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POTENTIALS WITH PRODUCT KERNELS IN GRAND
LEBESGUE SPACES

Let R0 be a fixed bounded parallelepiped in Rn with sides parallel to the
coordinate axes. In this note we discuss the boundedness of the product
kernel potential operator

(Tαf)(x) =
∫

R0

f(t1, . . . , tn)∏n
i=1 |xi − ti|1−α

dt1 . . . dtn, x = (x1, . . . , xn) ∈ R0,

and the appropriate strong fractional integral operator

(Mαf)(x) = sup
R3x

1
|R|1−α

∫

R

|f(t)|dt, x ∈ R0,

(here the supremum is taken over all subintervals R ⊂ R0 containing x
with sides parallel to the coordinate axes containing) in grand (weighted)
Lebesgue spaces.

Let Ω be bounded subset of Rn and let w be almost everywhere positive,
integrable function on Ω (i.e. a weight). The weighted generalized grand
Lebesgue space Lp),θ(Ω) (1 < p < ∞) is the class of those f : Ω → R for
which the norm

‖f‖
L

p),θ
w (Ω)

= sup
0<ε<p−1

(
εθ

|Ω|
∫

Ω

|f(t)|p−εw(t)dt

)1/(p−ε)

is finite.
If w ≡ const, then we use the notation Lp),θ(Ω) := L

p),θ
w (Ω).

The grand Lebesgue spaces Lp),1(Ω) =: Lp)(Ω) first appeared in the
paper by T. Iwaniec and C. Sbordone [4] when they investigated the in-
tegrability problem of the Jacobian, while the generalized grand Lebesgue
space Lp),θ(Ω) was introduced by E. Greco, T. Iwaniec and C. Sbordone [3]
regarding the study of the nonhomogeneous n– harmonic equation div A(x,
∇u) = µ.

The space L
p),θ
w (Ω) is not rearrangement invariant unless w ≡ const.
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Hölder’s inequality and simple estimates yield the following embeddings
(see also [2], [3]):

Lp
w(Ω) ⊂ Lp),θ1

w (Ω) ⊂ Lp),θ2
w (Ω) ⊂ Lp−ε

w (Ω),

where 0 < ε < p− 1 and θ1 < θ2.
In the classical weighted Lebesgue spaces Lp

w the equality

‖f‖Lp
w

= ‖w1/pf‖Lp

holds but this property fails in the case of grand Lebesgue spaces. In par-
ticular, there is f ∈ L

p)
w such that w1/pf /∈ Lp) (see also [2] for the details).

For structural properties of grand Lebesgue spaces we refer to the paper [1].
We begin with the unboundedness result:

Theorem 1. Let 0 < α < 1, 1 < p < 1
α , θ1 and θ2 be positive numbers

such that θ2 < θ1q/p, where q = p
1−αp . Then the operator Kα is not bounded

from Lp),θ1(R0) to Lq),θ2(R0), where Kα is Tα or Mα.

The next statement gives the boundedness of the operators Tα or Mα in
grand Lebesgue spaces:

Theorem 2. Let 1 < p < ∞, 0 < α < 1/p. Suppose that p ≤ r ≤ q <
∞, where q = p

1−αp . Let θ > 0. Then the operator Kα is bounded from

Lp),θ(R0) to Lr), r
p θ(R0), where Kα is Tα or Mα.

To formulate our next result let us recall the definition of the Mucken-
houpt class of weights defined with respect to parallelepipeds.

Definition. Let 1 < r < ∞. We say that a weight function w belongs
to the class Ar(R0) (w ∈ Ar(R0)) if

sup
R⊂R0

(
1
|R|

∫

R

w

)1/r( 1
|R|

∫

R

w1−r′
)1/r′

< ∞,

where the supremum is taken over all n− dimensional subintervals R ⊂ R0

with sides parallel to the coordinate axes.

It is known (see [5]) that the one–weight inequality

‖w(Kαf)‖Lq(R0) ≤ c‖wf‖Lp(R0), q =
p

1− αp
,

where Kα is Tα or Mα, holds if and only if wq ∈ A1+q/p′(R0).

Our weighted result reads as follows:

Theorem 3. Let 1 < p < ∞ and let 0 < α < 1/p. Suppose that θ > 0.
We set q = p

1−αp . Then the following conditions are equivalent:
(i)

‖Tα(fwα)‖
L

q),θq/p
w (R0)

≤ c‖f‖
L

p),θ
w (R0)
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(ii)
‖Mα(fwα)‖

L
q),θq/p
w (R0)

≤ c‖f‖
L

p),θ
w (R0)

(iii) w ∈ A1+q/p′(R0).

Finally we point out that weighted boundedness criteria for various in-
tegral operators were established in the papers [6], [7], [8], [9], [11]. For
weighted criteria of integral operators with product kernels we refer also to
the recent monograph [10].
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