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Abstract. A trace inequality for the generalized Riesz potentials I%(*) is
established in spaces LP*) defined on spaces of homogeneous type. The results
are new even in the case of Euclidean spaces. As a corollary a criterion for a
two-weighted inequality in classical Lebesgue spaces for potentials 1@ defined
on fractal sets is derived.

1. Introduction

In this paper several extensions of D. Adams’s trace inequality [1] (see
also [2]) are established. We prove a trace inequality for generalized Riesz
potentials in Lebesgue spaces with variable exponent. This result can
be interpreted as an inequality of Sobolev type. At the same time we
derive criteria for the validity of a two-weighted inequality in the case of
classical Lebesgue spaces when the exponent involved in the definition of
the potential is variable. Lebesgue spaces LP(¥) with variable exponent
and operators in these spaces are intensively studied nowadays. The
considerable interest in such spaces in recent years has been stimulated by
applications to models with the so-called non-standard local growth in fluid
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mechanics, elasticity theory, in variational calculus, differential operators;
see for example [22], [16], [5] and references therein.

Let
riw=[ AU a 0<a<n
Re T =yl

be the Riesz potential. A theorem of Sobolev for I%* in Lebesgue spaces with
variable exponent was proved quite recently [4] (see also [17], [8], [12-13]).

For Lebesgue spaces with constant exponent D. Adams [1] proved the
following

Theorem A. Let 1 <y < A < o0 and 0 < a < n/v, let p be a measurable
function on R™, positive a.e.. Then the trace inequality

ay ([ aesepere) <o [ ers)

where f € LY(R™), holds if and only if

(1.2) sup 7“)‘(0‘7”/7)/ p*(z)dr < oo,
B(z,r)

zER™
>0

where B(x,r) is the open ball in R™ with center x and radius r.

In [6] (see Chapter 6) the reader can find several extensions of Theorem A
for spaces of homogeneous type and also for the so-called nonhomogeneous
spaces. These results concern the classical Lebesgue spaces.

We aim to generalize Theorem A in several directions. To explain this
we need some definitions.

Let (X,d,u) be a space of homogeneous type (SHT), that is, a
topological space endowed with a complete measure p such that the space of
compactly supported continuous functions is dense in L'(X, du) and there
exists a non-negative real-valued function d : X x X — R satisfying

(i) d(z,z) =0 for all z € X
ii) d(z,y) >0 for all x #y, z,y € X;
(iii) there is a constant ag such that d(z,y) < aod(y, z) for all z,y,z € X;
(iv) there is a constant a; such that

d(l’,y) S al(d(x)z) + d(Z,y))

for all z,y,z € X;

(v) for every neighbourhood V of x there is r > 0 such that the ball
B(z,r) ={y € X : d(z,y) < r} is contained in V;

(vi) there is a constant b such that uB(z,2r) < buB(z,r) < oo for every
reXandallr, 0 <r < oo.
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For the definition, some properties and examples of SHT see e.g. [10].

We now give the definition of Lebesgue spaces with variable exponent
(see [11], [14], [18], [7], [9])-
Let p(z) be a p-measurable function on X such that

1<p_§p($)§p+<00, meX?

where

p_ :=essinfp(x), ps := esssupp(z).
zeX zeX

By LP(*) we denote the space of all functions f on X such that

A= [ 1@ dna) < .
This is a Banach function space with respect to the norm
IfllLrer = inf{A > 0: Ap(F/A) <1}

Let w be a p- measurable almost everywhere positive function on X.
Such functions are called weights.

The generalized weighted Lebesgue space qu(') is defined to be the set of
all measurable functions f for which

11l rer = [[fwll ey < oo

Note that L% is a Banach space (see e.g. [7]). When p(z) = p = const,
then qu(')(X ) coincides with the weighted Lebesgue space L% (X).

If w is a positive and locally integrable function on X, then for any u-
measurable set e we put

we = /ew(a:)du.

2. Statements of Main Results

In the sequel X will be assumed to satisfy the condition
Bz, R)\ B(x,r) # 0

forall » and R, 0 < r < R < ¢, where c is some positive constant. We shall
assume also that pX < oo and there exist positive constants ¢y and s such
that

(2.1) uB(z,r) < cor?
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for all z € X and all r > 0. By [ we denote diam X := sup{d(z,y) : z,y €
X}

Definition 1. Let g be a continuous function on X. We say that g
belongs to W —Lip(X) (weak Lipschitz condition) if there exists a positive
constant c such that

l9(=) = 9w < e

for all z,y € X with 0 < d(z,y) < 1/2. The main object of our study is the
generalized Riesz potential

196 () = /X (d(z, )@ f@)du(y), 0< alz) <s.

