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(1) u"(t) = f(u) (t) + q(t) 

with the boundary conditions 
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where l C([a, b]; R) - L([a, b]; R) is a linear bounded operator , q E 
L([a, b]; R), and c1, c2 E R. 

By a solution of the equation ( 1) we understand an absolutely continuous 
function u : [a, b] -> R satisfying the equality (1) almost everywhere on the 
interval [a,b]. A solution of the equation (1) satisfying (2) is said to be a 
solution of the problem (1), (2). 

As for ordinary differential equations, the problem on the solvability of 
the Dirichlet problem is studied in detail (see, e.g., [2]), while this problem 
for functional differential equations is still not sufficiently investigated. It 
should be mentioned that the Dirichlet problem for ordinary and functional 
differential equations has been studied, among others, in [6, 7, 8, 10, 11, 5, 9]. 

In the present paper, we consider the problem on the unique solvability 
of (1) , (2). The results obtained, on one hand generalize well-known results 
of Lyapunov (see, e.g., [2, p. 346]) and, on the other hand, describe some 
properties belonging only to the functional differential equations. 

It follows from [10, Theorem 1.1.21] and [8, Theorem 1.4] that the prob­
lem (1), (2) is uniquely solvable if 

(3) J
b 16 
f(1)(s)ds :s; b _ a 

a 

provided that the operator l is nondecreasing. There is also shown t hat the 
condition (3) is (in general) nonimprovable. In this paper, there is proved 
that if the nondecreasing operator R. is concentrated on the set A ~ [a, b] 
(see Definition 1 below), then the constant 16 on the right hand side of the 
inequality (3) can be replaced by a constant d ?::: 16 depending only on the 
set A. Further, a similar result is established for nonincreasing operators. 

The main results are concretized for the equation with a deviating argu­
ment 

(4) u"(t ) = p(t)u(T(t)) + q(t), 

where p, q E L([a, b]; R) and T : [a, b] --> [a, b] is a measurable function. The 
optimality of the results obtained is verified by counter- examples. 

If R. is a nondecreasing operator concentrated on the set A = [a, ,8] (or 
A = [a, a] U [,8, b]), the results presented in t his paper correspond to the 
results in [11]. 

The following notation is used throughout the paper: 

N is the set of all natural numbers. 
R is the set of all real numbers, R+ = [0, +oo[ . 
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C([a, b]; R) is the Banach space of continuous functions u : [a, b] -t R 
with the norm 

llullc = max{]u(t)l : t E [a, b]}. 

C([a, b]; R+) = { u E C([a, b]; R) : u(t) ~ 0 fortE [a, b]} . 
... .. .. C'{[a,b];R}js_ .the ... set . of functions .u .... : .[a,b]-::-T .. B, .which.are .. absolutely .. 

continuous together with their frrst derivatives. 
L([a, b]; R) is the Banach space of Lebesgue integrable functions p 

[a, b] -t R with the norm 

liPIIL = 1b jp(s)]ds. 

L([a, b]; R+) = {p E L([a, b]; R): p(t) ~ 0 for almost all t E [a, b]} . 
.Cab is the set of linear bounded operators£: C([a, b]; R) -t L([a, b]; R). 
Pab is the set of operators£ E .Cab mapping the set C([a, b]; R+) into the 

set L([a, b]; R+)· 
A is the closure of the set A. 
If x E R, then 

1 
[x]+ = 2(1xl + x), 

1 
[x]_ = 2 (1xl - x). 

DEFINITION 1. Let A ~ [a, b] be a nonempty set. An operator f E .Cab 

belongs to the set Kab(A) if 

f(v)(t) = 0 for almost all t E [a,b], 

whenever v E C([a, b]; R) is such that 

v(t) = 0 fo r t E A. 

We say in this case that the operator .e is concentrated on the set A. 

Note also that throughout the paper the equalities and inequalities be­
tween the integrable functions are understood to hold almost everywhere. 

