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INTRODUCTION

The main goal of this paper is to give two-weighted estimates for multi-
pliers of Fourier transforms in Triebel-Lizorkin spaces. One-weighted
multiplier theorems ofMikhlin and Hrrmander type in Lebesgue spaces
with Muckenhoupt’s Ap weights are given in [1, 2]. Multiplier theorems
with exponential weights are proved in [3, 4].

General (Lp, Lq) (1 < p < q < cx) Fourier multipliers in unweighted
cases have been studied in [5-9]. For extensions ofthese results we refer
to [10, 11].
An improvement of Hrrmander’s multiplier theorem in terms of

spaces of fractional smoothness is obtained in [12]. On the basis of in-
tegral representations of functions certain spaces of differentiable func-
tions were studied in [13], where sufficient conditions are established
for Fourier integral multipliers in Lp([") when l1/2- 1/p] < 1/q for
some q > 2.
The setting of the problem in the framework of two-weight theory en-

ables us to determine new classes of multipliers even in the unweighted
case. At the same time we obtain easy-to-verify conditions for pairs of
weights ensuring the validity of two-weight inequalities for multipliers.
It should be noted that these conditions are not only sufficient but
also necessary for the whole class of multipliers under consideration.
The main results in this direction are based on criteria for bounded-
hess from LPw to Lvq (1 < p < q < cxz) for fractional and singular
integrals.

In general the paper is organized as follows: Section is devoted to
the establishment of two-weighted criteria for fractional integrals. Here
some known results for related operators are given as well. In Section 2
we define weighted Triebel-Lizorkin spaces and prove some auxiliary
results. Sections 3 and 4 contain multiplier theorems for Fourier trans-
forms in the one-dimensional case. Section 5 is devoted to the multidi-
mensional case.

In part of the multiplier statements there are connections with the pa-
pers of L. Hrrmander [14], J. Schwartz [15] and P. Lizorkin [6]. The
initial method consists of the representation of the operators under con-
sideration in the form of compositions of certain elementary transforma-
tions.
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1 TWO-WEIGHTED BOUNDEDNESS CRITERIA FOR
FRACTIONAL INTEGRALS

Let v be a locally finite measure defined on the Borel sets from [n. In
p n o) we denote the set of v-measurablethe sequel by Lv( ) (1 < p <

functions f." [" I for which

Iifll2(,) If(x)]p dv

For absolutely continuous measure dv(x)= w(x)dx, where w is a
locally integrable, a.e. positive ftmction (i.e. a weight) we use the
symbol LPw([n). For an arbitrary Borel set E in we define

w(e) Ie w(x) dx;

if n and E (a, b) we shall also denote this by w(a, b).
By "/v () we denote the set of measurable functions for which

Illroo --sup A(v{x
2>0

As usual, the number p’ is defined by 1/p’ + 1/p 1.
For a measurable f: put

TCf(x) (x y)- f(y) dy, (1.1)

VVf(x) (y x)-lf(y) dy. (1.2)

where x [ and a > 0.
Both of these transformations are particular cases of the general inte-

gral transform

Kf(x) k(x, y)f(y) dy,

where k: [ x [ --+ is a positive measurable kernel.
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We shall need the following

THEOREM A Let < p < q < cxz and let v, w be weights. Then the
operator K is boundedfrom LPw() into Lqv() if

(fxWh )l/q([ )lip’Co sup v(x) dx kp’ (x, y)w-P’(y) dy
.i>0\x-h \(x-h,x+h)

(1.3)

The proof of this theorem in a more general setting is given in [16]
(see Theorem 3.1.1).

THEOREM 1.1 Let < p < q < or, 0 < < and let v, w be weights.
Then the inequality

(1.4)

with a positive constant c independent off holds if and only if

Cl sup (v(x h, x -if- h)) l/q W1-p’(y)(x --y)t-)P’dy
x.h

xR.h>O

(1.5)

Proof From Theorem A we see that if C1 < (x), then the two-weight
weak type inequality (1.4) holds. Now we show that the condition
C < cxz is also necessary.

First we show that

I(x, h) =- w-P’(y)(x y)f-)P’ dy <

for every x and h. Indeed, if we assunae on the contrary that for some
x 6 [ and h > O, I(x,h)= cxz, then there exists a non-negative
g: E -+ E such that

gp v)w(y) dy _<
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and

g(y)(x- y)- dy cxz.

On the other hand, if z (x- h, x + h), then

Tg(z) > g(y)(z- y)-I dy > C g(y)(x- y)-I dy-" o.

Consequently

(x- h, x + h) c {z: TZg(z) > 2}

for every 2 > 0. From (1.4) we have

+h

v(y) dy < c,-q
-h

f+h V(X) dx O,As 2 is an arbitrary positive number, we conclude that a-h
which is absurd. Hence I(x, h) < cx.
Now letf > 0, x 6 [, h > 0 and z 6 (x- h, x + h). We have

70f (z) (z y)-if(y) dy > c2 (x y)-if(y) dy.

