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Abstract. It is proved that there exists no weight pair (v,w) for which a
singular integral operator is compact from the weighted Lebesgue space L% (R")
to LE(R™). Moreover, a measure of non-compactness for this operator is estimated
from below. Analogous problems for Cauchy singular integrals defined on Jordan
smooth curves are studied.

1. Introduction

In this paper we show that there exists no weight pair (v, w) for which
the singular integral operator

Kf(@)=p-v- . k(z —y)f(y) dy
is compact from the weighted Lebesgue space L2 (R™) to LE(R™). A measure

of non-compactness (essential norm)

1Kl = dist { K, K(L,(R"), LY (R™)) }
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for the operator K, where (L2 (R™), LE(R")) is a space of all compact
operators acting from L2 (R™) to LE(R™), is estimated from below. We also
consider analogous problems for the Cauchy singular operator

Srf(t):p-v-i Mdﬂ t=1t(s), 0<s << o0,

m JpT—1
along a smooth Jordan curve I' (of the complex plane) on which the arc-
length is chosen as a parameter.

The essential norm [|S7 || = dist{S7, K(LP(T), LP(T'))} for the operator
St, where T' is the unit circle, was calculated in [11-12] for p = 2™ and
p = 52— . In that paper a lower estimate for ||Sz||z was also derived for all

€ (1,00). An upper estimate for ||Sz||g, 1 < p < 0o, was obtained in [17].
In the case of weighted Lebesgue spaces with power weights the essential
norm of a Cauchy singular integral over Lyapunov curves was calculated in
[16]. The case of general Muckenhoupt weights was considered in [8], where
it was shown that dist{St, (L2 (T),L2(T))} = 1 if and only if w has a
vanishing mean oscillation.

2. Preliminaries

Let w be a locally integrable almost everywhere positive function (i.e. a
weight) on €2, where Q is a domain in R™. Denote by L2 () (1 < p < c0)
the weighted Lebesgue space which is a space of all measurable functions
f: @ = R with finite norm

1£1l e, ) = ( /Q |f (@) w(z) da:)l/p.

If w =1, then we denote L2 () by LP().

Definition 2.1. Let 1 < p < oco. We say that the weight w belongs to
Ap(R™) if

5 (1/ ()d)(l/ 1—”’<)d)“< o P
up [ — w(x)dr )| — w z) dx 00, ==
PA\Bl /i B] /5 L

where the supremum is taken over all balls B in R™ and |B| is a measure of
B.

We denote 1
gB :———/ g(x)|dx
|B| B| ( )|

for a measurable function ¢ and a ball B C R™.

In the sequel we shall assume that there exists a positive constant ¢ such
that

@) 1 ey < €l ey F € CEFCRP)
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We shall also suppose that the kernel k satisfies the following two conditions:
(i) there exists a positive constsnt A such that the inequality

0\«
(2.2) (55) #@)] < Alal
holds for all x € R", x # 0, and |«o| < 1;

(ii) there exists a positive constant b and an unit vector ug such that

2.3) k()] > o]

when = A\ - ug with —oo < A < +00.
It is easy to see that the Riesz transforms
. Ti —Y; :
R'fa::hm'y/ —L = _f)dy, j=1,...,n,

i/(@) r—0 " Ro\B(z,r) |7 — Y[t )
where = (21,...,%,) € R, v, = T[(n+1)/2]/7(*+1/2 satisfy conditions
(2.1)—(2.3). If n =1, then R; f(x) is the Hilbert transform defined by

1
Hf(z) = lim —/ S dy.
e—0 T |I7y|>6 r—Yy

It is known that H is bounded in LP(R), 1 < p < oo, if and only if
w € Ap(R) (see [13]). In [2] it was proved that the Calderén- Zygmund
singular operator is bounded in L2 (R™), 1 < p < o0, if w € A,(R").

The necessity of the condition w € A,(R™) for the boundedness of R; was
established in [9], p. 417.

Theorem A ([18], Ch. 5, 4.2; 4.6). If conditions (2.1)—(2.2) are satisfied
and w € A,(R"™), then the operator K is bounded in LY (R™). Further, if
(2.1)~(2.3) hold and K is bounded in LE (R™), then w € A,(R").

Finally we note that optimal sufficient conditions on radial weight
pairs (v, w) governing the boundedness of the Calderén-Zygmund operators
from LZ(R™) to LP(R™) were established in [4]. An analogous problem
for singular integrals defined on measure spaces with a quasi-metric and
doubling measure (SHT) was solved in [5] (see also [10], Ch. 9 and [6], Ch.
7).

