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Let (X, d, 1) be a space of homogeneous type (SHT). This is a topological
space X with a complete measure p such that the space of compactly sup-
ported continuous functions is dense in LL(X ) and there is a non—negative
function (quasimetric) d : X x X — R4 which satisfies the following condi-
tions:

(i) d(z,z) =0 for all z € X.

(ii) d(z,y) > 0 for all z £ y, x,y € X.

(iii) There exists a positive constant ag such that d(x,y) < aed(y, z) for
every xz,y € X.

(iv) There exists a constant a; such that d(z,y) < aq(d(z, z) + d(z,y))
for every z, y, z € X.

(v) For every neighbourhood V of the point € X there exists r > 0
such that the ball B(z,r) = {y € X : d(x,y) < r} is contained in V.

(vi) Balls B(z,r) are measurable for every z € X and for arbitrary r > 0.

(vii) There exists a constant b > 0 such that

uB(x,2r) < bu(B(z,r)) < 0o

forevery z € X and r, 0 < r < oc.
Throughout the paper we assume that

L := diam (X) < co.

This condition obviously implies that pu(X) < oo.
The grand Lebesgue space LP)(X) (1 < p < o0o) is a rearrangement
invariant Banach space defined by the norm
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For some properties and applications of L?) spaces we refer to the papers
[8], [9], [4]- It is worth mentioning that the following continuous embeddings
hold:

LP(X)C LP(X) C LP75(X), 0<e<p-L

The space LP) on a finite interval was introduced in [10].
Let

(Mf)(x) = sup (uB(z,r)"" / F@lduy), =€ X,
rzeX

0<r<L B(x,r)
be the Hardy-Littlewood maximal operator defined on X. Further, let
E: X xX\{(z,z): 2 € X} — R be a measurable function satisfying the
conditions:

Cc
k@)l < z,y €X, x#y;

B(z,d(z,y))’

d(.rz,.’L‘l)) 1
d(x%y) PJB(IQad(I%y))

for all x1,zo and y with d(ze,y) > d(z,z2), where w is a positive, non-
decreasing function on (0, co) satisfying A condition (w(2t) < cw(t), t > 0)
and the Dini condition fol w(t)/tdt < oco.

We also assume that

h(@1,9) = k@2, )| + (g, 21) = k(y,22)] < e

(Kf)(x) = pv. / k(e 9)f ()du(y)

X

exists almost everywhere on X and that K is bounded in LP°(X) for some
1 < py < o0.

This note is devoted to the boundedness of the operators M and K
in Morrey spaces associated with grand Lebesgue spaces Lp)7)‘(X ), where
1 <p<ooand 0 < A< 1. This is a space of measurable functions f defined
on X with the norm

1

€ pe

), = su sup ————— P=¢q .

Flascn = sw (s S [Pt )
0<r<L B(z,r)
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Let us recall that the classical Morrey space defined on X is the class of
functions f on X for which

||f||Lp,>\(X) = Slelg (M(B(Jl?,r)))‘ / |f(y)17d,u(y)> v < 00,

0<r<L B(z,r)

where 1 <p<ocand 0 < A< 1.

For some basic properties of the classical Morrey spaces we refer to the
articles [13], [15], [7], [1]. For the boundedness of maximal and singular
integrals in the classical Morrey spaces we refer to [2], [6], [11], [16].

It is easy to verify that the following embeddings are valid:

LPMNX) — LPAX) — LP75MX), 0<e<p-—1,
Criteria governing the one-weight inequality for the Hardy-Littlewood

maximal operator and the Hilbert transform defined on a finite interval in
grand Lebesgue spaces was established in [5] and [12] respectively.

In this note our main result is the following statement:

Theorem. Let 1 <p < oo, 0 <A< 1. Then the operators T and K are
bounded in LP)A(X).

Let us now discuss the special case of an SHT.

Let I' C C be a connected rectifiable curve and let v be arc-length mea-
sure on I'. By definition, I' is regular if
v(D(z,r)NT) <r
for every z € T and all » > 0, where D(z,r) is a disc in C with center z and
radius 7. The reverse inequality
v(D(z,r)NT) > cr

holds for all z € T and r < L/2, where L is a diameter of I'. If we equip
I" with the measure v and the Euclidean metric, the regular curve becomes
an SHT.

The associate kernel in which we are interested is

1
The Cauchy integral
(Sef)(t) = p.v. /i’c@du(f), terl,
r

is the corresponding singular operator.
The above-mentioned kernel in the case of regular curves is a Calderén-
Zygmund kernel. As was proved by G. David [3], a necessary and sufficient



142

condition for continuity of the operator Sr in L"(T"), where r is a constant
(1 <r < 00),is that I' is regular.

Together with the operator St we are interested in the Hardy—Littlewood
maximal operator defined on I"

1
(Mrf)(z) = oS (DG ALY

[ 1slavt).
D(z,r)nI’

Let 1 <p<ooandlet 0 < A < 1. We say that a measurable locally
integrable function f on T' belongs to the class LP)*(T) if

||fHLP)=>\(F) =

1
5 e
= su sup —F————— P edr(t < 00.
0<e<571 < ze? v(D(z,r)NT)* / 7O ( )>
0<r<L D(z,r)NT

The theorem formulated above implies the following statement:

Proposition . Let L < oo, 1 <p < oo and let 0 < X\ < 1. Suppose that
' is regular. Then the operators My and Sr are bounded in ||| r.»(ry-

Remark. In the forthcoming papers we will present the results regarding
the boundedness of maximal and singular operators in LP)* spaces defined
on quesimetric measure spaces, where the doubling condition is not assumed.
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