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Necessary and sufficient conditions on weight pairs guaranteeing the two-weight inequalities
for the potential operators (Iαf)(x) =

∫∞
0 (f(t)/|x − t|1−α)dt and (Iα1 ,α2f)(x, y) =

∫∞
0

∫∞
0 (f(t, τ)/

|x − t|1−α1 |y − τ |1−α2)dtdτ on the cone of nonincreasing functions are derived. In the case of Iα1 ,α2 ,
we assume that the right-hand side weight is of product type. The same problem for other mixed-
type double potential operators is also studied. Exponents of the Lebesgue spaces are assumed to
be between 1 and∞.

1. Introduction

Our aim is to derive necessary and sufficient conditions onweight pairs governing the bound-
edness of the following potential operators:

(
Iαf
)
(x) =

∫∞

0

f(t)

|x − t|1−α
dt, 0 < α < 1,

(Iα1,α2f
)(
x, y
)
=
∫∫∞

0

f(t, τ)

|x − t|1−α1
∣∣y − τ

∣∣1−α2
dt dτ, 0 < α1, α2 < 1,

(1.1)

from L
p

dec to Lq, where 1 < p, q < ∞.
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Historically, necessary and sufficient condition on a weight function u, for which the
boundedness of the one-dimensional Hardy transform

(
Hf
)
(x) =

1
x

∫x

0
f(t)dt (1.2)

from L
p

dec(u,R+) to Lp(u,R+) holds, was established in [1]. Two-weight Hardy inequality cri-
teria on cones of nonincreasing functions were derived in the paper [2]. The multidimensio-
nal analogues of these results were studied in [3–5]. Some characterizations of the two-weight
inequality for the single integral operators involving Hardy-type transforms for monotone
functions were given in [6–8]. The same problem for the Riesz potentials

(
Tαf
)
(x) =

∫

Rn

f
(
y
)∣∣x − y

∣
∣α−ndy, 0 < α < n, (1.3)

for nonnegative nonincreasing radial functions was studied in [9].
In the paper [10] necessary and sufficient conditions governing the boundedness of the

multiple Riemann-Liouville transform

(Rα1,α2f
)(
x, y
)
=
∫x

0

∫y

0

f(t, τ)

(x − t)1−α1
(
y − τ

)1−α2
dt dτ, 0 < α1, α2 < 1, (1.4)

from L
p

dec(w,R2
+) to Lp(v,R2

+)were derived, provided thatw is a product of one-dimensional
weights. Earlier, the problem of the boundedness of the two-dimensional Hardy transform
H2 = R1,1 from L

p

dec(w,R2
+) to Lp(v,R2

+) was studied in [4] under the condition that w and v
have the following form: w(x, y) = w1(x)w2(y), v(x, y) = v1(x)v2(y).

It should be emphasized that the two-weight problem for the Hardy-type transforms
and fractional integrals with single kernels has been already solved. For the weight theory
and history of these operators in classical Lebesgue spaces, we refer to the monographs [11–
15] and references cited therein.

The monograph [13] is dedicated to the two-weight problem for multiple integral ope-
rators in classical Lebesgue spaces (see also the papers [16–18] for criteria guaranteeing trace
inequalities for potential operators with product kernels).

Unfortunately, in the case of double potential operator, we assume that the right-hand
weight is of product type and the left-hand one satisfies the doubling condition with respect
to one of the variables. Even under these restrictions the two-weight criteria are written in
terms of several conditions on weights. We hope to remove these restrictions on weights in
our future investigations.

Some of the results of this paper were announced without proofs in [19].
Finally we mention that constants (often different constants in the same series of in-

equalities)will generally be denoted by c orC; by the symbol Tf ≈ Kf , where T andK are lin-
ear positive operators defined on appropriate classes of functions, wemean that there are pos-
itive constants c1 and c2 independent of f and x such that (Tf)(x) ≤ c1(Kf)(x) ≤ c2(Tf)(x);
R+ denotes the interval (0,∞) and p′ means the number p/(p − 1) for 1 < p < ∞; W(x) :=∫x
0 w(t)dt;Wj(xj) :=

∫xj

0 wj(t)dt;W(t1, . . . , tn) := Πn
i=1Wi(ti).
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2. Preliminaries

We say that a function f : R
n
+ → R+ is nonincreasing if f is nonincreasing in each variable se-

parately.
Let D be the class of all nonnegative nonincreasing functions on R

n
+. Suppose that u is

measurable a.e. positive function (weight) on R
n
+. We denote by Lp(u,Rn

+), 0 < p < ∞, the class
of all nonnegative functions on R

n
+ for which

∥
∥f
∥
∥
Lp(u,Rn

+)
:=

(∫

R
n
+

fp(x1, . . . , xn)u(x1, . . . , xn)dx1 · · ·dxn

)1/p

=

(∫

R
n
+

fp(x)u(x)dx

)1/p

< ∞.

(2.1)

By the symbol Lp

dec(u,R
n
+) we mean the class Lp(u,Rn

+) ∩ D.
The next statement regarding two-weight criteria for theHardy operatorH on the cone

of nonincreasing functions was proved in [2].

Theorem A. Let v and w be weight functions on R+, and letW(∞) = ∞.

(i) Suppose that 1 < p ≤ q < ∞. Then the inequality

[∫∞

0

(
Hf(x)

)q
v(x)dx

]1/q
≤ C

[∫∞

0

(
f(x)
)p
w(x)dx

]1/p
, f ∈ L

p

dec(w,R+), (2.2)

holds if and only if the following two conditions are satisfied:

sup
a>0

(∫a

0
v(x)dx

)1/q(∫a

0
w(x)dx

)−1/p
< ∞,

sup
a>0

(∫∞

a

v(x)
xq

dx

)1/q(∫a

0
W−p′(x)xp′w(x)dx

)1/p′

< ∞.

(2.3)

(ii) Let 1 < q < p < ∞. ThenH is bounded from L
p

dec(w,R+) to Lq(v,R+) if and only if the fol-
lowing two conditions are satisfied:

⎡

⎣
∫∞

0

⎡

⎣

(∫ t

0
v(x)dx

)1/p

W−1/p(t)

⎤

⎦

r

v(t)dt

⎤

⎦

1/r

< ∞,

⎡

⎣
∫∞

0

⎡

⎣
(∫∞

t

x−qv(x)dx
)1/p
(∫ t

0
xp′W−p′(x)w(x)dx

)1/p′
⎤

⎦

r

tp
′
W−p′(t)w(t)dt

⎤

⎦

1/r

< ∞,

(2.4)

where r = pq/(p − q).
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The following statement was proved in [2] for n = 1. For n ≥ 1 we refer to [4].

Proposition A. Let 1 < p, q < ∞. Suppose that T is a positive integral operator defined on functions
f : R

n
+ → R+, which are nonincreasing in each variable separately. Suppose that T ∗ is its formal ad-

joint. Letw(x1, . . . , xn) = w1(x1) · · ·wn(xn) be a product weight such thatWi(∞) = ∞, i = 1, . . . , n.
Let v be a general weight on R

n
+. Then the operator T is bounded from L

p

dec(w,Rn
+) to L

p(v,Rn
+) if and

only if the inequality

(∫

R
n
+

(∫x1

0
· · ·
∫xn

0
T ∗g
)p′

W−p′(x1, . . . , xn)w(x1, . . . , xn)dx1 · · ·dxn

)1/p′

≤ c

(∫

R
n
+

g(x)q
′
v1−q′(x)dx

)1/q′
(2.5)

holds for all g ≥ 0.

Let Rα be the Riemann-Liouville transform with single kernel

(
Rαf
)
(x) =

∫x

0

f(t)

(x − t)1−α
dt, x ∈ R+, α > 0. (2.6)

If α = 1, then Rα is the Hardy transform. The Lp(w,R+) → Lq(v,R+) boundedness for
R1 was characterized by Muckenhoupt ([20]) for p = q, and by Kokilashvili [21] and Bradley
[22] for p < q (see also the monograph by Maz’ya [23] for these and relevant results).