From the two-weight weak type inequality (1.4) we obtain that

<_ ccq(l(x y)-fO’) dy)-q(JfP(r’)w(y) dy)
q/p

where the constants c and 2 are independent ofx 6 (-cxz, +cx), h > 0
andf > 0. If we put here

f(y) Z(_,x_h)(y)w1-p’ (y)(x y)(p’-l)(-l),
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then we obtain

v(y) dy < c3 (x yl(- )t" wl -p’ (y) dy
dx-h

and finally we see that

THEOREM 1.2 Let < p < q < c, (0, 1) and let v, w be weights.
Then W is boundedfrom Ifw() into Lq() ifand only if

The proof is similar to that of the previous theorem.
From the last statement obviously we have that W acts boundedly

q’ LP’,() if and only iffrm Lv,-’ (I) int w,-,

(la+h )l/P’(ii.ooC3 sup w -p’ dy v(y)(y a)t- l)q dy
,,.h \ d a-h +ha,h>O

(1.6)

In the papers [17, 18], criteria of Sawyer type were derived for the op-
erators R and W. In fact, the above-mentioned results lead to

THEOREM B Let < p < q < cx and let 0 < < 1; let v, w be
Pweights. Then T is boundedfi’om Lw() to Lqv() ifand only ifT is

bounded,from LPw() to Lq() and simultaneously ]/V acts boundedly
from Lqv,_q, () into LPI_p, ().
Now combining the results stated above we have

THEOREM 1.3 Let < p < q < ov and 0 < < 1. For the bounded-
mess offrom LPw() into Lqv() it is necessary and sufficient that the
conditions (1.5) and (1.6) are satisfied simultaneously.
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From duality arguments we have the following result for W"

THEOREM 1.4 Let 1 < p < q < o and let (0, 1). Then )/Y is

boundedfrom LPw() into Lqv() ifand only if

(fa+h )l/ff (j-hoo )l/qsup W1-p’ (y) dy v(y)(a y)(-l)q dy
od,iL0\a-h

< oo (1.7)

and

(a+h )l/q(ii-osup v(y) dy w1-p’ (y)(v a)(- 1)p’ dy
..h \da-h +h

a,h>O

< oo. (1.8)

The solution of the two-weighted problem for the Riesz potential

If(x) I f(y)lx- yl-n dy, 0 < < n,

when < p < q < oe gives the following statement:

THEOREM C ([19, 20]) Let < p < q < cx and let t (0, n). Then
is boundedfrom LPw(n) into Lqv(n) ifand only if

sup(v(B(x, 2r))) 1/q w1-p’ Ix yl(-n)p’
xR" Ix-yl>r
r>0

(1.9)

and

(j )l/qsup(w1-p’(B(x, 2r)))I/p’ v(y)lx yl (-n)q dy
xa" Ix-yl>r
r>O

< cx. (1.10)
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Note also the following statement (see [16])"

THEOREM D Let < p < q < c and let (0, n). It is assumed that
v and wI-p’ satisfy the reverse doubling condition. Then I is bounded

q nfrom Lw(n) to Lv( ) ifand only if the following condition holds:

sup r-" v(y) wl-P’(y) dy
xn, Ix-yl Ix-yl<r
r>O

For p q the following result is known:

THEOREM E ([21]) Let < p < c and 0 < < n. The operator I is
p n p’ nboundedfrom LP(") to Lv( ) if and only ifI Lioc( ) and

I(Iv)P’(x) < cIv(x) (1.11)

almost everywhere on n.

We also mention the following statement:

THEOREM F ([22]) Let < q < p < c and 0 < < n. The operator

I acts boundedlyfrom IY(n) into L(n) if and only if

rp-I v(y) dy r- dr Lq(p-I)/(P-q)(n).
B(x.r)

(1.12)

where B(x, r) {y: Ix Yl < r}.

In the sequel we shall need the following results for the operators
and

THEOREM G ([23]) Let < p < c and let 6 (0, 1). Suppose that v
is a locally integrable a.e. positive function on . Then the following
statements hold:

(i) The operator is boundedfrom LP() to Uv’v ([) if and only if

W L () and

W[WvF’(x) <_ c(Wv)(x) < oo (1.13)

for a.a. x E ff.
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(ii) The operator W= acts boundedlyfrom LP() into Lv( ifand
only if E Lc(n) and

_< c(n v)(x) < (1.14)

for a.a. x E .
2 WEIGHTED TRIEBEL-LIZORKIN SPACES

Let S(n) be the Schwartz space of rapidly decreasing functions (see
[24]). For q9 S(n) the Fourier transform is defined by

(2) = (2tO-n/2 J qg(x)exp{-iAx} dx;

let denote the inverse Fourier transform of q. For the Fourier trans-
form and its inverse the notation F(qg) and F-l(tp) respectively will
be also used.
The Fourier transform determines a topological isomorphism of the

space S onto itself.
Let S’ be the space of tempered distributions, i.e. the space of linear

bounded functionals on s(n). In the sequel the Fourier transforms in
the framework of the theory of S’-distributions will be considered.
Now we give a definition of a weighted Triebel-Lizorkin space in a

general setting.
Let {mj}j=_o be a two-sided increasing sequence ofpositive numbers

such that limj_ mj 0 and limj__,+ mj +c. Let be the collec-
tion of all intervals (mj, mj+l] and [-mj+,-mj),j 7/. Any interval of
this type we shall denote by L It is clear that UI [\{0}. Now consid-
ering n similar decompositions of R\{0} by the sets

I"j [mj, i, mj+1,i) U (--mj+ 1,i, --mj, i), j Z, 1 n,

we denote by J the collection of all intervals of the form

J=I) x xI(’),
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where/j(i) is an arbitrary one-dimensional interval of the above-men-
tioned type. This gives a decomposition of \{0} x x [\{0}.