Our main goal is to prove two statements. The first concerns criteria for
a two-weight inequality for the operator I%(*) in a weighted Lebesgue space
with constant exponent. A trace inequality for I*(*) in Lebesgue spaces
with variable exponent will be given in Theorem II. Both statements are
new even in case of Euclidean space. Then we derive some corollaries and
indicate the interesting special cases, such as potentials on thin sets.

Theorem I. Let 1 <y <A< o00,0< afz) <s and a € W-Lip(X); let
p and w be weights.
Then the operator I%*) is bounded from L}, (X) to L;‘(X) if and only if

sup (p*B(z, Nr))*/*
oEX,

/9
W= () (d(z. ) @@ =5 o
(2.2) ( / T W) du(y)> <

sup (w_””B(w, Nr))l/vl
omfr)i'z

1/A
A z (a(z)—s)A 00
(2.3) X(/X\B(”)p (y)(d(z,y)) du(y)> <

where N = 2a;(1 + 2ap). The constants ag and ay are from the definition
of SHT .

Corollary 1. Let 1 <y < A < 00, @« € W—Lip(X) and supa(z) < s/v.

zeX
Then
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(i) the operator I*®) acts boundedly from LY(X) into L;‘(X) if

(2.4) sup rA(@(@)=s/7) P (y)du(y) < oo.
war)él B(z,r)

(ii) If

(2.5) bir® < uB(z,r) < bor?®

for some positive constants by and by, then the condition (2.4) is also
necessary for the boundedness of I*®) from L7(X) to Ly (X).

Theorem II. Let p(-) and q(-) be measurable functions on X with
1 <p. < gt < oo, a € W—Lip(X) and supa(z) < s/p_. Suppose

zeX
that v is a weight.
Then the condition
@6 s @) [ () i) <
o<r<l z,T

implies the boundedness of 1) from LP()(X) to LZ(')(X).
From this theorem for I*(*) follows a statement of Sobolov type.

Corollary 2. Let p(-) and q(-) be arbitrary measurable functions on
X such that 1 < p_ < g+ < oo. Suppose that « € W —Lip(X) and

1 1
s(— - —) < inf a(z) < supa(z) < . Then I°®) acts boundedly from
P-4+ zeX z€X p-
LPO(X) into L0 (X).
3. Proofs of Main Results

Let k be a positive measurable function on X x X and let

Kf(z) = /X k() f(4)du(y)

and
K@) = [ K@i,
where k*(z,y) = k(y, z).
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Definition 3.1. We say that k belongs to the class V' (k € V) if there
exists a positive constant ¢ such that

k(z,y) < ck(z',y)

for all z, y and z' such that d(z,z") < Nd(z,y), where N = 2a, (1 + 2ay).

The following two-weighted criterion for the operator K is known for
classical Lebesgue spaces (see e.g. [10], Theorem 3.4.2 and [19]).

Theorem B. Let 1 < v < A< o0 and let k, k* € V. Then the operator
K is bounded from L), (X) to L)(X) if and only if

, , 1/v
(31)  sup <v*B<w,N7~>)”*( / o B (y)du(y)> < o0

zE€X
o<r<li

and

, /2
(3.2) sup (w™" Bz, Nr)'/7 (/X\B( )k“y,x)v”(y)du(y)) < o0.

zE€X
o<r<li

Note that the condition (2.1) is not needed for this result. Observe also
that Theorem A is a consequence of Theorem B.
Now we shall derive Theorem I from Theorem B.

Proposition 3.1. Let 0 < a(z) < s for all z € X and o € W —Lip(X).
Then there exist positive constants ¢; and cs such that for all x,y € X

(33)  c(d@, )V < (dz,y) ) < eo(d(x,y) V.

Proof. To prove the right-side of inequality (3.3) let d(z,y) < i. We
have

(3.4) (d(z,y))* )% = (d(z,y))*@)—eW+aly)—s,
Further,
In(d(z,))*™ =W = |a(x) — a(y)||Ind(z,y)]
m(—lnd(ﬂﬁ,y))

= C.
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Hence

™" < (d(,y))* 7o) < et

From the latter inequality and (3.4) we obtain the right-hand side of
inequality (3.3). Similarly the left-hand side of (3.3) follows. If 1/2 <
d(z,y) <1 then, (3.3) is obvious. O

Proof of Theorem 1. Suppose that k(z,y) = (d(z,y))*®)~*. Then we
shall prove that k£ and k* belong to the class V. Let

d(z,z") < Nd(z,y).
We have
d(z',y) < a(d(@',z) +d(z,y))
< a(agNd(z,y) + d(z,y))
= a1(aoN + 1)d(z,y).
From the last inequality and Proposition 3.1 we conclude that
kay) < eldz,y) @
ea(d(a’,y)) "W

ca(d(a’, )"0

IN A

C3k($l,y). O

The inclusion k* € V follows analogously. Now applying Theorem B we
come to the desired result.