In the case when 0 < α < 1, the Riemann-Liouville transform has singularity. For the
results regarding the two-weight problem, in this case we refer, for example, to the mono-
graph [11] and the references cited therein.

The next result deals with the case α > 1 (see [24]).

Theorem B. Let α > 1. Then the operator Rα is bounded from Lp(w,R+) to Lq(v,R+) if and only if

sup
t>0

(∫∞

t

(x − t)(α−1)qv(x)dx
)1/q
(∫ t

0
w1−p′(y

)
dy

)1/p′

< ∞,

sup
t>0

(∫∞

t

v(x)dx
)1/q
(∫ t

0
(t − x)(α−1)p

′
w1−p′(y

)
dy

)1/p′

< ∞,

(2.7)

for 1 < p ≤ q < ∞ and

⎧
⎨

⎩

∫∞

0

(∫∞

t

(x − t)(α−1)qv(x)dx
)r/q
(∫ t

0
w1−p′(y

)
dy

)r/q′

w1−p′(t)dt

⎫
⎬

⎭

1/r

< ∞,

⎧
⎨

⎩

∫∞

0

(∫∞

t

v(x)dx
)r/p
(∫ t

0

(
t − y
)(α−1)p′

w1−p′(y
)
dy

)r/p′

v(t)dt

⎫
⎬

⎭

1/r

< ∞,

(2.8)

for 1 < q < p < ∞, where r is defined as follows: 1/r = 1/q − 1/p.
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Theorem C (see [10]). Let 1 < p ≤ q < ∞, and let 0 < αi < 1, i = 1, 2. Assume that v and w are
weights on R

2
+. Suppose also that w(x1, x2) = w1(x1)w2(x2) for some one-dimensional weights w1

and w2 and that Wi(∞) = ∞, i = 1, 2. Then the following conditions are equivalent:

(a) Rα1,α2 is bounded from L
p

dec(w,R2
+) to L

q(v,R2
+);

(b) the following four conditions hold simultaneously:

(i)

sup
a1,a2>0

(∫a1

0

∫a2

0
w(t1, t2)dt1dt2

)−1/p(∫a1

0

∫a2

0

(
tα1
1 tα2

2

)q
v(t1, t2)dt1dt2

)1/q

< ∞, (2.9)

(ii)

sup
a1,a2>0

(∫a1

0

∫a2

0
(t1t2)p

′
W−p′(t1, t2)w(t1, t2)dt1dt2

)1/p′

×
(∫∞

a1

∫∞

a2

(
tα1−1
1 tα2−1

2

)q
v(t1, t2)dt1dt2

)1/q

< ∞,

(2.10)

(iii)

sup
a1,a2>0

(∫a1

0
w1(t1)dt1

)−1/p(∫a2

0
t
p′

2 W
−p′
2 (t2)w2(t2)dt2

)1/p′

×
(∫a1

0

∫∞

a2

t
qα1

1 t
q(α2−1)
2 v(t1, t2)dt1dt2

)1/q

< ∞,

(2.11)

(iv)

sup
a1,a2>0

(∫a1

0
t
p′

1 W
−p′
1 (t1)w1(t1)dt1

)1/p′(∫a2

0
w2(t2)dt2

)−1/p

×
(∫∞

a1

∫a2

0
t
q(α1−1)
1 t

qα2

2 v(t1, t2)dt1dt2

)1/q

< ∞.

(2.12)

In particular, Theorem C yields the trace inequality criteria on the cone of nonincreas-
ing functions.

Corollary A (see [10]). Let 1 < p ≤ q < ∞, and let 0 < αi < 1, i = 1, 2. Then the following condi-
tions are equivalent:

(a) the boundedness of Rα1,α2 from L
p

dec(w,R2
+) to L

q(v,R2
+) holds for w ≡ 1;

(b)

B1 := sup
a1,a2>0

B1(a1, a2) := sup
a1,a2>0

(a1a2)−1/p
(∫a1

0

∫a2

0
x
qα1

1 x
qα2

2 v(x1, x2)dx1dx2

)1/q

< ∞; (2.13)
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(c)

B2 := sup
a1,a2>0

B2(a1, a2) := sup
a1,a2>0

(a1a2)1/p
′
(∫∞

a1

∫∞

a2

x
q(α1−1)
1 x

q(α2−1)
2 v(x1, x2)dx1dx2

)1/q

< ∞;

(2.14)

(d)

B3 := sup
a1,a2>0

B3(a1, a2) := sup
a1,a2>0

a
−1/p
1 a

1/p′

2

(∫a1

0

∫∞

a2

x
qα1

1 x
q(α2−1)
2 v(x1, x2)dx1dx2

)1/q

< ∞;

(2.15)

(e)

B4 := sup
a1,a2>0

B4(a1, a2) := sup
a1,a2>0

a
1/p′

1 a
−1/p
2

(∫∞

a1

∫a2

0
x
q(α1−1)
1 x

qα2

2 v(x1, x2)dx1dx2

)1/q

< ∞.

(2.16)

3. Potentials on R+

In this section we discuss the two-weight problem for the operator Iα. We begin with the fol-
lowing lemma.

Lemma 3.1. The following relation holds for nonnegative and nonincreasing function f :
(
Rαf
)
(x) ≈ xαHf(x), (3.1)

whereH is the Hardy operator defined above.

Proof. We follow the proof of Proposition 3.1 of [10]. We have

(
Rαf
)
(x) =

∫x/2

0

f(t)

(x − t)1−α
dt +
∫x

x/2

f(t)

(x − t)1−α
dt := J1(x) + J2(x). (3.2)

Observe that if 0 < t < x/2, then (x − t)α−1 ≤ 21−αxα−1. Hence,

J1(x) ≤ 21−αxα−1
∫x

0
f(t)dt = 21−αxα(Hf

)
(x). (3.3)

Further, since f is nonincreasing, we have that

J2(x) ≤ α−1
(x
2

)α
f
(x
2

)
≤ cαx

α(Hf
)
(x). (3.4)

Finally we have the upper estimate for Rα.
The lower estimate is obvious because (x − t)α−1 ≥ xα−1 for t ≤ x.
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In the next statement we assume that Wα is the operator given by

(
Wαf
)
(x) =

∫∞

x

f(t)

(t − x)1−α
dt, α > 0. (3.5)

Lemma 3.2. Let 1 < p ≤ q < ∞, and let α > 0. Suppose that W(∞) = ∞. Then the operator Wα is
bounded from L

p

dec(w,R+) to Lq(v,R+) if and only if

(∫∞

0

(∫x

0

g(t)
(x − t)−α

dt

)p′

W−p′(x)w(x)dx

)1/p′

≤ c

(∫∞

0
g(t)q

′
v1−q′(t)dt

)1/q′

, g ≥ 0. (3.6)

Proof. Taking Proposition A into account (for n = 1), an integral operator

(
Tf
)
(x) =

∫∞

0
k
(
x, y
)
f
(
y
)
dy (3.7)

is bounded from L
p

dec(w,R+) to Lq(v,R+) if and only if

(∫∞

0

(∫x

0

(
T ∗f
)
(τ)dτ

)p′

W−p′(x)w(x)dx

)1/p′

≤ c

(∫∞

0
f(t)q

′
v1−q′(t)dt

)1/q′

, f ≥ 0,

(3.8)

where T ∗ is a formal adjoint to T .
We have

∫x

0

(
Rαf
)
(t)dt =

∫x

0

(∫ t

0

f(τ)

(t − τ)1−α
dτ

)

dt =
∫x

0
f(τ)
(∫x−τ

0

du

u1−α

)
dτ =

1
α

∫x

0
f(τ)(x − τ)αdτ.

(3.9)

Taking T = Wα and T ∗ = Rα, we derive the desired result.
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Now we formulate the main results of this section.