2. Formulation of the Main Results. Let A ~ [a, b] be a nonempty 
set. Put 

(5) PA(t)=inf{lt - s]:sE A} for t E [a,b] 
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and 

(6) CIA(t)=PA(t)+PA(t+b~a) for tE [a,a;b]. 

It is not difficult to verify that the function Cl A is continuous on the interval 
[a, a!bl (see Lemma 1 below). It allows us to denote 

(7) 

It is clear that 

Further, put 

(8) 

8 = min { Cl A ( t) : a ::::; t ~ a ; b } . 

b-a 
'<-­u- 2 . 

(
a+ b) 

'Y = PA - 2- . 

THEOREM 1. Let A~ [a, bJ be a nonempty set and let f E Kab(A) n Pab 
be such that 

(9) 

where 15 is given by (7). Then the pr-oblem (1), (2) has a unique solution. 

REMARK 1. If the set A ~ [a, bJ is such that 8 = b;a , then the condition 
(9) holds for any f E Kab(A) n Pab· 

On the other hand, if 8 < b;a, then the condition (9) in Theorem 1 
cannot be replaced by the condition 

(10) 
b 

(l-4[b~ar)Je(I)(s)ds~ b~a +c, 
a 

no matter how small c > 0 would be (see Example 1). 

THEOREM 2. Let A ~ [a, b] be a nonempty set and let - f E Kao(A) n Pab 
be such that 

(11) 
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where 1 is given by (8). Then the problem (1 ), (2) has a unique solution. 

REMARK 2. If the set A s; [a,b] is such that 1 == b~a (i.e., A ~ {a,b}), 
then the condition (11) holds for any - e E Kab(A) n Pab· 

On the other hand, if 1 < b;a , then the condition (11) in Theorem 2 
cannot be replaced by the condition 

------------ -------(-·~--~-2-y-b-------------~~~~-~-----------

(12) 1- 4 [b =a] ) j l£(1)(s)ids:::; b ~a+ c:, 
a 

no matter how small c > 0 would be (see Example 2). 

Now we will formulate two consenquences of Theorems 1 and 2 for the 
equation ( 4). 

COROLLARY 1. Let p E L([a, b]; R+) and let at least one of the following 
items be fulfilled: 

a) ther·e exists a nonempty set A ~ [a, b] such that the condition 

(13) p(t) == 0 if r( t) tf. A 

holds fort E [a, b] and 

(14) 

where 6 is given by (7); 
b) there exist a E [a, b] and f3 E [a, b] sttch that 

(15) r(t) E [a, /3] for t E [a, b] 

and 

(16) ( [
1 f3 - a ] 2 )J~ 16 1 - 4 --~- p(s)ds ::; - - ; 
2 b - a + b -a 

a 

c) there exist a E [a, b] and f3 E [a, b] such that 

(17) r (t) E [a, a] U [/3, b] for t E [a, b] 

and 

(18) ( 
1 f3 - a] 2 ) b 16 1- 4[-- -- j p(s)ds :::; - - . 
2 b - a _ b -a 

a 
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Then the problem (4), (2) has a unique solution. 

COROLLARY 2. Let -p E L([a, b] ; R+) and let at least one of the follow­
ing items be fulfilled: 

a) there exists a nonempty set A s; [a, b] such that (13) holds fortE [a, b] 
and 

(19) 

where 'Y is given by (8); 
b) there exist a E [a, b] and (3 E [a, b] such that (15) holds and 

b 4 
(20) 'Yo j jp(s)ids::; b _a, 

a 

where 

(21) {[1 (3-a ]2 [a-a 1]2} 'Yo = 1 - 4 max - - - - , -- - - ; 
2 b-a+ b-a 2+ 

c) there exist a E [a, b] and (3 E [a, b] such that (17) and (20) hold1 where 

(22) . {[1 (3-a ]2 [a-a 1}2} 'Yo = 1 - 4 mm - - -- , -- - - . 
2 b- a- b-a 2 _ 

Then the problem (4), (2) has a unique solution. 