Let {fly,i}j=_, n be sequences of positive numbers which
for arbitrary i, n, satisfy the following conditions:

(i)

(2.1)

(ii) there exists some e,, 0 < e < 1, such that

0

j-"(X)

(iii) there exists some natural number k such that

(2.2)

Now let

Z,imff < . (2.3)
j=l

Put

flA Igl
/=!

For q 6 S([") let

(p, F- (Zjp).

Suppose now that < p, 0 < c. If for some locally finite regular
measure v and for any tp S(E") the quantity

(2.4)

is finite, then the completion of S([") with respect to the norm will be
FPo,Otncalled a weighted Triebel-Lizorkin space and denoted by /,vU ). For

unweighted Triebel-Lizorkin spaces we refer to [8, 25].
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PROPOSITION 2.1 Let 1 < p, 0 < o and suppose that

(1 + [x[)-p(1-) Llv(n) (2.5)

for the constant efrom (2.2). Then (2.4) isfinitefor arbitrary q9 s(n).

Proof To avoid awkward computations we give a proof for n 1; the
case n > may be handled in a similar manner. Without loss of gen-
erality we can consider a function tp S() whose Fourier transform
vanishes for 2 < 0. Let/j [mj, mj+],j 7/, and let qgj qgb. We have

l/p

-I-(Ilxl>l(j=flJlq)j(x)l)Pdv)
lip

fxl>l )P dv)
lip

(j=lflJlq)J(X)’
6 + +3 +4.

It is obvious that

o

)I1 "< C j(mj+l mj) dv
j’--oo -1

by condition (2.1).
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Integration by parts leads to the estimate

Hence

Since (1 + Ixl)-p 6 Lvl() and the condition (2.1) is satisfied, we con-
clude that I) is finite. For i2) we derive

0

(j
j=-x: Ix[ >

exp{imjx} lxl -p dv)
/p

j=-oo Ixl >
[sin mix/2lP’:lx[ -p dv)

/p

0

j=-o Ixl >

l/p
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The boundedness of and the condition (2.2) imply that i3) is finite.
Further since b e S([) and ](2)1 < c2-(*+) (where k is as in (2.3))
we have by (2.3),

I <_ c mk dv
j=l

Integrating by parts and using the estimates I(&)l clAI -g and
1’(2)1 < c2-(+, we get that

I4 <_ c fl(l(m+)l + I(m)l) Ixl -p dv
Ixl>l j=l

Dr_ C flj 1’(2)1 d2 Ixl -p dv
Ixl>l j=l amj

j=l Ixl>l

1/p

thanks to (2.1), (2.3) and (2.5).
Summarizing all these estimates we conclude that (2.4) is finite for

arbitrary tp S().

For an absolutely continuous measure dv w(x)dx, where w is a lo-
cally integrable a.e. positive function, we write t’iw instead ofFiv. The
function w, as usual, will be called a weight function. If w 1, then we

p,o Lp,ouse the notation L#,w =_

It is easy to see that the space FP’,. is continuously imbedded into

Fiv when 0 _< 02 thanks to the inequality

1/Or

spaces/:v (1 < p, 0 < cx) are Banach spaces and eachf e FivThe
can be regarded as an element of S’.
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Remark When 0 2, fl = 1, the decomposition is lacunary and v is
absolutely continuous with weight function w, the norm (2.4) is
equivalent to the Lew(") norm, thanks to the weighted version of the
Littlewood-Paley theorem (see ]) when the weight function w satisfies
the condition At,:

[j WI_p,
sup[-- w(x) dx -1 (x) dx < o,

where the supremum is taken over all n-dimensional boxes with sides
parallel to the coordinate axes.

PROPOSITION 2.2 Let v be an arbitrary locallyfinite, regular measure.
Then S(n) is dense in Lv(n).

Proof It is sufficient to prove that C(Nn) is dense in LPw(N"). Given
q9 L([") and e, > O, choose a continuous function g with compact
support such that

(see [26], Lemma IV.8.19)
Let t be a non-negative, infinitely differentiable function supported

in the unit ball of " with total integral equal to 1.
Define

t(x) t-n(), t> 0.

It is easy to see that t * g 6 C(n) for all > 0 and t * g --+ g as
--+ 0 uniformly on compact subsets of ". IfB is a large ball contain-

ing the support of g in its interior, choose so small that

IIg- q/t * gll < -4(vB)-/p.