Theorem 3.3. Let 1 < p ≤ q < ∞, and let 0 < α < 1. Suppose that W(∞) = ∞. Then Iα is bounded
from L

p

dec(w,R+) to Lq(v,R+) if and only if

sup
a>0

A1(a, v,w) := sup
a>0

(∫a

0
w(t)dt

)−1/p(∫a

0
tαqv(t)dt

)1/q

< ∞, (3.10)

sup
a>0

A2(a, v,w) := sup
a>0

(∫a

0
tp

′
W−p′(t)w(t)dt

)1/p′(∫∞

a

t(α−1)qv(t)dt
)1/q

< ∞, (3.11)

sup
a>0

A3(a, v,w) := sup
a>0

(∫∞

a

W−p′(x)w(x)(x − a)αp
′
dx

)1/p′(∫a

0
v(x)dx

)1/q

< ∞, (3.12)

sup
a>0

A4(a, v,w) := sup
a>0

(∫a

0
w(x)dx

)−1/p(∫a

0
v(x)(a − x)αqdx

)1/q

< ∞. (3.13)

Theorem 3.4. Let 1 < q < p < ∞, and let 0 < α < 1. W(∞) = ∞. Then Iα is bounded from L
p

dec(w,
R+) to Lq(v,R+) if and only if

⎡

⎣
∫

R+

⎡

⎣

(∫ t

0
xαqv(x)dx

)1/p

W−1/p(t)

⎤

⎦

r

tαqv(t)dt

⎤

⎦

1/r

< ∞,

⎡

⎣
∫

R+

⎡

⎣
(∫∞

t

v(x)
x(1−α)q dx

)1/p
(∫ t

0

W−p′(x)w(x)
x−p′

)1/p′
⎤

⎦

r

tp
′
W−p′(t)w(t)dt

⎤

⎦

1/r

< ∞,

⎡

⎣
∫

R+

⎡

⎣

(∫∞

t

W−p′(x)w(x)

(x − t)−αp
′

)1/p′(∫ t

0
v(x)dx

)1/p
⎤

⎦

r

v(t)dt

⎤

⎦

1/r

< ∞,

⎡

⎣
∫

R+

[

W−1(t)
∫ t

0

v(x)
(t − x)−αq

dx

]r/q
w(t)dt

⎤

⎦

1/r

< ∞,

(3.14)

where 1/r = 1/q − 1/p.

Proof of Theorems 3.3 and 3.4. By using the representation

(
Iαf
)
(x) =

(
Rαf
)
(x) +

(
Wαf
)
(x), x > 0, (3.15)

the obvious equality

∫∞

t

W−p′(x)w(x)dx = cpW
1−p′(t). (3.16)

Theorems A and B and Lemmas 3.1 and 3.2, we have the desired results.
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Corollary 3.5. Let 1 < p ≤ q < ∞, and let 0 < α < 1/p. Then the operator Iα is bounded from L
p

dec(1,
R+) to Lq(v,R+) if and only if

B := sup
a>0

a(α−1/p)
(∫a

0
v(t)dt

)1/q

< ∞. (3.17)

Proof. Necessity follows immediately taking the test function fa(x) = χ(0,a)(x) in the two-
weight inequality

(∫∞

0
v(x)
(
Iαf(x)

)q
dx
)1/q

≤ c

(∫∞

0

(
f(x)
)p
dx

)1/p
(3.18)

and observing that Iαfa(x) ≥
∫a
0 (dt/|x − t|1−α) ≥ aα for x ∈ (0, a).

Sufficiency. By Theorem 3.3, it is enough to show that

max{A1, A2, A3, A4} ≤ cB, (3.19)

where Ai := supa>0Ai(a, v, 1), i = 1, 2, 3, 4 (see Theorem 3.3 for the definition of Ai(a, v,w)).
The estimates Ai ≤ cB, i = 1, 4, are obvious. We show that Ai ≤ cB for i = 2, 3. We have

A
q

2(a, v, 1) = aq/p′
∞∑

k=0

∫2k+1a

2ka
t(α−1)qv(t)dt

≤ aq/p′
∞∑

k=0

(
2ka
)(α−1)q

(∫2k+1a

2ka
v(t)dt

)

≤ cBqaq/p′
∞∑

k=0

(
2ka
)(α−1)q(

2k+1a
)(1/p−α)q

= cBqaq/p′
( ∞∑

k=0

2−kq/p
′
)

a−q/p′ ≤ cBq.

(3.20)

Further, by the condition 0 < α < 1/p, we have that

A
q

3(a, v, 1) ≤
(∫∞

a

x(α−1)p′dx
)1/p′(∫a

0
v(t)dt

)1/q

= cα,pa
α−1/p
(∫a

0
v(t)dt

)1/q

≤ cB. (3.21)

Definition 3.6. Let ρ be a locally integrable a.e. positive function on R+. We say that ρ satisfies
the doubling condition (ρ ∈ DC(R+)) if there is a positive constant b > 1 such that for all t > 0
the following inequality holds:

∫2t

0
ρ(x)dx ≤ bmin

{∫ t

0
ρ(x)dx,

∫2t

t

ρ(x)dx

}

. (3.22)
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Remark 3.7. It is easy to check that if ρ ∈ DC(R+), then ρ satisfies the reverse doubling con-
dition: there is a positive constant b1 > 1 such that

∫2t

0
ρ(x)dx ≥ b1 max

{∫ t

0
ρ(x)dx,

∫2t

t

ρ(x)dx

}

. (3.23)

Indeed by (3.22) we have

∫2t

0
ρ(x)dx ≥ 1

b

∫2t

0
ρ(x)dx +

∫2t

t

ρ(x)dx. (3.24)

Then

∫2t

0
ρ(x)dx ≥ b

b − 1

∫2t

t

ρ(x)dx. (3.25)

Analogously,

∫2t

0
ρ(x)dx ≥ b

b − 1

∫ t

0
ρ(x)dx. (3.26)

Finally, we have (3.23).

Corollary 3.8. Let 1 < p ≤ q < ∞, and let 0 < α < 1. Suppose that W(∞) = ∞. Suppose also that
v ∈ DC(R+). Then Iα is bounded from L

p

dec(w,R+) to Lq(v,R+) if and only if condition (3.11) is satis-
fied.

Proof. Observe that by Remark 3.7, for m0 ∈ Z, the inequality

∫2m0

0
v(x)dx ≤ bm0−k

1

∫2k

0
v(x)dx (3.27)

holds for all k > m0, where b1 is defined in (3.23).
Let a > 0. Then there is m0 ∈ Z such that a ∈ [2m0 , 2m0+1). By applying (3.27) and the

doubling condition for v, we find that

(∫a

0
w(t)dt

)−p′/p(∫a

0
tαqv(t)dt

)p′/q

= c

(∫∞

a

W−p′(t)w(t)dt
)(∫a

0
tαqv(t)dt

)p′/q

≤ c

(∫∞

2m0

W−p′(t)w(t)dt
)(∫2m0+1

0
tαqv(t)dt

)p′/q

≤ c
∞∑

k=m0

(∫2k+1

2k
W−p′(t)w(t)dt

)(∫2m0+1

0
v(t)dt

)p′/q

2m0αp
′
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≤ c
∞∑

k=m0

(∫2k+1

2k
W−p′(t)w(t)dt

)

bm0−k−1
1

(∫2k+2

0
v(t)dt

)p′/q

2m0αp
′

≤ c
∞∑

k=m0

bm0−k−1
1

(∫2k+1

2k
W−p′(t)w(t)dt

)(∫2k+2

2k+1
v(t)dt

)p′/q

2k(α−1)p
′
2kp

′

≤ c
∞∑

k=m0

bm0−k−1
1

(∫2k+1

2k
tp

′
W−p′(t)w(t)dt

)(∫2k+2

2k+1
v(t)t(α−1)qdt

)p′/q

≤ c

(

sup
a>0

A2(a, v,w)

)p′ ∞∑

k=m0

bm0−k−1
1 ≤ c

(

sup
a>0

A2(a, v,w)

)p′

.