Finally, we consider the ordinary differential equation 

(23) u"(t) = p(t)u(t) + q(t) , 

where p, q E L([a, b]; R). If p(t) ?: 0 for t E [a, b], then it is clear that the 
problem (23), (2) is uniquely solvable. In the opposite case, the following 
statement is true. 

CoROLLARY 3. Let -p E L([a, b]; R+) and le·t at least one of the follow­
ing items be fulfilled: 

a) there exists a nonempty set A s; [a, b] such that 

(24) p(t) = 0 for t E [a, b] \A 
and (19) is satisfied, where 'Y is given by (8); 

b) there exist a E [a, b] and (3 E [a, b] such that 

(25) p(t) = 0 for t E [a, a] U [,B, b], 

and (20) is satisfied, where 'Yo is defined by (21). 
Then the problem (23), (2) has a unique solution. 
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3. Auxiliary Lemmas. To prove main results we need the following 
auxiliary assertions. 

LEMMA 1. Let A ~ [a, b] be a nonempty set. Then the function PA, 
defined by (5), is continuous on the interval [a, b] and, moreover, 

(26) PA(t) = PA(t) for t E [a,bj. 

Proof. For any tb t2, s E [a, b] we have llt2- sl- lh- sJI :::; ltz - t1l· 
Therefore, by virtue of (5), we get 

(i = 1,2). 

Consequently, 

(i=1,2), 

whence, 

· i.e., the function PA is continuous on the interval [a, b]. 
Now we will show that (26) is satisfied. Since A~ A, it is clear that 

(27) PA(t) ~ PA(t) for t E [a, b]. 

Let t0 E [a, b] be an arbitrary point. Then 

PA(to) :S Ito - sj for s EA. 

For any so E A there exist Sn E A ( n E N) such that lim Sn = s0 . 
n->+oo 

Therefore, 

Consequently, 

which, according to the arbitrariness of t0 , guarantees 

PA(t) :S PA(t) for t E [a, b]. 
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The last relation, together with (27), implies the equality (26). 0 

LEMMA 2. Let i E {0, 1}, A~ [a, b] be a nonempty set, and let£ E Cab 

be such that ( - l)i£ E Pab· If .e E Kab(A), then the estimate 

(28) min{v(s): s E A}!R(l)(t) l :::::; (- l)~R(v)(t):::::; 

:::::; max {v(s): s E A}I£(I)(t) l for t E [a, b] 

holds for every v E C([a, b]; R). 

