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Let

Rjf(x) = lim
r→0

γn

∫

Rn\B(x,r)

xj − yj

|x − y|n+1
f(y) dy

be the Riesz transform of the measurable function f : R
n → R, where j = 1, . . . , n,

x = (x1, . . . , xn) ∈ R
n, γn =

Γ[(n+1)/2]

π(n+1)/2 . If n = 1, then R1f(x) is the Hilbert transform
defined by

Hf(x) = lim
ε→0

1

π

∫

|x−y|>ε

f(y)

x − y
dy.

Let L
p
w(Rn) (1 < p < ∞) be the weighted Lebesgue space with the weight w. If w ≡ 1,

then we shall use the notation L
p
w(Rn) ≡ Lp(Rn).

We denote by ‖A‖K the measure of non-compactness of the bounded linear operator
A : L

p
w(Rn) → L

p
v(Rn), i.e.,

‖A‖K := inf
{

‖A − P‖ : P ∈ K(Lp
w(Rn), L

p
v(Rn))

}

,

where K(Lp
w(Rn), Lp

v(Rn)), is the class of compact linear operators acting from L
p
w(Rn)

to L
p
v(Rn). The measure of non-compactness of the operator A is also called the essential

norm of the operator A.
The essential norm ‖S‖K = dist{A,K(Lp(T ))}

(

where K(Lp(T )) :=K(Lp(T ), Lp(T ))
)

for the operator

Sf(x) = p.v.
1

πi

∫

T

f(τ)

τ − t
dτ, t ∈ T,

where T is the unit circle, were calculated by I. Gohberg and N. Krupnic (see [1]–[2]) for
p = 2n and p = 2n

2n−1
. Lower estimate for ‖S‖K were also derived in these spaces for all

p ∈ (1,∞). Upper estimates for all p ∈ (1,∞) were obtained by S. K. Pichorides [3]. The
essential norm of Cauchy singular integtal over Lyapunov curves in the case of weighted
Lebesgue spaces with power (Khvedelidze) weights was calculated by N. Krupnik and
I. Verbitsky [4]. The case of general Muckenhoupt weight w over the unit circle T was
considered by I. Feldman, N. Krupnik and I. Spitkovsky [5]. In that paper it was proved
that ‖S‖K = dist{A,K(L2

w(T ))} = 1 if and only if w has vanishing mean oscillation.
Now we formulate the main results.

Theorem 1. Let 1 < p < ∞. Then there exist no pair of weights (v, w) and integer

j, 1 ≤ j ≤ n, such that the operator Rj is compact from L
p
w(Rn) to L

p
v(Rn). Moreover,

if Rj is bounded from L
p
w(Rn) to L

p
v(Rn) for some j, then the following inequality holds:

‖Rj‖K ≥ Aness sup
a∈Rn

(

v(a)

w(a)

)1/p

,
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where the positive constant An depends only on n.

The next statement is true for the operator

Rf(x) =

n
∑

j=1

Rjf(x).

Theorem 2. Let 1 < p < ∞. Then there exists no pair of weights (v, w) such that

the operator R is compact from L
p
w(Rn) to L

p
v(Rn). Moreover, if R is bounded from

L
p
w(Rn) to L

p
v(Rn) then the inequality

‖R‖K ≥ Bness sup
a∈Rn

(

v(a)

w(a)

)1/p

holds, where the positive constant Bn depends only on n.

Analogous result for the maximal operator

Mf(x) = sup
1

|Q|

∫

Q

∣

∣f(y)
∣

∣ dy,

where the supremum is taken over all cubes Q containing x ∈ R
n, was obtained in [6].

Finally we note that some optimal conditions for the weights v and w guaranteeing
the boundedness of Rj from L

p
w(Rn) to L

p
v(Rn) were derived in [7] (see also [8]).
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