(3.28)

So, we have seen that (3.11)⇒(3.10). Let us check now that (3.13)⇒(3.12).
Indeed, for a > 0, we choose m0 so that a ∈ [2m0 , 2m0+1). Then, by using the condition

v ∈ DC(R+) and Remark 3.7,

(∫∞

a

W−p′(x)w(x)(x − a)αp
′
dx

)(∫a

0
v(x)dx

)p′/q

≤
(∫∞

2m0

W−p′(x)w(x)xαp′dx

)(∫2m0+1

0
v(x)dx

)p′/q

≤ c
∞∑

k=m0

2kαp
′
(∫2k+1

2k
W−p′(x)w(x)dx

)(∫2m0+1

0
v(x)dx

)p′/q

≤ c
∞∑

k=m0

2kαp
′
(∫2k+1

2k
W−p′(x)w(x)dx

)

bm0−k+2
1

(∫2k−1

0
v(x)dx

)p′/q

≤ c
∞∑

k=m0

bm0−k+2
1

(∫∞

2k
W−p′(x)w(x)dx

)(∫2k

0
v(x)
(
2k − x

)αq
dx

)p′/q

≤ c

(

sup
a>0

A4(a, v,w)

)p′ ∞∑

k=m0

bm0−k+2
1 ≤ c

(

sup
a>0

A4(a, v,w)

)p′

.

(3.29)

Hence, (3.13)⇒(3.12) follows. Implication (3.11)⇒(3.13) follows in the same way as in the
case of implication (3.11)⇒(3.10). The details are omitted.
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4. Potentials with Multiple Kernels

In this section we discuss two-weight criteria for the potentials with product kernels Iα1,α2 .
To derive the main results, we introduce the following multiple potential operators:

Wα1,α2f(x1, x2) =
∫∞

x1

∫∞

x2

f(t1, t2)dt1dt2
(t1 − x1)1−α1(t2 − x2)1−α2

,

(RW)α1,α2
f(x1, x2) =

∫x1

0

∫∞

x2

f(t1, t2)dt1dt2
(x1 − t1)1−α1(t2 − x2)1−α2

,

(WR)α1,α2
f(x1, x2) =

∫∞

x1

∫x2

0

f(t1, t2)dt1dt2
(t1 − x1)1−α1(x2 − t2)1−α2

,

(4.1)

where x1, x2 ∈ R+, f ≥ 0, and 0 < αi < 1, i = 1, 2.

Definition 4.1. One says that a locally integrable a.e. positive function ρ on R
2
+ satisfies the

doubling condition with respect to the second variable (ρ ∈ DC(y)) if there is a positive cons-
tant c such that for all t > 0 and almost every x > 0 the following inequality holds:

∫2t

0
ρ
(
x, y
)
dy ≤ cmin

{∫ t

0
ρ
(
x, y
)
dy,

∫2t

t

ρ
(
x, y
)
dy

}

. (4.2)

Analogously is defined the class of weights DC(x).

Remark 4.2. If ρ ∈ DC(y), then ρ satisfies the reverse doubling condition with respect to the
second variable; that is, there is a positive constant c1 such that

∫2t

0
ρ
(
x, y
)
dy ≥ c1 max

{∫ t

0
ρ
(
x, y
)
dy,

∫2t

t

ρ
(
x, y
)
dy

}

. (4.3)

Analogously, ρ ∈ DC(x) ⇒ ρ ∈ RDC(x). This follows in the sameway as the single var-
iable case (see Remark 3.7).

Theorem C implies the next statement.

Corollary B. Let the conditions of Theorem C be satisfied.

(i) If v ∈ DC(x), then for the boundedness of Rα1,α2 from L
p

dec(w,R2
+) to L

q(v,R2
+), it is neces-

sary and sufficient that conditions (2.10) and (2.12) are satisfied.

(ii) If v ∈ DC(y), then Rα1,α2 is bounded from L
p

dec(w,R2
+) to L

q(v,R2
+) if and only If condi-

tions (2.10) and (2.11) are satisfied.

(iii) If v ∈ DC(x)∩DC(y), then Rα1,α2 is bounded from L
p

dec(w,R2
+) to L

q(v,R2
+) if and only if

the condition (2.10) is satisfied.



Journal of Function Spaces and Applications 13

Proof of Corollary B. The proof of this statement follows by using the arguments of the
proof of Corollary 3.8 (see Section 2) but with respect to each variable separately (also see
Remark 4.2). The details are omitted.

The following result concerns with the two-weight criteria for the two-dimensional
operator Rα1,α2 with α1, α2 > 1 (see [25], [13, Section 1.6]).

Theorem D. Let 1 < p ≤ q < ∞, and let α1, α2 ≥ 1.

(i) Suppose thatw1−p′ ∈ DC(y). Then the operator Rα1,α2 is bounded from Lp(w,R2
+) to L

q(v,
R

2
+) if and only if

P1 := sup
a,b>0

(∫a

0

∫b

0

w1−p′(x1, x2)

(a − x1)(1−α1)p′
dx1dx2

)1/p′
⎛

⎝
∫∞

a

∫∞

b

v(x1, x2)

x
(1−α2)q
2

dx1dx2

⎞

⎠

1/q

< ∞,

P2 := sup
a,b>0

(∫a

0

∫b

0
w1−p′(x1, x2)dx1dx2

)1/p′
⎛

⎝
∫∞

a

∫∞

b

v(x1, x2)

(x1 − a)(1−α1)qx
(1−α2)q
2

dx1dx2

⎞

⎠

1/q

< ∞.

(4.4)

Moreover, ‖Rα1,α2‖ ≈ max{P1, P2}.

(ii) Let w1−p′ ∈ DC(x). Then the operator Rα1,α2 is bounded from Lp(w,R2
+) to Lq(v,R+) if

and only if

P̃1 := sup
a,b>0

(∫a

0

∫b

0

w1−p′(x1, x2)

(b − x2)
(1−α2)p′

dx1dx2

)1/p′
⎛

⎝
∫∞

a

∫∞

b

v(x1, x2)

x
(1−α1)q
1

dx1dx2

⎞

⎠

1/q

< ∞,

P̃2 := sup
a,b>0

(∫a

0

∫b

0
w1−p′(x1, x2)dx1dx2

)1/p′
⎛

⎝
∫∞

a

∫∞

b

v(x1, x2)

(x2 − b)(1−α2)qx
(1−α1)q
1

dx1dx2

⎞

⎠

1/q

< ∞.

(4.5)

Moreover, ‖Rα1,α2‖ ≈ max{P̃1, P̃2}.
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Let us introduce the following multiple integral operators:

(HR)α1,α2
f(x1, x2) = xα1−1

1

∫x1

0

∫x2

0

f(t1, t2)dt1dt2
(x2 − t2)1−α2

,

(RH)α1,α2
f(x1, x2) = xα2−1

2

∫x1

0

∫x2

0

f(t1, t2)dt1dt2
(x1 − t1)1−α1

,

(HW)α1,α2
f(x1, x2) = xα1−1

1

∫x1

0

∫∞

x2

f(t1, t2)dt1dt2
(t2 − x2)1−α2

,

(WH)α1,α2
f(x1, x2) = xα2−1

2

∫∞

x1

∫x2

0

f(t1, t2)dt1dt2
(t1 − x1)1−α1

,

(H′R)α1,α2
f(x1, x2) =

∫∞

x1

∫x2

0

f(t1, t2)dt1dt2
t1−α1
1 (x2 − t2)1−α2

,

(RH′)
α1,α2

f(x1, x2) =
∫x1

0

∫∞

x2

f(t1, t2)dt1dt2
(x1 − t1)1−α1t1−α2

2

,

(H′W)α1,α2
f(x1, x2) =

∫∞

x1

∫∞

x2

f(t1, t2)dt1dt2
t1−α1
1 (t2 − x2)1−α2

,

(WH′)
α1,α2

f(x1, x2) =
∫∞

x1

∫∞

x2

f(t1, t2)dt1dt2
(t1 − x1)1−α1t1−α2

2

.

(4.6)

Now we prove some auxiliary statements.

Proposition 4.3. Let 1 < p ≤ q < ∞, and let α1, α2 ≥ 1. Suppose that either w(x1, x2) = w1(x1)
w2(x2) or v(x1, x2) = v1(x1)v2(x2) for some one-dimensional weights w1, w2, v1, and v2.