Proof Let v E C([a, b]; R) be an arbitrary function. Put a0 = inf A, 
bo =sup A, 

J.t(t) = min{s E A: t:::::; s}, v(t) = max{s E A: t 2::: s} for t E [a0 ,b0 ], 

and 

{ 

~~~)o) 
vo(t ) = v(JL~m=~~~?)) (t- v(t) ) + v(v(t)) 

v(bo ) 

for t E [a, ao[ 
for t E A 

for t E [ao,bo] \A 
for t E ]b0 , b] 

Clearly, v0 E C([a, b]; R), 

(29) min{v(s): sE A} :::::; v0(t ) :::::; max{v(s) : sEA} for t E [a,b], 

and 

(30) v0 (t) = v(t) for t E A. 

It follows from (29) and the assumption ( -l)i£ E Pab that 

(31) min{v(s): s E A} JR(l)(t)J:::::; (-l )i£(vo)(t) :::::; 

:::::; max {v(s) : s E A} IR(l )(t) l for t E [a,b]. 

On the other hand, by virtue of (30) and the assumption .e E Kab(A ), we get 

(32) f(v0)(t) = R(v)(t ) for l E [a, b] . 

Consequently, (31 ) and (32) guarantee t he est imate (28). 0 

L EMMA 3 . Let A ~ [a, b] be a nonempty set and let c E ]a, b[ be such 
that 

(33) An [a,c] # 0, An [c,b] # 0. 
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Then the estimate 

(34) 

1 

(
(c- t1)(t1 - a)(b- t2)(t2- c) ) 2 < b- a_ 62 

(c -a)(b-c) - 8 2(b-a) 

holds for t1 E Ae and t2 E Be, where 6 is given by (7) and 

--~(3_5_) A =.An[~, Be = An [c, b]. 
'~--~----~~-------

Proof Put 

(36) (a+ c) 
CT} = PA - 2- , (

c+ b) 
0"2 = PA -2- . 

It is clear that 

(37) 

where 6 is given by (7). Obviously, either 

(38) 

or 

(39) 

By virtue of (33), (35), and (36), it is not difficult to verify that 

max {(c- t1)(t1- a) : t1 E Ae} = (c- t~)(ti- a) 

and 

where 

,. a+c 
tl = -2-- CT}, 

Therefore, in view of the inequality 4xy :::; (x + y)2
, we get 

(40) 
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First suppose that (38) holds. Obviously, 

cri cr~ > ( max{a1 , cr2})
2 82 

--+-- >--c-a b-e- b- a -b-a' 

which, together with (40), guarantees the estimate (34) for t1 E Ac and 
t2 E Be. 

Now suppose that (39) is satisfied. By virtue of (36) and Lemma 1, there 
exist a , {3 E A such that 

(41) Ia + c I 
0'1 = -2- -a ' lc + b I 0'2 = -2- - {3. 

Further, it is clear that 

(42) 
b- a ai ai 
-4- - c - a - b - c = b - a - ({3 - a) - 'fJ( c)' 

where 

It is easy to verify that the function 'fJ achieves its minimum at the point 

(a- a)b + (b- {3)a 
to = ~b---a'----_---:-({3~--'a-::-')-

Hence, (42) yields 

(43) 
b-a ~ ~ {3-a - - - - - ~ (b - a- ({3 - a))--. 

4 c - a b-e b-a 

On the other hand, put 

(44) 

It is clear from ( 41) that either 

(45) 

or 

(46) 

a+c 
a< - - -a - 2 

a+c 
a :2: -2- + cr, 
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and either 

(47) 

or 

(48) 

c+b a>-- +<7 p_ 2 

........... -.. ·-······················ ························· - "~"'•"'"" 

First suppose that ( 45) holds. We will show that in this case the in­
equality (47) is satisfied. Indeed, if (48) is fulfilled, then from (41), (45), and 
(48) we get 

(
a +c ) a+c PA -

2
-- <7 ~ -

2
- - <7 - a= <71- <7, 

(
c+b ) c+b PA -

2
- - <7 ~ -

2
- - <7 - f3 = 0'2 - <7. 

These inequalities, in view of ( 44), imply 

.O'A(a; c- <7) ~ (u1- u) + (u2- u) = max{u1 ,u2}- u, 
which, by virtue of (39) , contradicts (7). The contradiction obtained proves 