Then

Hence C(Nn) and therefore S([Rn) is dense in LPv([" ).
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3 TWO-WEIGHT MULTIPLIERS IN TRIEBEL-LIZORKIN
SPACES (ONE-DIMENSIONAL CASE)

Let X and Y be two function spaces on n with norms II" Ilx and

I1" lit respectively. Assume that S(n) is dense in both X and Y.

DEFINITION 3.1 A distribution rn S’ is called an (X, Y) multiplier if
for the operator 1C defined by the Fourier transform equation

fEf m, f S, (3.1)

there exists a constant c such that

for allf s(n).

In this case we write m 6JA(X,Y). The number suPllollx__.
IlF-(m(o)llr is the norm of the (X, Y)-multiplier m.

In the sequel we shall need the following definitions of weight
classes, the weights being defined on I.

DEFINITION 3.2 Let (0, 1). We say that the weight pair (v, w) be-
longs to the class t3q,p if < p < q < oo andfor v and w conditions
(1.5) and (1.6) are satisfied. Further, the weight pair (v, w) belongs to
3qdP if 1 < p < q < oo and conditions (1.7) and (1.8) hold.

DEFINITION 3.3 Let 0 < < 1.

(i) The pair ofweightfunctions (v, w) belongs to the class wq ’p if
< p < q < o, n and (v, w) satisfies conditions (1.9) and

(1.10).
(ii) Let 1 < p < c, n 1 and let I be the Riesz potential on

say that the weightfunction v belongs to the class VP ifIv Lc

and the condition (1.11) holds.
(iii) The weight v Fqgp if n- 1 and the condition (1.12) is ful-

filled.
Note that

rvq,’ uq/’ n 0q/’.
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On the other hand, for w we have

DEFINITION 3.4 Let 0 < < 1. The weightfunction v on is said to
be of the class (resp. [ if W(v) L and (1.13) holds (resp.

p’R(v) 6 Loc and (1.14) is fulfilled).

Now as in the previous section, let be a decomposition of E with
corresponding numbers flj satisfying conditions (2.1), (2.2) and (2.3).
We have the following statement:

THEOREM 3.1 Let < p < q < cxz, < 0 < o and (v, w) mq ’p.

Let 1C be defined by (3.1), where the function m is represented in an
arbitrary interval I as

m(2)= (2-t)-d1, 0<< 1, (3.2)

and the t are finite measures for which

sup var/I M < x.

qO qO
Fliv ) moreover,Then m .A/l(Fliw, and,

(3.3)

(3.4)

The statement of Theorem 3.1 remains valid if the condition
(v, w) wq,p is replaced by the condition of Theorem D.

In the sequel by B(x, r) we understand the interval [x- r, x + r].

THEOREM 3.1’ Let < p < q < c,
measure v on satisfies the condition

< 0 < c. Assume that the

vB(x, r) < crq(1/p-), 0 < o < 1,

with the constant c independent ofx and r. Then for any measurable
function m satisfying the conditions of the previous theorem we have

AAgK’q, 17P,Othat m .,, l,v"
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In this section we shall a priori assume that

(1 + Ixl)-q+e Lv([)

and

(1 + Ixl)-P+ Lw()

for some e > 0.
Note that if w Ap([), then the last condition is satisfied.
The following statements also hold:

THEOREM 3.2 Let 1 < p < q < cx, < 0 < cxz and (v, w) 6 uqdP.
Suppose that a function m in each I, I , is defined by the formula

m(2) (2 t)- d#t(t) + exp{izr} (2 t)- d#i(t), 0< < 1,

(3.5)

,p,O q Owhere thefinite measures ItI satisfy (3.3). Then m .M(F,w, F’iv) and
(3.4) holds.

THEOREM 3.3 Let 1 < p < q < oo, < 0 < o and let (v, w) Aq’p.

Let a measurable function rn be represented in each I by

l Im(,) (2 t)- d(t) + exp{-ie} (t 2)- d(t), 0 < e < 1,

(3.6)

,pO qOF#;v) (3.4) holds.where I satisfies (3.3). Then m .M(FIw, and

THEOREM 3.4 Let < p, 0 < o and 0 < < lip. Assume that
v B (resp. v P). Thenfor thefunction rn represented in each I
by (3.5) (resp. by (3.6)) we have m .Ad(FP’ 0

THEOREM 3.5 Let 1 < q < p < o, < 0 < cxz and v Fq’p,
0 < < 1. Then for thefunctions rn defined by (3.2) and satisfying the

,pO qOcondition (3.3) we have m
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THEOREM 3.6 Let < p, 0 < oz and let v VP. Then thefunction m
.from Theorem 3.1 is a (F’, t;iv) multiplier.

Remark 3.1 Let 0 2 and suppose that in addition to the above-
mentioned conditions for a pair of weights (v,w), we have v Aq([)
and w E Ap(). Then the foregoing theorems give multiplier statements
for (LPw, Lq ).

