds.

to

18

Since a < tg < b, the latter inequality results in

(b 52 ta)(to ek a)
66 1 - £(1 ds.
(66) < s
On the other hand, according to Lemma 4, the inequality (66) implies

1< (”;“ . F}E) jw(l)(s)ids,

where v is given by (8). However, it contradicts (11). D
Proof of Corollary 1. Put

(67) 2)(8) ¥ p(tv(r(t)) for ¢€[a,b].

It is clear that £ € P,.

a) According to (13), we have £ € K ;3(A4). On the other hand, the
inequality (14) yields (9). Therefore, the assumptions of Theorem 1 are
satisfied.

b} Put 4 = [, 31. According to (15), we have £ € K,,(A). On the other
hand, it is not difficult to verify that

ie.,

b—a

52 |~ m(ﬁwa)L,

where § is given by (7). Consequently, the inequality (16) yields (9). There-
fore, the assumptions of Theorem 1 are satisfied.

¢) Put A = [a, 0] U [B,b]. According to {17), we have £ € K, (4). On
the other hand, it is not difficult to verify that

b—a_

G'A(t) Z )

4

(ﬂ—a)]n for te{a,ﬂ}
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ie.,
b—a

D) —(ﬁ“a)_a

where § is given by (7). Consequently, the inequality (18) yields (9). There-
fore, the assumptions of Theorem 1 are satisfied. 0

62

Proof of Corollary 2. Let £ be defined by (67). It is clear that —¢ € P,;.

a) According to (13), we have £ € Ky (A). On the other hand, the
inequality (19) yields (11). Therefore, the assumptions of Theorem 2 are
satisfied.

b) Put A = o, 8]. According to (15), we have £ € K,(A). On the other
hand, it is not difficult to verify that

vemae([ 50 - 0-a)] fo-a- 57 ).

where <y is given by (8). Consequently, the inequality (20), with -y, defined
by (21), vields (11). Therefore, the assumptions of Theorem 2 are satisfied.

¢) Put A = [a,0a] U [B,b]. According to (17), we have £ € K 3(A). On
the other hand, it is not difficult to verify that

e me--a] et}

where v is given by (8). Consequently, the inequality (20), with vy defined

by (22), yields (11). Therefore, the assumptions of Theorem 2 are satisfied.
O

Proof of Corollary 3. The validity of corollary immediately follows from
Corollary 2. [

5. Examples. Below two examples are constructed verifying the opti-
mality of the main results established above.

EXAMPLE 1. Leta<b,e>0, and § = [0, "—;—“[ . It is clear that there
exists €9 € ]0, boe 6[ such that

(68) 16(b — a — g) _ 16(b— a) +&(b — a)?
B—c—cf—(Biee) ~  (b-ap -4
Put ¢; = 32 ¢y = 98 gnd
uiﬂq-—ﬁ—-g—je(}, vz-wCz+é+ﬁmleo (¢ =1,2).

2 2 2 2
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Let z € C'([u1, wa); R) and y € C'([vy, 10); R) be such that

1 2
T sl ) = 1 ) = ' v 52
(u1) (p2) (1) Ay~ (12) " — iz

2 1

)=yl ==-1, y)=-o—0, Y=y,

and
g'(t) <0 for tE€[um,ul, YY) 20 for te v, mnml

Further, put A = {vy, 12},

e for tela, ]
2O for t€ fuml
ity = I—’;‘;@j—j‘iﬁ for telum| ,
y(t) for 1€ [u, v
5%?;% for t & vy, bl

p(t) = |u"(t)] for t € [0, 8],

ol = v for te |, el
| ope for t€[e,b)

and define £ by (67). It is clear that £ € K,(A) N Py, the condition (7) holds,
and

Mz’

jf(l)(s)ds = fy”(s)ds — fx”(s)ds e

H1

16(b — a — &)
(b—a~eg)? ~ (26 +ep)?

Therefore, in view of (68), the inegquality (10) is fulfilled. On the other hand,
u 18 o nontriviel solution of the problem (51), (52).

ExaMPLE 2. Leta <b, >0, andy = [G, ’%[ . It is clear that there

exists g9 € ]0, 9755‘“ - 'y[ such that

4(b — a —gg) _4(b~a)+e(d—-a)
(b—a~eg)?~ (27 +e)?  (b—a)? —4y2

(69)

Pyt c= 9%9 and

pi=c—y—{(2=14)ep (F=1,2).
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Let x € C'([pa, s]; R) be such that

1 1
€T == pr— 1, 3;’ ] 5 ! = 3
(1) = 2(p2) (1) . ' (pa) b= 1z

and

2'(t) <0 for te€ |u,pa).
Further, put A = {us},
wte for tefa,m|
u(t) — :F(t) fO‘I‘ te [Mh ﬂ'?[ 3
EI_,..;;Q' fOT e [#2: b]

p(t) = u"(t) for t € [a, bl, 7 = wy, and define £ by (67). It is clear that
—£ € Kau(A) N Py, the condition (8) holds, and

#2

: _ 7 _ 4(b — a — &9)
| G/]E(I)(s)[ds - —ﬁ(m (e)da = (b—a—e0)? — (27 +e0)*

Therefore, in view of (69), the inequality (12) is fulfilled. On the other hand,
u is a nontrivial solution of the problem (51), (52).
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