the validity of (47). Consequently, from (41), (45), and (47) we obtain 

Hence, 

(49) 

a + c 
<71 =--- a, 

2 . 
c+b 

<72 = f3- --. 
2 

Now suppose that ( 46) holds. It can be proved in a similar manner as 
above that in this case the inequality ( 48) is satisfied. Consequently, from 
(41), (46), and (48) we obtain 

a+c 
u1 =a- -

2
-, 

and thus the equality (49) holds. 

c+b 
<72 = - 2- - [3, 

We have proved that, in both cases ( 45) and ( 46), the equality ( 49) is 
satisfied. However, in view of (37), the equality (49) yields 

. 2 
(3 -a b-a 8 

(b- a- (!3 - a))- ~ - - -, 
b-a 4 b-a 
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which, together with (40) and (43), guarantees the estimate (34) for t 1 E Ac 
and t2 E Be. 0 

LEMMA 4. Let A ~ [a, b] be a non empty set. Then the estimate 

(50) 
( b - t) ( t - a) b - a 1 2 -

b _a < - 4- - b _ a for t E A 

holds, where r is given by (8). 

Proof According to (8), it is clear that 

where 

max {(t- a)(b- t): tEA}= (b- t•)(t*- a), 

* a+ b t = -- -,. 
2 

Therefore, the estimate (50) is valid. 0 

4. Proofs of the Main Results. Along with the problem (1) , (2), we 
consider the corresponding homogeneous problem 

(51) 

(52) 

u"(t) = £(u)(t), 

u(a) = 0, u(b) = 0. 

The following result is well-known from the general theory of boundary value 
problems for functional differential equations (see, e.g., [1, 3, 12, 4]). 

PROPOSITION 1. The problem (1), (2) is uniquely solvable if and only 
if the corresponding homogeneous problem (51), (52) has only the trivial so­
lution. 

Proof of Theorem 1. According to Proposition 1, it is sufficient to show 
that the homogeneous problem (51), (52) has only the trivial solution. As­
sume the contrary that the problem (51), (52) has a nontrivial solution u. 

First suppose that u does not change its sign on the set A. Then there 
exists u E { -1, 1} such that 

uu(t) ~ 0 for t E A. 

By virtue of Lemma 2 (with i = 0) , the equation (51) yields 

(53) uu11 (t ) = £(uu)(t) ~ 0 for t E [a, b], 
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which, together with (52), guarantees cru(t) ::; 0 fort E [a, b]. Therefore, the 
assumption f E P ab implies 

f(cru)(t ) ::; 0 for t E [a, b]. 

Consequently, from (53) we get 

(54) u"(t) = 0 for t E (a, b]. 

·· · ··· ····--------- li~;~~~-~;- -~- -5aii5fi~5T52)'ru;d ·thu5;·'·-rs-4) -1Ieia5 --ii ·~- ·o: -a:--·contra<Hction: ·-- · ·--- ---

. Now suppose that u changes its sign on the set A. Then there exist 
t1, t2 E A such that 

(55) u(t1) = min{u(s): sEA}, u(t2) = max{u(s) : sEA}. 

Obviously, 

(56) u(tt) < 0, u(tz) > 0, 

and without loss of generality we can assume that t 1 < t 2 • Consequently, 
there exists c E ]t1 , t 2[ such that 

(57) u(c) = 0. 

It is not difficult to verify that, in view of (51), (52), and (57), the function 
u satisfies 

(58) 
t 

u(t) = - c- t l(s- a)f(u)(s)ds­
c- a 

a 

- t-alc (c - s)f(u)(s)ds for t E [a, c], 
c-a 

t 
t 

b-tl . (59) u(t) = - b _ c (s - c)f(u)(s)ds-
c 

b 

t-c~ - b _ c (b - s)l(u)(s)ds for t E [c, b]. 
t 

By virtue of (55), (56), and Lemma 2 (with i = 0), from (58) and (59) we 
get 

tt c 
