
Transactions of A. Razmadze
Mathematical Institute
Vol. 175 (2021), issue 3, 433–436

SHARP OLSEN’S INEQUALITY FOR MULTILINEAR RIESZ POTENTIALS

LOUKAS GRAFAKOS1 AND ALEXANDER MESKHI2,3

Abstract. In this note, a sharp Olsen’s type inequality for multilinear Riesz potential operator

Iα is presented. The derived result yields a complete characterization of the trace inequality for
Iα in Morrey spaces. As a consequence, we have a sharp Olsen’s inequality for the linear Riesz

potentials Iα.

Olsen’s inequality plays an important role in the study of perturbed Schrödinger equation (see [22]).
For further improvement of Olsen’s original inequality and its applications we refer to [26,27].

Our aim in this note is to establish the following sharp Olsen’s type inequality:∥∥∥g(Iα
−→
f )
∥∥∥
Lqr
≤ C

∥∥∥g∥∥∥
Lq`

m∏
j=1

∥∥∥fj∥∥∥
L
pj
sj

, (1)

where Iα is the multilinear fractional integral operator, Lqr, L
q
` , L

pj
sj , j = 1, . . . ,m, are Morrey spaces

defined on Rn with certain parameters. Taking m = 1 in (1), we get sharp Olsen’s inequality for linear
fractional integrals Iα.

Inequality (1) is sharp in the sense that it provides a complete characterization of the weighted
inequality for a weight function V (trace inequality):

‖Iα
−→
f ‖Lqr(V ) ≤ C

m∏
j=1

‖fj‖Lpjsj .

The latter result for the linear case m = 1 (i.e., when Iα = Iα) and for the Lebesgue spaces (i.e.,
for p = s and q = r) goes back to Adams [1]. It was proved in [12] for the Lebesgue spaces in the
multilinear setting (q = r, pi = si, i = 1, . . . ,m), while for the linear case it was established in [3] for
Morrey spaces defined with respect to measures. In the latter paper, the problem has been studied
for fractional integrals defined on quasi-metric measure spaces.

Let

Iα(~f)(x) =

∫
(Rn)m

f1(y1) . . . fm(ym)

(|x− y1|+ · · ·+ |x− ym|)mn−α
d~y, x ∈ Rn,

be multilinear fractional integral, where 0 < α < nm, ~f := (f1, . . . , fm), ~y := (y1, . . . , ym),
d−→y = dy1 . . . dym.

For m = 1, the operator Iα is the linear Riesz potential operator Iα defined by the formula

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy, 0 < α < n, x ∈ Rn.

The Riesz potentials and their applications play a fundamental role in Harmonic Analysis and its
applications to PDEs. For example, their role in the theory of Sobolev embeddings (see, e.g., [18]) is
also worth mentioning.
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Historically, multilinear fractional integrals were introduced in [4,5,11]. In particular, those works
deal with the operator

Bα(f, g)(x) =

∫
Rn

f(x+ t)g(x− t)
|t|n−α

dt, 0 < α < n.

In particular, if 1
q = 1

p −
α
n , where 1

p = 1
p1

+ 1
p2

, then Bα is bounded from Lp1 × Lp2 to Lq.

As a tool to understand Bα, the operator Iα was studied as well.
Let 1 ≤ q ≤ r < ∞ and let V be a weight function (i.e., V is a locally integralble a.e. positive

function on Rn). We denote by Lqr(V ) a class of all measurable functions f on Rn such that

‖f‖Lqr(V ) := sup
Q∈Q

1

|Q|
1
q−

1
r

(∫
Q

|f(x)|qV (x)dx

)1/q

<∞,

where Q is the class of all cubes Q with sides parallel to the coordinate exes.
The weak weighted Morrey space WLqr(V ) is defined with respect to the norm

‖f‖WLqr(V ) := sup
Q∈Q

1

|Q|
1
q−

1
r

sup
λ>0

λ

( ∫
{x:|f(x|>λ}

V (x)dx

)1/q

.

It is clear that WLqr(V ) ↪→ Lqr(V ).
Morrey spaces introduced in 1938 by C. Morrey in relation to regularity problems of solutions of

partial differential equations turned out to be a useful tool in the regularity theory of PDE’s.
If V is a constant function, then we denote Lqr(V ) and WLqr(V ) by Lqr and WLqr, respectively. In

case q = r, we have weighted Lebesgue spaces denoted by Lq(V ) and WLq(V ), respectively.
In his paper [19], K. Moen gave one–weight characterization for Iα. The weighted problems were

also studied in the works [2, 7, 12–14,17,24,28], etc.
The weighted Morrey spaces were introduced by Komori and Shirai [15] in 2009. In their paper,

the authors studied the boundedness of singular integral operators in those spaces. In the definition of
weighted Morrey space introduced in [15], the weighted norm ‖χQf‖Lp(W ) is divided by W (Q)λ, where
W is the weight function. In the present note, we give weighted norm inequalities for fractional integral
operators in different type weighted Morrey spaces. In our case, the weighted norm ‖χQf‖Lp(W ) is

divided by |Q|1/p−1/s. Such weighted Morrey spaces were also considered in [25]. For weighted results
regarding fractional integrals Iα and corresponding fractional maximal operators in Morrey spaces
we refer to the papers [20, 21, 23, 25]. The mapping properties for multilinear fractional integrals in
unweighted and weighted Morrey spaces were studied in [6,8–10,14] (see also references cited in [14]).
In [8] and [9], the Olsen-type inequalities for multilinear fractional integrals are also studied.

Our main results read as follows:

Theorem 1. Let 1 < q ≤ r <∞, 1 < pi ≤ si <∞, i = 1, . . . ,m, p < q, 0 < α < n
s ,

1
p −

1
q = 1

s −
1
r =

α
n −

1
` , where

1
s =

m∑
j=1

1
sj
, 1
p =

m∑
j=1

1
pj
. Then there exists a positive constant C depending only on n, α,

q, r, pi, si, i = 1, . . . ,m, such that for all fj ∈ L
pj
sj , j = 1, . . . ,m, inequality (1) holds.

Theorem 2. Let 1 < q ≤ r <∞, 1 < pi ≤ si <∞, i = 1, . . . ,m, p < q, 0 < α < n
s ,

1
p −

1
q = 1

s −
1
r ,

where 1
s =

m∑
j=1

1
sj
, 1
p =

m∑
j=1

1
pj
. Suppose that V is a weight function on Rn. Then the following

statements are equivalent:
(i) there is a positive constant C such that

‖Iα
−→
f ‖Lqr(V ) ≤ C

m∏
j=1

‖fj‖Lpjsj .
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(ii) the inequality

‖Iα
−→
f ‖WLqr(V ) ≤ C

m∏
j=1

‖fj‖Lpjsj

holds;
(iii) the condition

[V ]α,p,q := sup
Q∈Q

(∫
Q

V (x)(x)dx

) 1
q

|Q|
α
n−

1
p <∞

is satisfied.
Moreover, norms of the operator ‖Iα‖ ≈ [V ]α,p,q.

The following statement gives the weighted sharp Olsen’s inequality for the linear Riesz poten-
tials Iα.

Theorem 3. Let 1 < q ≤ r <∞, 1 < p ≤ s <∞, p < q and 0 < α < n
s . Let 1

p −
1
q = 1

s −
1
r = α

n −
1
` .

Then the inequality ∥∥g(Iαf)
∥∥
Lqr
≤ C

∥∥g∥∥
Lq`

∥∥f∥∥
Lps

holds with the positive constant C, independent of f , g.
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