(i) The operator (RH)α1,α2
is bounded from Lp(w,R2

+) to L
q(v,R+) if and only if

Ĩ1 := sup
a,b>0

(∫a

0

∫b

0

w1−p′(x1, x2)

(a − x1)(1−α1)p′
dx1dx2

)1/p′
⎛

⎝
∫∞

a

∫∞

b

v(x1, x2)

x
(1−α2)q
2

dx1dx2

⎞

⎠

1/q

< ∞,

Ĩ2 := sup
a,b>0

(∫a

0

∫b

0
w1−p′(x1, x2)dx1dx2

)1/p′
⎛

⎝
∫∞

a

∫∞

b

v(x1, x2)

(x1 − a)(1−α1)qx
(1−α2)q
2

dx1dx2

⎞

⎠

1/q

< ∞.

(4.7)

Moreover, ‖(RH)α1,α2
‖ ≈ max{Ĩ1, Ĩ2}.
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(ii) The operator (WH)α1,α2
is bounded from Lp(w,R2

+) to L
q(vR+) if and only if

J̃1 := sup
a,b>0

⎛

⎝
∫a

0

∫∞

b

v(x1, x2)

(a − x1)(1−α1)qx
(1−α2)q
2

dx1dx2

⎞

⎠

1/q(∫∞

a

∫b

0
w1−p′(x1, x2)dx1dx2

)1/q

< ∞,

J̃2 := sup
a,b>0

(∫a

0

∫∞

b

v(x1, x2)x
(1−α2)q
2 dx1dx2

)1/q
(∫∞

a

∫b

0

w1−p′(x1, x2)

(x1 − a)(1−α1)p′
dx1dx2

)1/p′

< ∞.

(4.8)

Moreover, ‖(WH)α1,α2
‖ ≈ max{J̃1, J̃2}.

(iii) The operator (RH′)α1,α2
is bounded from Lp(w,R2

+) to L
q(v,R+) if and only if

J̃ ′1 := sup
a,b>0

(∫∞

a

∫b

0
v(x1, x2)dx1dx2

)1/q
⎛

⎝
∫a

0

∫∞

b

w1−p′(x1, x2)

x
(1−α2)p′

2 (a − x1)(1−α1)p′
dx1dx2

⎞

⎠

1/p′

< ∞,

J̃ ′2 := sup
a,b>0

(∫∞

a

∫b

0

v(x1, x2)

(x1 − a)(1−α1)q
dx1dx2

)1/q
⎛

⎝
∫a

0

∫∞

b

w1−p′(x1, x2)

x
(1−α2)p′

2

dx1dx2

⎞

⎠

1/p′

< ∞.

(4.9)

Moreover, ‖(RH′)α1,α2
‖ ≈ max{J̃ ′1, J̃ ′2}.

(iv) The operator (WH′)α1,α2
is bounded from Lp(w,R2

+) to L
q(v,R+) if and only if

Ĩ ′1 := sup
a,b>0

(∫a

0

∫b

0

v(x1, x2)

(a − x1)(1−α1)q
dx1dx2

)1/q
⎛

⎝
∫∞

a

∫∞

b

w1−p′(x1, x2)

x
(1−α2)p′

2

dx1dx2

⎞

⎠

1/p′

< ∞,

Ĩ ′2 := sup
a,b>0

(∫a

0

∫b

0
v(x1, x2)dx1dx2

)1/q
⎛

⎝
∫∞

a

∫∞

b

w1−p′(x1, x2)

x
(1−α2)p′

2 (x1 − a)(1−α1)p′
dx1dx2

⎞

⎠

1/p′

< ∞.

(4.10)

Moreover, ‖(WH′)α1,α2
‖ ≈ max{Ĩ ′1, Ĩ ′2}.

Proof. Letw(x1, x2) = w1(x1)w2(x2). The proof of the case v(x1, x2) = v1(x1)v2(x2) is followed
by duality arguments. We prove, for example, part (i). Proofs of other parts are similar and,
therefore, are omitted. We follow the proof of Theorem 3.4 of [25] (see also the proof of
Theorem 1.1.6 in [13]).
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Sufficiency. First suppose that S :=
∫∞
0 w

1−p′
2 (x2)dx2 = ∞. Let {ak}+∞k=−∞ be a sequence of posi-

tive numbers for which the equality

2k =
∫ak

0
w

1−p′
2 (x2)dx2 (4.11)

holds for all k ∈ Z. It is clear that {ak} is increasing and R+ = ∪k∈Z[ak, ak+1). Moreover, it is
easy to verify that

2k =
∫ak+1

ak

w
1−p′
2 (x2)dx2. (4.12)

Let f ≥ 0. We have that

∥∥(RH)α1,α2
f
∥∥q
Lq(v,R2

+)

=
∫

R
2
+

v(x1, x2)
(
(RH)α1,α2

f
)q(x1, x2)dx1dx2

≤
∑

k∈Z

∫∞

0

∫ak+1

ak

v(x1, x2)

x
(1−α2)q
2

(∫x1

0

∫x2

0

f(t1, t2)

(x1 − t1)1−α1
dt1dt2

)q

dx1dx2

≤
∑

k∈Z

∫∞

0

⎛

⎝
∫ak+1

ak

v(x1, x2)

x
(1−α2)q
2

dx2

⎞

⎠
(∫x1

0
(x1 − t1)α1−1

(∫ak+1

0
f(t1, t2)dt2

)
dt1

)q

dx1

=
∑

k∈Z

∫∞

0
Vk(x1)

(∫x1

0
(x1 − t1)(α1−1)Fk(t1)dt1

)q

dx1,

(4.13)

where

Vk(x1) :=
∫ak+1

ak

v(x1, x2)

x
(1−α2)q
2

dx2, Fk(t1) :=
∫ak+1

0
f(t1, t2)dt2. (4.14)

It is obvious that

Ĩ
q

1 ≥ sup
a>0
j∈Z

⎛

⎝
∫∞

a

∫aj+1

aj

v(x1, x2)

(x1 − a)(1−α1)qx
(1−α2)q
2

dx1dx2

⎞

⎠
(∫a

0

∫aj

0

w1−p′(x1, x2)

(a − x1)(1−α1)p′
dx1dx2

)q/p′

,

Ĩ
q

2 ≥ sup
a>0
j∈Z

⎛

⎝
∫∞

a

∫aj+1

aj

v(x1, x2)

x
(1−α2)q
2

dx1dx2

⎞

⎠
(∫a

0

∫aj

0

w1−p′(x1, x2)

(a − x1)(1−α1)p′
dx1dx2

)q/p′

.

(4.15)
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Hence, by using the two-weight criteria for the one-dimensional Riemann-Liouville operator
without singularity (see [24]), we find that

∥
∥(RH)α1,α2

f
∥
∥q
Lq(v,R2

+)

≤ cĨq
∑

j∈Z

[∫∞

0
w1(x1)

(∫aj

0
w

1−p′
2 (x2)dx2

)1−p(
Fj(x1)

)p
dx1

]q/p

≤ cĨq

⎡

⎣
∫∞

0
w1(x1)

∑

j∈Z

(∫aj

0
w

1−p′
2 (x2)dx2

)1−p( j∑

k=−∞

∫ak+1

ak

f(x1, t2)dt2

)p

dx1

⎤

⎦

q/p

,

(4.16)

where Ĩ = max{Ĩ1, Ĩ2}.
On the other hand, (4.11) yields

+∞∑

k=n

(∫ak

0
w

1−p′
2 (x2)dx2

)1−p( n∑

k=−∞

∫ak+1

ak

w
1−p′
2 (x2)dx2

)p−1

=
+∞∑

k=n

(∫ak

0
w

1−p′
2 (x2)dx2

)1−p(∫an+1

0
w

1−p′
2 (x2)dx2

)p−1
=

(
+∞∑

k=n

2k(1−p)
)

2(n+1)(p−1) ≤ c

(4.17)

for all n ∈ Z. Hence by Hardy’s inequality in discrete case (see, for example, [25, 26]) and
Hölder’s inequality we have that

∥∥(RH)α1,α2
f
∥∥q
Lq(v,R2

+)

≤ cĨq

⎡

⎣
∫∞

0
w1(x1)

∑

j∈Z

(∫aj+1

aj

w
1−p′
2 (x2)dx2

)1−p(∫aj+1

aj

f(x1, t2)dt2

)p

dx1

⎤

⎦

q/p

≤ cĨq

⎡

⎣
∫∞

0
w1(x1)

∑

j∈Z

(∫aj+1

aj

w2(t2)fp(x1, t2)dt2

)

dx1

⎤

⎦

q/p

= cĨq
∥∥f
∥∥q
Lp(w,R2

+)
.