lu( ti) I c - t1 I t1 - a I 0 < -( -) :s; -- (s- a)l(l)(s)ds + -- (c- s)l( l )(s)ds, 
u tz c- a c- a 

a ~ 

~ b 
u ( t2) b - t2 I tz - c I 

0 < lu(tt)l ~ b _ c (s - c)£(1)(s)ds + b _ c (b- s)f(l)(s)ds. 
c ~ 
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These conditions, in view of the inequalities a< t1 < c < t2 < b, result in 

lu(tl)l < (c- ti)(t1- a) jc l(l)(s)ds, 
u(t2) c- a 

a 

(60) 

(61) 
b 

u(t2) < (b- t2)(t2- c) j f(l)(s)ds. 
lu(t1)l b- c 

c 

Therefore, by virtue of the inequality 4xy ~ (x + y)2 , from (60) and (61) we 
obtain 

{62) 
! b 

1 < ! ((c- t1)(t1 - a)(b- t2)(t2- c)) 2 I l(l)(s)ds. 
2 (c-a)(b-c) 

a 

On the other hand, according to Lemma 3, the inequality (62) implies 

(
b _a 02 ) b 

1 < W - 4(b _a) j £(1)(s)ds, 
a 

where 8 is given by (7). However, it contradicts (9). 0 

Proof of Theorem 2. According to Proposition 1, it is sufficient to show 
that the homogeneous problem (51), (52) has only the trivial solution. As­
sume the contrary that the problem (51), (52) has a nontrivial solution u. 

If u(t) = 0 for t E A, then, according to Lemma 2 (with i = 1), we 
get l(u)(t) = 0 for t E [a, b]. Consequently, (51) implies (54). However, u 
satisfies (52) and thus, (54) yields u = 0, a contradiction. 

Therefore, 

max {lu(s)l: sEA} > 0. 

Obviously, there exists to E A such that 

(63) lu(to)l =max {lu(s)l :sEA} 

Without loss of generality we can assume that 

{64) u(to) > 0. 

It is not difficult to verify that, in view of (51) and (52), the function u 
satisfies 

t b-tl (65) u(t);:::: - b _a (s- a)l(u)(s)ds-
a 

b 

t-a I - b _ a (b - s)l(u)(s)ds for t E [a, b]. 
t 
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By virtue of (63), (64), and Lemma 2 (with i = 1), from (65) we get 

~ b 

b- t0 j to- a I 1 ::::; b _a (s- a) i£(1)(s)!ds + b _a (b- s) i£(1)(s)ids. 
a to 

Since a < t0 < b, the latter inequality results in 

(66) 
b 

1 < (b - to)(to - a) I j£(1)(s)ids. 
b- a 

a 

On the other hand, according to Lemma 4, the inequality (66) implies 

(
b a 1 2 ) lb 

1 < .-4-- b _a a i£(1)(s) ids, 

where 'Y is given by (8). However, it contradicts (11). 0 

Proof of Corollary 1. Put 

(67) £(v)(t) ~ p(t)v(7(t)) for t E [a, b]. 

It is clear that £ E Pab· 
a) According to (13), we have £ E Kab(A). On the other hand, the 

inequality (14) yields (9). Therefore, the assumptions of Theorem 1 are 
satisfied. 

b) Put A = [a, ,8] . According to (15), we have£ E Kab(A). On the other 
hand, it is not difficult to verify that 

[
b - a ] [ a+ b] O"A(t) 2: -

2
- - (,8 - a) + for t E a, -

2
- , 

i.e., 

6 2: [ b ; a - (,8 - a) J + ' 

where 6 is given by (7). Consequently, the inequality (16) yields (9). There­
fore, the assumptions of Theorem 1 are satisfied. 

c) Put A = [a, a] U [,8, b] . According to (17), we have f. E Kab(A). On 
the other hand, it is not difficult to verify that 

[
b- a ] [ a+b] O"A(t) 2: -

2
- - (,8- a) _ for t E a, -

2
- , 
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i.e., 

0 ~ [ b ~ a _ ((3 _ a)] _ , 
where 6 is given by (7). Consequently, the inequality (18) yields (9). There­
fore, the assumptions of Theorem 1 are satisfied. 0 