PROPOSITION 3.1 Iffor some pair of weights (v,w) all functions rn of
type (3.2) with condition (3.3) belong to jkd(LPw, Lqv) then (v,w) wq ’p.

The same is true for other multipliers and appropriate classes of pairs
(v, w).
The proofs of all the theorems formulated above are carried out essen-

tially by the same method, that is, by the representation of the operator
under consideration as a composition of certain elementary transforma-
tions.

Let

X>0
x+- 0, x<0

and

0, x>0x=-= ixl x<O.

We consider the following distributions:

h(2) 2 + exp{in}2-
and

whereO<a< 1.

(2) 27= + exp{-iort}2-=,
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It is known that their Fourier preimages are given by

(X) A()X-1 -Jr" B()xe_-1

and

(x) D()x-l

where

{-iort } F(1 o0,A(00 (2/10-1/2 exp
2

|iz:|
() (2)-l/ exp/-5- r(1 -),

{io}C(o0 (2a:)-/2F() exp --D(e) (2rt)-l/F() exp
2

(see [27], p. 172).

LEMMA 3.1 After completion with respect to the norm ofLPw(N), the
mapping q9 --+ defined on S(N) by the Fourier transform equation

()

generates a bounded operatorfrom LPw(a) to Lqv([) (1 < p < q < c) if
(v, w) uq;.

Proof The convolution of 99 with the preimage of h, i.e. with

C()x+-, gives the Riemann-Liouville operator 7 on (see [28],
Theorem 7.1). By the assumptions (v, w) uq,p it acts boundedly from
LPw into Lvq (see Theorem 1.3).
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Similar propositions hold for the other "elementary multipliers" and
), and for appropriate classes of pairs of weights. Henceforth the proofs
will be given only for h.

Let us consider the family of operators Rt defined by the Fourier
transform equation

(2) h(2 t)(2), tp S(I), .
Since the shit of in the Fourier image corresponds to the multiplica-

tion by exp{itx} ofthe Fourier image, the norms of7U coincide with that
of.
THEOREM 3.7 Let < p < q < cx and let (v, w) uq ’p. Suppose
that a function m is defined by the formula

re(A) (2 t)- d/t(t) + exp{iorc} (t 2)- dp(t), 0<< [3.7)

where It is a finite measure on . Then the operator 1C acts boundedly
from LPw() into Lq().

Proof It is easy to see that m is a regular tempered distribution. Indeed,
since the images of q9 6 S by the Riemann-Liouville and Weyl opera-
tors are bounded functions we have

L ( It q9(2)(2 t)- d2 + exp{irc}

x q(2)(t 2)- d2 d(t) _< c var <

Therefore m 6 L(). By definition of the operator/C and the func-
tion rn we have

gSqg(x) (2tO-/2 L m(2)(2)exp{i2x} d2

(2z)-’/2 (In (Ja h(2- t)dp(t))o(2)exp{i2x}d2).
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Changing the order of integration we get

E0(x) (2n)-/2Jn(Juh(2-t)gp(2)exp{iLr}d2)dl(t)
(2rc)-/2 In 7U d/(t).

From Lemma 3.1 and the previous remark with respect to R.t it fol-
lows that

IIKSTIIL < (2g)-1/2 I 7=qgilL d(t) _< cMIIq)llL%,

where M is the total variation of #.

Now we shall deal with Fourier multipliers in weighted Lebesgue
spaces of vector-valued functions with values in l(1 < 0 < c).

DEFINITION 3.5 Let 1 < p < cx, < 0 < . By LPv(l) is denoted the
set ofvector-vatuedfunctionsf(x) = {(x)}j, x , with measurable
components and with finite norm

O)
p/O 1/p

It is well-known that LPvv(l) is a Banach space (see [26], p. 162).
Furtherit is evident that iff 6 l_Yvv(l) then J} 6 Lv for all j 6 .

Let S be the set of all vector-valued functions q9 (qg, q2 )
where qgj 6 S, j 6 IN.
Note that the set S fq (l) is dense in Lily(l) for 1 < p, 0 < oo and

an arbitrary measure v.
Indeed, let f LPv(I) and a positive e be given. By Proposition 2.2

for any j we can choose qj such that

when < p < 0
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and

I tP)lll(’, < 2-j/ when p > 0.

When < p < 0 for q (ql, q2 ) we have

|/p

Ifp > 0 then it is sufficient to use Jessen’s inequality ([29], p. 182):

l/p

IV- pll  zo) %1 o dv
j=l

( (I )O/P)
lip

<- qgjlp dv
j-

j=

Thus we see that q S N(I) and [If- qllL,’Itt0) < 5. The Fourier
transform of the vector-valued function f LPw(l) is defined by

Ff ".
Recall that F is defined by means of the Fourier transform of distri-

butions.
The convolution of the vector-valued functionf LPv(1) with a tem-

pered distribution h S’ is considered coordinate-wise:

h *f {h

The following equality for the Fourier transform of a convolution holds"

F(h ,f) = F(h) F(f).