Suppose that X and Y are Banach spaces. We denote by K£(X,Y) the
space of all compact linear operators acting from X to Y. Let F.(X,Y) be
the space of all finite rank operators from X to Y.

The following statement is from [3] (Corollary V. 5. 4).

Lemma 2.1. Let 1 < p < oco. Suppose that P is a bounded linear
operator from X toY, where Y = LP(Q). Then

dist { P, K(X,Y)} = dist { P, F,.(X,Y)}.
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In the sequel by B(z,r) will be denoted the ball with center z and
radius r.

The next statement is similar to Lemma V.5.6 from [3].

Lemma 2.2. Let P € F.(X,L?(Q2)), where X = L7 (), 1 <r, p < o0.
Then for any a € Q and € > 0 there exist R € F,.(X,L?(Q)) and a positive
number a such that the inequality

1P =R f |, <l/llx
holds and supp Rf C Q\B(a, ) for all f € X.

Proof. From P € F,.(X, Q) it follows that there exist linearly independent
functions u; € LP(£2) such that

N
) =2 Bi(Nui(@), feX,

where 3; are linear functionals defined on X (i.e., §; € X*).
On the other hand, there exists a positive constant ¢ for which the
inequality
N

2Bl < el flx
j=1
holds.
Let us choose linearly independent functions ®; € LP(R™) and real
numbers a; such that

luj = @4ll o) <& G E€{L,2,... N},
and supp ®; C Q\B(a,a;). If

N
7= X ANee)

then it is evident that R € F.(X, LP(Q2)) and also

N
|Pf =R o) < Z (Dlleg = 25 o0y < ecllf
forall f € X. Let a = mln{aj}. Then supp Rf C Q\B(a, a). a

3. Main Results

To prove the main results we need the following statement (see [18], Ch.
5, Section 4.6):
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Lemma 3.1. Let ug be the unit vector in R™. Then by choosing u = tug,
with t fixed sufficiently large we can guarantee that

k(s + ) — k(ru)| < 5 [k(ru)]

whenever r € R\ {0} and |v| < 2.

Lemma 3.2. Let 1 < p < oo and condition (2.3) be satisfied. Then
from the boundedness of K from LP (R™) to LE(R™) it follows that w'~?" is
locally integrable.

Proof. Suppose that I(r) := [, w' =P (z)dz = oo for some positive
where B = B(0,r). Then there exists ¢ € LP(B), g > 0, such that
Jpw™YPg = oco. Let us assume that f.(y) = g(y)w™'/P(y)xp(y) and
B' = B(ru,r), where u = tug (¢ is from Lemma 3.1 and wg is the unit
vector taken so that (2.3) holds). Obviously, x = ru + uz’ for z € B’ and
y =ry’ for y € B, where |2'| < 1 and |y'| < 1. Thus z —y = r(u + v) with
lv] < 2 and consequently Lemma 3.1 yields |K f,(z)| > £ (f-)p|k(ru)| for all
x € B'. Hence by (2.3) the following estimates hold:

K frlliemy > Ixp (@)K fr(@)] L2 (Rmy >
b 1
> , /p — .
> 2”(1}3) fB =00

On the other hand, ||f;||zzrr) = llgllr(8) < oo. Finally we conclude
that I(r) < oo for all r > 0. O

Theorem 3.1. Let 1 < p < oo. Suppose that conditions (2.1) — (2.3)
are satisfied. Then there exists no weight pair (v,w) such that the singular
integral operator K is compact from LP (R™) to L?(R™). Moreover, if K is
bounded from LP (R™) to L¥(R™), then the inequality

v(a) /e
(3.1) 1Kl > ¢ eiiz‘ip<w(a)>

holds, where the positive constant ¢ depends only on n, t and b (see Lemma
3.1 and (2.3)).

Let K be bounded from L? (R™) to LE(R"™). Suppose that
Ko f(x) = v'/"K f(2).
Then it is easy to verify that
1Kk = dist{ K, K(Ly,(R"), L”(R"))}.