Proof of Corollary 1. To prove (i) it suffices to show that the condition
(2.4) implies conditions (2.2) and (2.3).

Denote
Dy(z,7) = B(x,2""'r)\B(z,2*r), k=0,1,2,....
We have
BN [l O duty)
X\B(z,r)

o0

= PB@N A [ () duty)
k=0 Di(z,r)
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(P*B(x, N7))" /A" Dy (w, r) (26 r) (@)=

<
k=0
< e(p Bz, Nr))" A3 (@kp)lale)=on s
k=0
< C(pAB(m,NT))V’/,\T(a(z)—s)v’Jrs Z ok((a(z)=8)7'+s)
k=0
< ¢ .
In the last inequality we used (2.4) and the condition supa(z) < %
rzeX
Further
TsA/’y’ / pA(y)(d(x,y))(a(x)—s)kdu(y)
X\B(z,r)
— _r Z/ :L‘ y))(a(z)—s))\d’u(y)
Dx
< _'Z r)@@=s / P (y)duy)
k=0 Dy, (z,r)
= Y@k g P y)duy)
k=0 Dy, (z,r)
< ey 27k
k=0
< 0.

Now we prove (ii). Let the operator I*(*) be bounded from L(X) to
L)(X). By Theorem I it follows that condition (2.2) is satisfied. Let us
show that in our case it means that (2.4) is valid. It is easy to see that the
condition (2.5) implies the so-called reverse doubling condition, i.e. there
exist some constants 77; > 1 and 7, > 1 such that

pB(x,mr) > napuB(z,7)

for small r (For the proof of this fact for measures satisfying the doubling
condition see e.g. [20], p. 11).
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Using reverse doubling condition and (2.5) from (2.2) we obtain

(pAB(ZC, T))I/Ara(w)—s/'y <
< (P)\B(maNT))l/)‘(mT)a(m)*S(uB(w,nlr)/uB(a:,r))l/Vl < 00.
Note that in this case we do not need the assumption sup a(z) < s/7.

For this it is enough that inf a(z) < s.
Thus we proved that by (2.2), (2.4) is satisfied. O

Let 2 be a bounded open set in R", and let u be Lebesgue measure on
Q. Then from Corollary 1 we conclude that the following statement is valid.

Proposition 3.2. Let 1 <y < A < 00 and let « € W —Lip(Q) be such
that

n
supa(z) < —.
z€Q Y

Then the operator I1*%*) acts boundedly from LY(Q) into L;‘(Q) if and
only if

sup r(@@=%) pMy)dy < oo.

e
0l B(z,r)

Proof of Theorem II. Let us recall that

g— :=essinfg(z) and ¢y :=esssupgq(z).
reX rzeX

Let f > 0 and suppose that

/ (f@)"@de < 1.
X

Then we have

[ oo ( [ (d(w,y))“(m)Sf(y)du(y)>q(x)du(w)

/ (0(2))7®) (1) £ (2))1®)
Xn{z:T==) f(z)>1}

+f (@)1 (1@ f (@)1 do = Ty + I
Xn{I*® f(z)<1}
If we put (p(z))* = (v(z))?® in Corollary 1, then we obtain

Ji < (@) (1) f ()" du(x)

/Xﬂ{w:[o‘(“”)f(x)ZI}
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< o [ Gy "

On the other hand, from condition (2.6) it is obvious that

sup ri-(@@)—s/p-) (v(y) "W dy < 0.

€X,
oo B(z,r)

Therefore using Corollary 1 again we obtain

q-/p-
v(z))1®) (1) f£(3))4- T c xz))P- T .
g < [ @) 1 ) aute) < (/X(f()) du())
Now we observe that

/X (F@)P-du(z) = /X o TP + / (@)~ dp(z)

xXn{f>1}
< / (@)™ du(z) + p(X)
X

< 1+ p(X).

Thus
/X (0(2))1® (I f(2))1@ dp(z) < c.

This proves the boundedness of 1%®) from LP(®)(X) to L1*) (X). ad

Proof of Corollary 2. It is clear that the condition (2.6) when v(z) =1
is satisfied if

inf o) > s(1/p- — 1/q1)-
zeX
From the previous results we can obtain the embedding theorem of
Sobolev type for weighted spaces with variable exponent.