ON FOURIER MULTIPLIERS IN WEIGHTED TRIEBEL-LIZORKIN SPACES 577

LEMMA 3.2 The transform tp --- k defined by the equality

(2) h()+(), o s,

generates a bounded operator from LPw(l) to Lqv(l) when
1 < p < q < oo, 1 < 0 < o and the pair of weights (v, w) belongs
to uq’p.

The proof is analogous to that ofLemma 3.1. It should only be noted
that

fj(y)(x- y)-l dy Itfy)ll0(x y)-I dy.

THEOREM 3.8 Let < p < q < o, 1 < 0 < o and let the pair of
weights (v, w) belong to uq,p. Then for the transform 1C defined by

/f(2) = m(2)(2), 99 e S,

where m(2) is represented by (3.7), we have

I1Co, Zqw(l)l <_ cMIq), LPw(l)l,

with a constant c independent offand m. The operator 1C is extendable
to a bounded operatorfrom LPw(l) to.Lqv(l).

p oProof If we consider the superposition in Lw(l ) defined by

--0(2)=h(2-t)(2), q96S, t6,

the norm of this operator coincides with its value when t 0. The rest
of the proof is the same as in Theorem 3.7.
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THEOREM 3.9 Let < p < q < cxz, < 0 < cxz and let (v, w) uq ’p.

Assume that the measurable functions mj are defined by

mj(2) (2- t)- dpj(t) + exp{irc} (t- 2)- d9(t) (3.8)

where #j are finite measures for which

vat i < o. to.)
J

Then the operator 1E defined on S by the Fourier-transform equation

Eo =//gq}, q S, (3.1 O)

is extendable to a bounded operatorfrom LPw(I) to Lqv(l).

The proof of Theorem 3.9 will be divided into several steps.
Let us con,sider the transform T(2), 2 {21,22 2n }, 2j 6 ,

defined on S"

fj(2) h(2- 2j)(2), j 1, 2 2 6 Nt,

where as above

h(2) 2 + exp{ir}2Y and (x) C()x+-1.

LEMMA 3.3 The transform T(2) is extendable to a bounded operator

from p 0Lw(l ) to Lqv(l) under the conditions that <p<q<o,
< 0 < cx and (v, w) toq,p.

Proof The operator T(2) can be represented as

L(;OT(O)L(-;O

where the operator L is defined by

(x)}j, -- [exp{i2x}j(x)},.
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It is clear that T(0) is the Riemann-Liouville operator and since the
operator L is an isometry ofLPw(l) the desired result follows from The-
orem 3.8.

Further we truncate the operator T and for any given n consider the
operator

T(t, tn)" f ---> g, j(2) h(2 tj.)j(2),
whenj _< n and j(2) =(2) whenj > n.

LEMMA 3.4 Let 1 < p < q < oo, < 0 < oo, and let (v, w) t.JqgP.
Let mj be defined by (3.8). Assume that the transform 1Cn is determined

p 0in Lw(l ) by

E.f= G= {G:},

mJ, j < n,J=, j>n.

Then there exists a positive constant c independent offand n such that

I1Gf Lqv(l)l _< cM[f Lw(lP o)1.

Proof Without loss of generality we assume that the measures #j are
positive and normalized to 1.

For j < n we have

Gj(x) (2r0-1/2 1 m(/].)(/].) exp{i/q.x} d2

(2rc)-l/2 I, (I, h(2 t) d#j)(2) exp{ic} d2

=(2zl-1/zJn(J’nh(2-t)(2)expli2x}d2) d/9(t:’)
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Hence E. can be represented in the form

1Cnf(x) (2n)-’/2 J I T(h t,)d/ll(,,)..

Therefore

I/GnU, Lq(l)l <_ clT(tl tn)f Lqv(l)l.

Applying Lemma 3.3 we can see that/E, is bounded from LPw(I) to
Lqv(l) with an upper estimate of the norm independent of n.

Proof of Theorem 3.9 First of all we show that lim.
exists in the sense of convergence in the norm of Lq(l) for arbitrary
f n

Let

/C#,f-/Cnf (kj)i,, n > n.

By definition of/C. and Lemma 3.4:

I1C,f 1C.f Lqv(t)l <_ cM I (x)l)
The fight-hand side tends to zero. The proof of the theorem now fol-

lows from the uniform boundedness principle (see [26], p. 73).
The following statements can be proved analogously:

THEOREM 3.10 Let < p < q < o, < 0 <
(v, w) Uq’p. Let the functions mj be defined by

and let

Imj(2) (2 t)- d/tj(t) + exp{-ictn} (t 2)- dktj(t), (3.11)
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where the mj arefinite measures satisfying condition (3.9). Then the op-
erator 1C defined by (3.10) is extendable to a bounded operator from
LPw(l) to Lqv(lO) and

THEOREM 3.11
form

Suppose that thefunctions mj are representable in the

mj(2) (2 t)- dpj(t)

with the condition (3.9). The following statements hold:

(i) If < p < q < , < 0 < and the pair (v,w) belongs to the
class wq ,p (v E VP), then the operator 1 is boundedfrom LPw(I) to

Lqv(l) (acts boundedlyfrom Ifl(l) to/_v(l));
(ii) If <_ q < p < o, < 0 < cxz and v E Fq’p then the operator

1C acts boundedlyfrom Lp (l) into Lq
v (l).