(4.18)

If S < ∞, then without loss of generality we can assume that S = 1. In this case we
choose the sequence {ak}0k=−∞ for which (4.11) holds for all k ∈ Z−. Arguing as in the case of
S = ∞, we finally obtain the desired result.

Necessity follows by choosing the appropriate test functions. The details are omitted.
To prove, for example, (iii), we choose the sequence {xk} so that

∫∞
xk
w

1−p′
2 (x)dx = 2k

(notice that xk is decreasing) and argue as in the proof of (i).

Proposition 4.4. Let 1 < p ≤ q < ∞, and let α1, α2 ≥ 1. Suppose that either w(x1, x2) = w1(x1)
w2(x2) or v(x1, x2) = v1(x1)v2(x2) for some one-dimensional weights: w1, w2, v1, and v2.
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(i) The operator (HR)α1,α2
is bounded from Lp(w,R2

+) to L
q(v,R2

+) if and only if

I1 := sup
a,b>0

(∫a

0

∫b

0

w1−p′(x1, x2)

(b − x2)
(1−α2)p′

dx1dx2

)1/p′
⎛

⎝
∫∞

a

∫∞

b

v(x1, x2)

x
(1−α1)q
1

dx1dx2

⎞

⎠

1/q

< ∞,

I2 := sup
a,b>0

(∫a

0

∫b

0
w1−p′(x1, x2)dx1dx2

)1/p′
⎛

⎝
∫∞

a

∫∞

b

v(x1, x2)

x
(1−α1)q
1 (x2 − b)(1−α2)q

dx1dx2

⎞

⎠

1/q

< ∞.

(4.19)

Moreover, ‖(HR)α1,α2
‖ ≈ max{I1, I2}.

(ii) The operator (HW)α1,α2
is bounded from Lp(w,R2

+) to L
q(v,R+) if and only if

J1 := sup
a,b>0

⎛

⎝
∫∞

a

∫b

0

v(x1, x2)

x
(1−α1)q
1 (b − x2)

(1−α2)q
dx1dx2

⎞

⎠

1/q(∫a

0

∫∞

b

w1−p′(x1, x2)dx1dx2

)1/p′

< ∞,

J2 := sup
a,b>0

(∫∞

a

∫b

0
v(x1, x2)x

(α1−1)q
1 dx1dx2

)1/q(∫a

0

∫∞

b

w1−p′(x1, x2)

(x2 − b)(1−α2)p′
dx1dx2

)1/p′

< ∞.

(4.20)

Moreover, ‖(HW)α1,α2
‖ ≈ max{J1, J2}.

(iii) The operator (H′R)α1,α2
is bounded from Lp(w,R2

+) to L
q(v,R+) if and only if

J ′1 := sup
a,b>0

(∫a

0

∫∞

b

v(x1, x2)dx1dx2

)1/q
⎛

⎝
∫∞

a

∫b

0

w1−p′(x1, x2)

x
(1−α1)p′

1 (b − x2)
(1−α2)p′

dx1dx2

⎞

⎠

1/p′

< ∞,

J ′2 := sup
a,b>0

(∫a

0

∫∞

b

v(x1, x2)

(x2 − b)(1−α2)q
dx1dx2

)1/q
⎛

⎝
∫∞

a

∫b

0

w1−p′(x1, x2)

x
(1−α1)p′

1

dx1dx2

⎞

⎠

1/p′

< ∞.

(4.21)

Moreover, ‖(H′R)α1,α2
‖ ≈ max{J ′1, J ′2}.

(iv) The operator (H′W)α1,α2
is bounded from Lp(w,R2

+) to L
q(v,R+) if and only if

I ′1 := sup
a,b>0

(∫a

0

∫b

0

v(x1, x2)

(b − x2)
(1−α2)q

dx1dx2

)1/q
⎛

⎝
∫∞

a

∫∞

b

w1−p′(x1, x2)

x(1−α1)p′

1

dx1dx2

⎞

⎠

1/p′

< ∞,

I ′2 := sup
a,b>0

(∫a

0

∫b

0
v(x1, x2)dx1dx2

)1/q
⎛

⎝
∫∞

a

∫∞

b

w1−p′(x1, x2)

x
(1−α1)p′

1 (x2 − b)(1−α2)p′
dx1dx2

⎞

⎠

1/p′

< ∞.

(4.22)

Moreover, ‖(H′W)α1,α2
‖ ≈ max{I ′1, I ′2}.
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Proof of this proposition is similar to Proposition 4.3 by changing the order of varia-
bles.

Theorem 4.5. Let 1 < p ≤ q < ∞, and let 0 < α1, α2 ≤ 1. Suppose that the weight function w on R
2
+

is of product type, that is, w(x1, x2) = w1(x1)w2(x2). Suppose also that W1(∞) = W2(∞) = ∞.

(i) If v ∈ DC(y), thenWα1,α2 is bounded from L
p

dec(w,R2
+) to L

q(v,R2
+) if and only if

A1 := sup
a,b>0

(∫a

0

∫b

0
v(x1, x2)(a − x1)α1qdx1dx2

)1/q

×
(∫a

0
w1(x1)dx1

)−1/p(∫∞

b

W
−p′
2 (x2)w2(x2)x

α2p
′

2 dx2

)1/p′

< ∞,

(4.23)

A2 := sup
a,b>0

(∫a

0

∫b

0
v(x1, x2)dx1dx2

)1/q

×
(∫∞

a

∫∞

b

W−p′(x1, x2)w(x1, x2)(x1 − a)α1p
′
x
α2p

′

2 dx1dx2

)1/p′

< ∞.

(4.24)

(ii) If v ∈ DC(x), thenWα1,α2 is bounded from L
p

dec(w,R2
+) to L

q(v,R2
+) if and only if

B1 := sup
a,b>0

(∫a

0

∫b

0
v(x1, x2)(b − x2)

α2qdx1dx2

)1/q

×
(∫∞

a

W
−p′
1 (x1)w1(x1)x

α1p
′

1 dx1

)1/p′
(∫b

0
w2(x2)dx2

)−1/p
< ∞,

B2 := sup
a,b>0

(∫a

0

∫b

0
v(x1, x2)dx1dx2

)1/q

×
(∫∞

a

∫∞

b

W−p′(x1, x2)w(x1, x2)(x2 − b)α2p
′
x
α1p

′

1 dx1dx2

)1/p′

< ∞.

(4.25)

(iii) If v ∈ DC(x) ∩ DC(y), then Wα1,α2 is bounded from L
p

dec(w,R2
+) to L

q(v,R2
+) if and only

if

C1 := sup
a,b>0

(∫∞

a

∫∞

b

W−p′(x1, x2)w(x1, x2)x
α2p

′

2 x
α1p

′

1 dx1dx2

)1/p′

×
(∫a

0

∫b

0
v(x1, x2)dx1dx2

)1/q

< ∞.