Let A > ||K||x. Then by Lemma 2.1 we have A > «(K), where a(K) :=
dist{ Ky, F}}, F,. := F.(L? (R™), LP(R™)). Consequently there exists P € F,
for which

1Ky = Pl <A
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Let a € R™. Using Lemma 2.2 we find that there exist a positive number
and R € F, such that

A—||K, — P
D P
and supp Rf C R"\ B(a, ) for all f € LY (R™). Hence
1Ky — Rl < A

Thus the inequality

(3.2) I(Ky = R) flle(rry < Alfllze am)
holds for all f € L? (R™).

Let B = B(a,r), where r < 3. Suppose that B’ is the translation of B in
the direction of u, i.e. B' = B(a + ru,r), where u = tug, t is taken so that
the conditions of Lemma 3.1 are satisfied and ug is the unit vector chosen
so that (2.3) holds. Let f be any non-negative function supported in B.
Consider T'f (z) for z € B’. We have

Kf(z) = /B k(e — 4)f(y)dy

with x = a + ru + r2’, |2'| < 1. Since y € B, we find that y = a + ry’ for
ly'| < 1. Thus z —y = r(u +r(y' — 2')) = r(u + v) with |v| < 2. Further
Lemma 3.1 and condition (2.3) yield

1 1
(3.3) K@) > 5 fplk(ru)] > chE’
for all x € B’, where |B| denotes a measure of B and c is the positive
constant depending only on n, b and ¢. Due to inequality (3.2) we obtain

[ v@)| [ k= niwas] de < [ oy

for all non-negative f with supp f C B. Let f(z) = w' ? (z)xp(z). Then
using (3.3), we find that

([ ) g <30 [ @ way

Consequently by Lemma 3.2 we have
(3.4) Pop (WP )g)P~1 < AP

p

Further, observe that the equality
(3.5) lim vg: = v(a)
r—0
holds for almost all a. This follows from the obvious fact

_1
lvg —v(a)| < cﬁ /§|v(a:) —v(a)ldr — 0
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as r — 0, where B = B(a,r(t + 1)) and ¢ is a positive constant.
Inequalities (3.4) and (3.5) yield

(2e) " <

for almost all a; here the positive constant ¢ depends only on a, n and t. As
A is an arbitrary number greater than ||K||x, we conclude that (3.1) holds.

An analogous result for maximal functions was derived in [7].

We recall that T is called a smooth curve if ¢'(s) is continuous (and in the
case of its closedness , ¢'(0) = ¢'(I)). For smooth curves the boundedness of
Srin LP(T"), 1 < p < oo, was derived in [1]. In [15] (see also [14], pp. 55-56)
it was proved that Sr is bounded in L? (0,1) if and only if w € A,(0,1).

Theorem 3.2. Let 1 < p < oo. Suppose that I' is a Jordan smooth
curve. Then there exists no weight pair (v,w) such that the singular integral
operator St is compact from LP (0,1) to L?(0,1). Moreover, if St is bounded
from LP (0,1) to L?(0,1), then the inequality

(36)  [IStllx = dist{Se, KL (0,1), L7(0,1))}> —ess sup( 22 v
. K = Iy w\Ys b ), iy, \Y, = Ar ae(o,l)p UJ(G,)

holds.

Proof. Let Sr be bounded from LZ(0,1) to LE(0,l) and a € (0,1).
Then, using Lemmas 2.1 and 2.2, there exist a positive number § and R €
F.(L?(0,1),LP(0,1)) such that

(3.7) 1(St,0 = B) fllzeony < Allfllzz 00y, f € L3,(0,0),
and supp Rf C (0,1) \ I(a, 3), where
Sr,of (@) = v!/?(2)Sr f (),

I(a,B) = (a — B,a + B) and A > ||Sp||x. Further, let I; := (a — r,a),
I, := (a,a+r), where r < 3. Suppose that p(s) = f(t(s)) is a non-negative
function with supp ¢ C I. Then (see [15], [14], p.56)

1 o(s) 1
1S £ ()] > %/f P g5 L /I o(3) ds

s—o  drmw

for o € I; and sufficiently small . Thus we have

(3.8) 1Se £ (o)) > (i / 2 ¢<s)ds) X1 ()

drm

for any o. Taking into account inequality (3.8) and the proof of Lemma 3.2
we have that w!~? is locally integrable. Let o(s) = w' ? (s)xy,(s). Then
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by (3.7) we arrive at a conclusion that

) (2 )<

holds for all a € (0,1). The latter inequality yields (3.6). O

Remark. From the proof of Theorem 3.2 it easily follows that for the
Hilbert transform H the constant c is equal to 5.
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