Proof of Corollary 2. Let£ be defined by (67). It is clear that -£ E Pab· 
a) According to (13), we have £ E Ka.b(A). On the other hand, the 

inequality (19) yields (11). Therefore, the assumptions of Theorem 2 are 
satisfied. 

b) Put A= [a,(3]. According to (15), we have £ E Kab(A). On the other 
hand, it is not difficult to verify that 

where 1 is given by (8). Consequently, the inequality (20), with lo defined 
by (21), yields (11). Therefore, the assumptions of Theorem 2 are satisfied. 

c) Put A = [a, a] U \(3, b]. According to (17), we have l E Kab(A). On 
the other hand, it is not difficult to verify that 

1 = min { ( b ~ a - ({3 - a) J _, [a - a - b ~ a J _ } , 

where 1 is given by (8). Consequently, the inequality (20), with lo defined 
by (22), yields (11). Therefore, the assumptions of Theorem 2 are satisfied. 
0 

Proof of Corollary 3. The validity of corollary immediately follows from 
Corollary 2. 0 

5. Examples. Below two examples are constructed verifying the opti­
mality of the main results established above. 

EXAMPLE 1. Let a < b, £ > 0, and fJ = [o, b2a [ . It is clear that there 

exists £ 0 E ] 0, b2a - fJ [ such that 

(68) 
16(b- a- eo) 16(b- a)+ e(b - a)2 

~--~~~~~--~ = 
(b- a- c-0)2- (26 + £0)2 (b- a)2 - 462 

Put C - 3a+b c = a+3b and 
1- 4' 2 4 ' 

fJ 2- i 
J.ti = c1 - 2 - -

2
- eo, 

8 i -1 
vi = c2 + 2 + - 2- eo (i = 1, 2). 
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u(t) = 

2 

y'(vl) =- 2 ' y'(v2) = _1_' ············· · ·· ·· ···· vr-tt'r · ········ ····· ·················································· ·b= v2····· 

t- a 
11-1-a 

x(t) 
b-a-2t 
V) - /1-2 

y(t) 
t-b 

b- v2 

for t E [a, p,I[ 
for t E [p,1, ttz [ 
for t E [p,z, vi[ 
for t E [v1, v2[ 
for t E [vz, b] 

p(t) = iu"(t)! fortE [a, b], 

for t E [a, c2[ 
for t E [c2, b] ' 

and define£ by (67) . It is clear that£ E Ka.b(A) nPab, the condition (7) holds, 
and 

b V2 /~2 

I ( )( )d I "( )d I"() 16(b - a-c:o) 
£ 1 s s = y s s - x s ds = (b- a- co)2 - (25 + co)2 . 

a VJ /1-1 

Therefore, in view of (68), the inequality (10) is fulfilled. On the other hand, 
u is a nontrivial solution of the problem (51), (52). 

ExAMPLE 2. Let a < b, c: > 0, and 1 = [o, b; a. [ . It is clear that there 

exists c:0 E J 0, b;a. - 1 [ such that 

(69) 
4(b- a- co) 4(b- a) + r::(b- a)2 

~--~~--~--~-
(b - a - co) 2 - (21 + s0) 2 (b- a)2 - 412 

Put c = a;b and 

P,i = c - 1 - (2 - i)c:o (i= l, 2) . 
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Let x E C'([t£1, J.t2]; R) be such that 

and 

x'(ttl) = 
1 

, 
JJ-1 - a 

x'(~-t2) = --b 1 ' 
- Jl2 

x"(t) ~ 0 for t E [ttl> J.t2]. 

Further, put A= {J.t2}, 

{ 

t - a 

u(t) = ~(t) 
b-t 

b- !-12 

for t E [a, ttd 
for t E [J.LI, M[ , 
for t E [J.t2, bJ 

p(t) = u"(t) for t E (a, b], r = 11-2, and define l by (67). It is clear that 
-l E Kab(A) n Pab, the condition (8) holds, and 

b P2 

I I 11 4(b - a- eo) 
!e(l)(s)jds = - x (s)ds = (b )2 (2 )2 · 

- a - eo - 'Y + eo 
a I-ll 

Therefore, in view of (69) , the inequality (12) is fulfilled. On the other hand, 
u is a nontrivial solution of the problem (51), (52). 
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