(4.26)
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Proof. By using Proposition A we see that the operator Wα1,α2 is bounded from L
p

dec(w,R2
+) to

Lq(v,R2
+) if and only if the inequality

⎛

⎝
∫

R
2
+

(∫x1

0

∫x2

0

[∫ τ1

0

∫ τ2

0

g(t1, t2)dt1dt2
(τ1 − t1)1−α1(τ2 − t2)1−α2

]

dτ1dτ2

)p′

×W−p′(x1, x2)w(x1, x2)dx1dx2

⎞

⎠

1/p′

≤ c

(∫

R
2
+

gq′v1−q′
)1/q′

(4.27)

holds for all g ≥ 0. Further, it is easy to see that

∫x1

0

∫x2

0

[∫ τ1

0

∫ τ2

0

g(t1, t2)dt1dt2
(τ1 − t1)1−α1(τ2 − t2)1−α2

]

dτ1dτ2

=
∫x1

0

∫x2

0
g(t1, t2)

[∫x1

t1

∫x2

t2

dτ1dτ2

(τ1 − t1)1−α1(τ2 − t2)1−α2

]

dt1dt2

= cα1,α2

∫x1

0

∫x2

0
g(t1, t2)(x1 − t1)α1(x2 − t2)α2dt1dt2.

(4.28)

Hence Wα1,α2 is bounded from L
p

dec(w,R2
+) to Lq(v,R2

+) if and only if Rα1+1,α2+1 is bounded
from Lq′(v1−q′ ,R2

+) to Lp′(W−p′w,R2
+).

By using Theorem D, (i) and (ii) follow immediately.
To prove (iii)we show that if v ∈ DC(x)∩DC(y), then (4.26) implies (4.23) and (4.24).

Let a, b > 0. Then a ∈ [2m0 , 2m0+1) for some m0 ∈ Z. By using the doubling condition with
respect to the first variable uniformly to the second one and Remark 4.2, we see that

(∫a

0

∫b

0
v(x1, x2)(a − x1)α1qdx1dx2

)p′/q(∫a

0
w1(x1)dx1

)−p′/p

= c

(∫a

0

∫b

0
v(x1, x2)(a − x1)α1qdx1dx2

)p′/q(∫∞

a

W
−p′
1 (x1)w1(x1)dx1

)

≤ c
∞∑

k=m0

(∫2k+1

2k
W

−p′
1 (x1)w1(x1)dx1

)

2(m0+1)α1p
′
(∫2m0

0

∫b

0
v(x1, x2)dx1dx2

)p′/q

≤ c
∞∑

k=m0

(∫2k+1

2k
x
α1p

′

1 W
−p′
1 (x1)w1(x1)dx1

)

c
(m0−k)(p′/q)
1

(∫2k

0

∫b

0
v(x1, x2)dx1dx2

)p′/q

≤ cC
p′

1

(∫∞

b

W
−p′
2 (x2)w2(x2)x

α2p
′

2 dx2

)−1
.

(4.29)

Hence, A1 ≤ C1. In a similar manner we can show that A2 ≤ C1.
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For necessity, let us see, for example, that (4.23) implies (4.26). For a ∈ [2m0 , 2m0+1), by
using the doubling condition for v with respect to the first variable and Remark 4.2, we have

(∫a

0

∫b

0
v(x1, x2)dx1dx2

)p′/q(∫∞

a

W
−p′
1 (x1)w(x1)x

α1p
′

1 dx1

)

≤ c
∞∑

k=m0

(∫2k+1

2k
W

−p′
1 (x1)w(x1)dx1

)

2kα1p
′
(∫2m0+1

0

∫b

0
v(x1, x2)dx1dx2

)p′/q

≤ c
∞∑

k=m0

(∫2k+1

2k
W

−p′
1 (x1)w(x1)dx1

)

c
(m0−k+2)(p′/q)
1

(∫2k−1

0

∫b

0

(
2k − x1

)α1q
v(x1, x2)dx1dx2

)p′/q

≤ cA
p′

1

(∫∞

b

W
−p′
2 (x2)w2(x2)x

α2p
′

2 dx2

)−1
.

(4.30)

Hence, taking the supremum with respect to a and b, we find that C1 ≤ cA1.

The following statements give analogous statement for the mixed-type operator
(RW)α1,α2

and (WR)α1,α2
.

Theorem 4.6. Let 1 < p ≤ q < ∞, and let 0 < α1, α2 ≤ 1. Suppose that the weight function w on R
2
+

is of product type, that is, w(x1, x2) = w1(x1)w2(x2). Suppose also that W1(∞) = W2(∞) = ∞.

(i) The operator (RW)α1,α2
is bounded from L

p

dec(w,R2
+) to L

q(v,R2
+) if and only if

sup
a,b>0

(∫a

0

∫b

0

x
α1q

1 v(x1, x2)

(b − x2)
−α2q

dx1dx2

)1/q(∫a

0

∫b

0
w1(x1)w2(x2)dx1dx2

)−1/p
< ∞, (4.31)

sup
a,b>0

(∫a

0

∫b

0
x
α1q

1 v(x1, x2)dx1dx2

)1/q(∫a

0
w1(x1)dx1

)−1/p

×
(∫∞

b

W
−p′
2 (x2)w2(x2)(x2 − b)α2p

′
dx2

)1/p′

< ∞,

(4.32)

sup
a,b>0

⎛

⎝
∫∞

a

∫b

0

v(x1, x2)

x
(1−α1)q
1 (b − x2)

−α2q
dx1dx2

⎞

⎠

1/q(∫a

0
x
p′

1 W
−p′
1 (x1)w1(x1)dx1

)1/p′

×
(∫b

0
w2(x2)dx2

)−1/p
< ∞,

(4.33)

sup
a,b>0

(∫∞

a

∫b

0
x
(α1−1)q
1 v(x1, x2)dx1dx2

)1/q
⎛

⎝
∫a

0

∫∞

b

W−p′(x1, x2)w(x1, x2)x
p′

1

(x2 − b)−α2p′
dx1dx2

⎞

⎠

1/p′

< ∞.

(4.34)
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(ii) The operator (WR)α1,α2
is bounded from L

p

dec(w,R2
+) to L

q(v,R2
+) if and only if

sup
a,b>0

(∫a

0

∫b

0

x
α2q

2 v(x1, x2)

(a − x1)−α1q
dx1dx2

)1/q(∫a

0

∫b

0
w1(x1)w2(x2)dx1dx2

)−1/p
< ∞, (4.35)

sup
a,b>0

(∫a

0

∫b

0
x
α2q

2 v(x1, x2)dx1dx2

)1/q(∫b

0
w2(x2)dx2

)−1/p

×
(∫∞

a

W
−p′
1 (x1)w1(x1)(x1 − a)α1p

′
dx1

)1/p′

< ∞,

(4.36)

sup
a,b>0

⎛

⎝
∫a

0

∫∞

b

v(x1, x2)

x
(1−α2)q
2 (a − x1)−α1q

dx1dx2

⎞

⎠

1/q(∫a

0
w1(x1)dx1

)−1/p

×
(∫b

0
x
p′

2 W
−p′
2 (x2)w2(x2)dx2

)1/p′

< ∞,

(4.37)

sup
a,b>0

(∫a

0

∫∞

b

x
(α2−1)q
2 v(x1, x2)dx1dx2

)1/q
⎛

⎝
∫∞

a

∫b

0

W−p′(x1, x2)w(x1, x2)x
p′

2

(x1 − a)−α1p′
dx1dx2

⎞

⎠

1/p′

< ∞.

(4.38)

Proof. We prove part (i). The proof of part (ii) is similar by changing the order of variables.
First we show that the two-sided pointwise relation (RW)α1,α2

f ≈ (HW)α1,α2
f , f ↓,

holds. Indeed, by using the fact that f is nonincreasing in the first variable, we find that

(RW)α1,α2
f(x1, x2)

=
∫x1/2

0

∫∞

x2

(· · · ) +
∫x1

x1/2

∫∞

x2

(· · · )

≤ c′α1x
α1−1
1

∫x1/2

0

∫∞

x2

f(t1, t2)

(t2 − x2)1−α2
dt1dt2 + c′′α1

xα1−1
1

∫x1/2

0

∫∞

x2

f(t1, t2)

(t2 − x2)1−α2
dt1dt2

≤ cα1,α2(HW)α1,α2
f(x1, x2).