As above, let  be a bounded open set in R™ and let D*u be the vector
of all weak derivatives of u of order k.

Proposition 3.3. Letn > 2,1 < p_ < gy < 0o and let k be any positive
integer smaller than n/p_. Suppose that the functions p and q satisfy the
condition of Theorem II. If

zEQ
0<r<diam Q

(3.5) sup 7“‘”(’“*”/”*)/ (v(y))Q(y)dy < 00,
B(z,r)

then there exists a positive constant ¢ such that

(3.6) 1ull Lo ) < ellD ull o) (@)
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for all real-valued functions u in Q0 whose continuation by zero outside ()
has weak derivatives up to the order k over R™.

Proof. Following [3] it can be shown that D¥u € L'(R"), and therefore
(see [15], Theorem 1.1. 10/2) a constant c¢;, depending only on n and k,

exists such that i
D
ol ser [ A0 g,
o lr =yl

Then using condition (3.5) and Theorem II we conclude that (3.6) is valid.
d

The proof of the next statement is based on the ideas used in [3].

Proposition 3.4. Letn > 2 and let 1 < p_ < g4 < oo. Suppose that
the functions p and q satisfy the condition of Theorem II and that k is any
positive integer smaller than n/p_. If condition (3.5) holds and Q is convez,
then there exists a positive constant ¢ depending only on n, k and Q such
that

(3.7) pdif llu= Pl ) < ellD™ull oo @)

for all real-valued functions u in Q having weak derivatives up to the order k
in ), where Py, denotes the space of polynomials of order less than or equal

1
to m. If k =1 inequality (3.7) holds in particular with P = Q / u(z)dz.
Q

Proof. 1t is known (see [15], Theorem 1.1.10/1 and [3]) there exists
a positive constant ¢ depending only on n, k and 2 and a polynomial
P € Py depending on n such that

kU,
ule) = Pla)] < [ %dy

for all z € Q and u, D*u € L*(Q). Theorem II and condition (3.5) completes
the proof. O

4. Potentials on Fractal Sets

Let T be a subset of R™ which is an s-set (0 < s < n) in the sense that
there is a Borel measure y in R™ such that

(i) suppp =Tj
(ii) there are positive constants ¢; and c¢» such that for all z € T’ and
r € (0,1),

(4.1) ar® < u(B(z,r)NT) < cor®.
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It is known that (see [21]) p is equivalent to the restriction of Hausdorff
s— measure Hg; we shall thus identify p with Hg|r. Given z € T, put
[(x,r) = B(xz,r) NT. Let us indicate some examples of SHT for which the
condition (4.1) is satisfied.

Let I' € C be a connected rectifiable curve and let v be arc-length
measure on ['. By definition, I" is regular if

v( N B(z,r)) <cr

for every z € C and r > 0.
For r smaller than half the diameter of I', the reverse inequality

v(CNB(z,r)) >r

holds for all z € I'. Equipped with v and the Euclidean metric, the regular
curve becomes an SHT.
Now let

(4.2) T f(t) = /F “_ﬁ%m

be an integral with weak variable singularities.
The Cantor set in R™ is an s— set, where

o log(3™ — 1)
~ log3

Consider the potential-type integral transform on a bounded Cantor set F":

a(z) _ f)
(4.3) JN f(x) = /F 7@" P dH;, 0< a(z) < s.
Then from the previous results we can derive trace inequalities for the
operators T%) and J*O). In some cases the statements have the form
of criteria.
To illustrate this we present these results for the case of Jo(),

Proposition 4.1. Let 1 < v < A < o0, a € W —Lip(F) and
sup a(x) < s/v. Then the operator J*) acts boundedly from L7 (F) into
zel
L;‘(F) if and only if

zEF
0<r<diam F

sup T'A(a(z)is/v)/ p*(y)dH,(y) < oo.
I(z,r)
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Proposition 4.2. Let p(-) and q(-) be measurable functions on F with

1<p_<qq <00, let a € W—Lip(F) and sup a(z) < s/p— and suppose v
zEeF
is a weight. Then the condition

sup  ri+(a(@)=s/p-) (v(9)) "W dH,(y) < oo

EF
0<7‘zdiamF F(ac,r)

implies the boundedness of J*) from LPC)(T) to L%(')(F).

Proposition 4.3. Let p(-) and q(-) be as in the previous proposition.
Suppose that o € W —Lip(F) and

s(1/p- —1/q+) < inf a(z) < sup a(z) < s/p_.
zEF zEF

Then J*) acts boundedly from LPC)(F) into LY®)(F).
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