Below the intervals of decomposition forming we regard as enum-
erated by {/j}jl.

PROPOSITION 3.1 Let mj be the functions for which the operator

is boundedfrom LPw(l) to Lqv(l)for the weightpair (v, w) uq,p andfor
p and q with 1 <p<q<o. Let the function rn be defined by
m(2) mj(2), 2 /j.. Then the operator 1E defined by (3.1) is bounded

from FPw’0 to Fqv ’0.

The proof is evident in view of the equality

where f/ [fl.}.
Now Theorem 3.2 immediately follows from Proposition 3.1 and

Theorem 3.9.
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,,,, ,,,,) MULTIPLIERS. THE CASE 1 < q _< p <

Let us consider the function

1, when 2>0
0(2)= 0, when 2<0.

It is known (see [27]) that the tempered distribution b is given by the
equality

(x)= (2rt)/2(+ (2rti)- ) (4.1)

where 6 is the Dirac function.
Let the transform q --- qt be defined on S([) by the Fourier equation

This equality corresponds to the convolution

according to (4.1) the latter leads to the Hilbert transform

f(y)(x y)-’ dy.Hf(x) -
The considerations of previous sections together with two-weighted

estimates for singular integrals proved in [30,31] (see also [32])
,p0 ,p0FI,,)( < < o) andenable us to prove assertions about (//iw, p

(F,,,, F.v) (1 < q < p < cx) multipliers.

DEFINITION 4.1 A pair ofweights (v, w) belongs to ap (1 < p < o), if
v(x) tr(lxl)p(x), w(x) u(lxl)p(x), p Ap(R), tr and u are increasing

.functions on (0, o) and

sup v(x)lxl -p dx wI-p’ (x) dx
t>O, Ixl>t Ixl<t
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DEFINITION 4.2 A pair (v, w) is said to be ofclass bp (1 < p < o), if
and u decrease on (0, oo), p Ap(R) and

sup lt>0 Ixl<t
(j )p--1V(X) dx W1-p’ (X)IX[ -p’ dx <

Ixl>t

In [30] it is proved that if (v, w) ap U bp, 1 < p < oo, then H is
bounded from LPw into Lvq.

THEOREM 4.1 Let 1 < p, 0 < c and let (v, w) ap U bp. Suppose
that thefunction m is expressed in any interval I ofthe decomposition
by the followingform

2

m() d# (2 6 I),

where the positive measures I satisfy the condition

,p,O ,pOThen rn

sup var#i < oo.
I

THEOREM 4.2 Let < q < p < oo, 1 < 0 < oo. If the pair of even,

increasing on (0, o) weightfunctions satisfies the condition

JI(J?12(X)x-nqdxt(I2wI-P’(x)dxIq-1]P/(P-q)’WI-P’() dt < (X)’

,p O qOthen thefunction mfrom the previous theorem is an (F}I, multi-

plier.

These statements follow in the same manner as the above-formulated
corresponding theorems.
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5 MULTIPLIERS IN WEIGHTED SPACES WITH MIXED NORMS

Let/3 (Pl p,), < Pi < cx, 1,..., n. Put v _= (wl w,),
where wi- wi(xi) (i n) are weight functions defined on [.

By definition L,(") is the space of functions f: " --+ [ with the
condition

I[fll,- dvl dv2 If(x)lp" dvn

The definition of K-’_ is similar to that given in Section 3 We have to
use the norm (5.1)l,w

Let d] be a decomposition of ["\{0} of the type defined in Section 3
and let J

THEOREM 5.1 Let < Pi < qi < o, < 0 < o and let (vi, wi)
wq,"P’(), n. Suppose that a function rn is represented in the

.form

m(2) tj)-=j d/j, 2 J, (5.2)

where pj are finite measures and

sup var pj < M.
JEJ

(5.3)

For the rest of this section we shall assume that

(1 + Ixl)-q’+" L (1)

and

(1 + Ixl)-p’+" L (1)

for some e, > O.
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THEOREM 5.2 Let < Pi < qi < oo, 1 < 0 < oo and let (vi, wi)
qi’pi where 0 < i < (i = n). Assume that the function m in

each J is represented by

m(2) 2i- ti)Tfl + exp{ioirr}(ti- li)-i) d#j(t), (5.4)

,p,owhere #a, J 3 satisfy the condition (5.3). Then m

THEOREM 5.3 Let < Pi < qi < , < 0 < o and (vi, wi) f’fqi,pi

(i 1 n). Let the function rn be represented as

m(2) ((/i ti)fl + exp{--ioirc}(ti 2i)-’) d#a(t)

, 0under the condition (5.3). Then rn

The idea ofthe proof is similar to the one-dimensional case; however,
we should make some remarks.