(4.39)

The inequality

(HW)α1,α2
f(x1, x2) ≤ (RW)α1,α2

f(x1, x2) (4.40)

is obvious because x1 − t1 ≤ x1 for 0 < t1 ≤ x1.
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Further, it is easy to check that

∫x1

0

∫x2

0

(∫∞

τ1

∫ τ2

0

g(t1, t2)

t1−α1
1 (τ2 − t2)1−α2

dt1dt2

)

dτ1dτ2

=
∫x1

0

∫x2

0

(∫x1

τ1

∫ τ2

0

g(t1, t2)

t1−α1
1 (τ2 − t2)1−α2

dt1dt2

)

dτ1dτ2

+
∫x1

0

∫x2

0

(∫∞

x1

∫ τ2

0

g(t1, t2)

t1−α1
1 (τ2 − t2)1−α2

dt1dt2

)

dτ1dτ2

=
∫x1

0

∫x2

0
g(t1, t2)t

α1−1
1

(∫ t1

0

∫x2

t2

(τ2 − t2)α2−1dτ1dτ2

)

dt1dt2

+
∫∞

x1

∫x2

0
g(t1, t2)t

α1−1
1

(∫x1

0

∫x2

t2

(τ2 − t2)α2−1dτ1dτ2

)

dt1dt2

= c

∫x1

0

∫x2

0
g(t1, t2)t

α1
1 (x2 − t2)α2dt1dt2

+ cx1

∫∞

x1

∫x2

0
g(t1, t2)t

α1−1
1 (x2 − t2)α2dt1dt2.

(4.41)

Hence, since the boundedness of (HW)α1,α2
from L

p

dec(w,R2
+) to Lq(v,R2

+) is equivalent
to the inequality (see also [4])

⎛

⎝
∫

R
2
+

(∫x1

0

∫x2

0

[∫∞

τ1

∫ τ2

0

g(t1, t2)dt1dt2
t1−α1
1 (τ2 − t2)1−α2

]

dτ1dτ2

)p′

W−p′(x1, x2)w(x1, x2)dx1dx2

⎞

⎠

1/p′

≤ c

(∫

R
2
+

gq′v1−q′
)1/q′

,

(4.42)

we can conclude that Proposition 4.4 yields the desired result.

Proposition 4.7. Let the conditions of Theorem 4.6 be satisfied. Then

(i) if v ∈ DC(x), then (RW)α1,α2
is bounded from L

p

dec
(w,R2

+) to Lq(v,R2
+) if and only if

(4.33) and (4.34) hold;

(ii) if v ∈ DC(y), then (RW)α1,α2
is bounded from L

p

dec(w,R2
+) to Lq(v,R2

+) if and only if
(4.32) and (4.34) are satisfied;

(iii) if v ∈ DC(x) ∩ DC(y), then (RW)α1,α2
is bounded from L

p

dec
(w,R2

+) to L
q(v,R2

+) if and
only if (4.34) holds.

Proof. (i) Taking into account the arguments used in Theorem 4.5, we can prove that (4.34)
implies (4.32) and (4.33) implies (4.31).
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(ii) It can be checked that (4.32) implies (4.31) and (4.34) implies (4.33). To show that,
for example, (4.32) implies (4.31), we take a, b > 0. Then b ∈ [2m0 , 2m0+1) for some integer m0.
By using the doubling condition for v with respect to the second variable, we have

(∫a

0

∫b

0
x
α1q

1 v(x1, x2)(b − x2)
α2qdx1dx2

)p′/q(∫b

0
w2(x2)dx2

)−p′/q

≤ c

(∫a

0

∫2m0+1

0
x
α1q

1 v(x1, x2)dx1dx2

)p′/q(∫∞

2m0

W
−p′
2 (x2)w2(x2)dx2

)
2(m0+1)α2p

′

≤ c
∑

k≥m0

(∫2k+1

2k
W

−p′
2 (x2)w2(x2)dx2

)(∫a

0

∫2k−1

0
x
α1q

1 v(x1, x2)dx1dx2

)p′/q

× c
(m0−k)p′/q
1 2(m0+1)α2p

′

≤ c
∑

k≥m0

(∫2k+1

2k
W

−p′
2 (x2)w2(x2)

(
x2 − 2k−1

)α2p
′

dx2

)(∫a

0

∫2k−1

0
x
α1q

1 v(x1, x2)dx1dx2

)p′/q

× c
(m0−k)p′/q
1

≤ c

(∫a

0
w1(x1)dx1

)1/p

.

(4.43)

By a similar manner it follows that (4.34) implies (4.33). The proof of (iii) is similar, and we
omit it.

The proof of the next statement is similar to that of Proposition 4.7.

Proposition 4.8. Let the conditions of Theorem 4.6 be satisfied. Then

(i) if v ∈ DC(x), then (WR)α1,α2
is bounded from L

p

dec(w,R2
+) to Lq(v,R2

+) if and only if
(4.36) and (4.38) hold;

(ii) if v ∈ DC(y), then (WR)α1,α2
is bounded from L

p

dec(w,R2
+) to Lq(v,R2

+) if and only if
(4.37) and (4.38) are satisfied;

(iii) if v ∈ DC(x) ∩ DC(y), then (WR)α1,α2
is bounded from L

p

dec(w,R2
+) to L

q(v,R2
+) if and

only if (4.38) holds.

Now we are ready to discuss the operators Iα1,α2 on the cone of nonincreasing
functions.

Theorem 4.9. Let 1 < p ≤ q < ∞, and let 0 < α1, α2 < 1. Suppose that the weight v belongs to the
class DC(y). Let w(x1, x2) = w1(x1)w2(x2) for some one-dimensional weight functions w1 and w2

andW1(∞) = W2(∞) = ∞. Then the operator Iα1,α2 is bounded from L
p

dec(w,R2
+) to L

q(v,R2
+) if and

only if conditions (2.10), (2.11), (4.23), (4.24), (4.32), (4.34), (4.37), and (4.38) are satisfied.
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Theorem 4.10. Let 1 < p ≤ q < ∞, and let 0 < α1, α2 < 1. Suppose that the weight v belongs to the
class DC(x). Let w(x1, x2) = w1(x1)w2(x2) for some one-dimensional weight functions w1 and w2

andW1(∞) = W2(∞) = ∞. Then the operator Iα1,α2 is bounded from L
p

dec(w,R2
+) to L

q(v,R2
+) if and

only if conditions (2.10), (2.12), (4.25), (4.33), (4.34), (4.36), and (4.38) are satisfied.

Theorem 4.11. Let 1 < p ≤ q < ∞, and let 0 < α1, α2 < 1. Suppose that the weight v ∈ DC(x) ∩
DC(y). Let w(x1, x2) = w1(x1)w2(x2) for some one-dimensional weight functions w1 and w2 and
W1(∞) = W2(∞) = ∞. Then the operator Iα1,α2 is bounded from L

p

dec(w,R2
+) to Lq(v,R2

+) if and
only if conditions (2.10), (4.26), (4.34), and (4.38) are satisfied.

Proofs of these statements follow immediately from the pointwise estimate

Iα1,α2f = Rα1,α2f +Wα1,α2f +RWα1,α2f +WRα1,α2f. (4.44)

Corollary B, Theorem 4.5, and Propositions 4.7 and 4.8.
The next statement shows that the two-weight inequality forIα1,α2 can be characterized

by one condition when w ≈ 1.

Corollary 4.12. Let 1 < p ≤ q < ∞, and let 0 < α1, α2 < 1/p. Suppose that v ∈ DC(x) ∪ DC(y).
Then the operator Iα1,α2 is bounded from L

p

dec(1,R
2
+) to L

q(v,R2
+) if and only if

D := sup
a,b>0

a(α1−(1/p))b(α2−(1/p))
(∫a

0

∫b

0
v(t, τ)dtdτ

)1/q

< ∞. (4.45)

Proof. Necessity can be derived by substituting the test function fa,b(x) = χ(0,a)×(0,b)(x) in the
two-weight inequality for Iα1,α2 .

Sufficiency follows by using Theorems 4.9 and 4.10 and the arguments of the proof of
Corollary 3.5 with respect to each variable. Details are omitted.
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