Let

n

i=1

n

h(,) H((i)i -4- exp{ioi}(,i)-’)
i=1

and

n

"() H((2i)_=i-+
i=l

It is well-known (see [27]) that the Fourier transform of a direct product
is given by direct product of Fourier images of factors.
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The Fourier preimage of I is a linear combination of the products

Analogously,

.() c()(x)-’
y=l

and

n

(x) HD(j)(xJ)-"
j=l

These lead to the integral operators:

n

nf(x) (xj yj),i-f(y) dy

and

VVf(x) H(y) x))-f(y)dy,
j=l

where 0 <
Now making n-fold applications of appropriate one-dimensional two-

weighted inequalities and using Minkowski’s inequality we derive

PROPOSITION 5.1
statements hold:

Let < pi < qi < oo, (i n). Thefollowing

(i) If (vi wi)E wq,,Pi (i--1 n) then I is bounded from_’’0 ’’’,(") to q(")
(ii) If (Vi, Wi) Uqi’pi (i--1 n), then is bounded fromi

L,(’) to (")
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(iii) When (vi wi)E fTqi,P, (i- 1 n), then A; acts boundedly
from L([n) to Lqv(n).

From Theorem 5.1 follows a two-weighted version of Mikhlin-
Lizorkin type multipliers.

THEOREM 5.4 Let m be continuous outside the coordinate planes and
have there continuous derivatives

O<k +k2+...+kn=k <n, kj=O, 1.

Moreover assume that

Then the following statements hold:

(i) When < Pi < qi < x3, 0 < O < 1, 1,..., n, < 0 < and
(vi, wi) E wq/,p,, then m .M(FgI,FIv)

(ii) Ifpi qi, i O,j 1,..., n, 1 < 0 < c and (vi, wi) satisfy the
condition of Theorem 5.1, then m ./l, #,,. #, j.

Finally, in addition, if wi Api() and 12 Aqi() (i 1,..., n),
then we obtain (L,L) multiplier statements. The n-dimensional
weighted version of the Littlewood-Paley theorem must be applied.
The proof of the last result (see ]) works in weighted Lebesgue spaces
with mixed norms as well.

6 EXAMPLES

Here on the basis of the previous sections’ results we derive various ex-

amples of pairs of weights ensuring validity of two-weight estimates for
appropriate multipliers.
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PROPOSITION 6.1 Let < p, 0 < cx and rn be a function of the form

m(2)= d#t 26I,

where I are intervals ofdecomposition of and thefinite measures
are such that

sup var

Assume that

w(x)
Ixlp-I lnp Ix-
(p’)P expl-p -I-/3p’}lxl a

when Ixl exp{-p’}

when Ixl > exp{-p’}

and

[ Ixlp-Iv(x) I exp{-Tp’ p}lxl
when Ixl exp{-p’]
when Ixl > exp{-p’},

where O < y < < p-1. Then rn

It is easy to show that the pair (v, w) satisfies the condition ap from
Definition 4.1 and thus from Theorem 4.1 we obtain Proposition 6.1.
Note that these weights do not belong to the lp class. On the other

hand, the conditions

w(x)(1 -I-Ixl)-P+ dx < c (6.1)

and

v(x)(1 + Ixl)-Z’+’ dx < (6.2)

are satisfied, so that S C t:’:w N t::v
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PROPOSITION 6.2 Let 1 < p < 1/, 1/q 1/p . Assume that a

function m is represented by the formula
2

m(2) (2 t)- di,

where ILlI satisfy the condition indicated in previous proposition. If the
function w satisfies the Apq condition, i.e.

sup(L wq(x) dx)
/q

(I wP(x) dx) /P< oo, (6.3)

where the supremum is taken over all one-dimensional intervals I, then

,t0,0 q Om .AA(F,wp, F3,wq).

In particular, if 0 < fl < p- 1, w(x) Ixl/ and v(x) Ix[lq/p then the
condition (6.3) is satisfied and, consequently, (v, w) wq ’p.

Example 6.1 Suppose that < p < q < o, 1/p < < 1/q’.

Let

w(x)
Ixlp-l lnP lx-]
exp{p’2}(p’)P Ixl

when Ixl exp{-p’}

when Ixl > exp{-p’}

and

v(x) [ Ixle
Ixl/ exp{p’(3 )}I

when Ixl exp{-p’}
when Ixl > exp{-p’},

where 0<=q-q-l, O < 2 < p -1, O < fl < (1- )q + 2q/
p- q/p’- 1. Then the function rn from the previous theorem belongs
to Ad(F:0w qO,Fl:v).

The above-defined pair (v, w) satisfies the conditions (1.9), (1.10).
Note also that weight functions v and w satisfy the conditions (6.1)

and (6.2) for p and q respectively.
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Example 6.2 Let E(0,1), 1-p<p0<p/q-p, p-1 <_
l <p-l, q/p-1 < e < q/p- + q, =-q +, q/p-e-poq/p,
w(x) (1 +[x[) -’’-’ Ix["’,. v(x)= (1-["[xl))’[X[ -q/p+e’. Then T is
bounded from LPw([ to Lvq([ (see [28], p. 93) and w EAp(),
v Aq([).
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