

Georgian American Universisty (GAU)

> Applications of Stochastic Processes and Mathematical Statistics to Financial Economics and Social Sciences IV

Tbilisi Science and Innovation Festival 2019

Conference Materials, 25-26 September, 2019, Tbilisi, GAU Business School Business Research Scientific Center

Georgian American Universisty (GAU)

Applications of Stochastic Processes and Mathematical Statistics

to Financial Economics and Social Sciences IV

Tbilisi Science and Innovation Festival 2019

Conference, 25-26 September, 2019, Tbilisi, GAU

Conference Materials

Business School

Business Research Scientific Center

Tbilisi 2019

Content

•	D. Aslamazishvili, Symbolic Perception in Work-Related Experience	3
•	T. Kvirikashvili, Service Employees' Performance Problematics	10
• Priv	T. Zeragia, Organizational Challenges of Talent Management in ate Sector	16
• Und	T. Kutalia, R. Tevzadze, Bilateral Tariffs and Exchange Rate ler International Competition	21
• and	T. Toronjadze, T. Uzunashvili, Stochastic Models in Marketing Management	26
• Fun	M. Mania, Martingale Method of Solving Lobachevsky's ctional Equation	30
•	B. Chikvinidze, Uniform Integrability of the Exponential Martingales	32

Martingale Method of Solving Lobachevsky's Functional Equation

Michael Mania

Razmadze Mathematical Institute of Tbilisi State University, Georgian-American University, Tbilisi, Georgia.

Abstract. The aim of this paper is to give a probabilistic (martingale) method to find the general measurable solution of the Lobachevsky functional equation. We show that to find general solution of this equation is equivalent to establish that a space-transformation of a Brownian Motion by suitable function is a martingale. This method can be applied for Cauchy's, Jensen's, Pexider's and other functional equations.

1 Introduction

We consider the Lobachevsky functional equation

$$f(x)(f(y) = f^2\left(\frac{x+y}{2}\right), \quad \text{for all} \quad x, y \in R, \tag{1}$$

where $f = (f(x), x \in R)$ is a real valued function (see, e.g. Aczel [1] about this and other functional equations and related results). It was shown by Neamptu [5] that if $f, f(0) \neq 0$ is a solution of (1) bounded on a neighborhood (-r, r) of zero, then $f(x) = f(0)e^{\lambda x}$, for some $\lambda \in R$.

We give a martingale method to find the general measurable solution of the Lobachevsky functional equation. We don't require the boundedness on (-r, r) for solutions of (1), but consider measurable solutions. We show that f is a measurable solution of functional equation (1) if and only if the process $M_t = \ln f(0)f(W_t), t \ge 0$ is a martingale.

To this end we are using two facts from probability theory:

The first one is the Bernstein theorem ([3]) (see also [6] for definitive form) according to which if X and Y are independent random variables such that the random variables X + Y and X - Y are also independent, then X and Y admit normal distribution. Bernstein's theorem was used by S. Smirnov [7] to show that any measurable solution of Caushy's functional equation is locally integrable. We use this idea from [7] to show the integrability of the transformed process of Brownian motion $f(W_t)$.

The second assertion we used is that if the transformed process $g(W_t)$ is a martingale, then the function g is linear

$$g(x) = ax + b$$
, for some constants $a \in R, b \in R$.

This fact follows from results of [2] or [4], where the semimartingale functions of Brownian motion are studied.

2 The proof of the main result

First we mention some simple properties of equation (1) which will be used in what follows. It is obvious and well known (see [5]) that a solution of (1) is either everywhere or nowhere 0 and if $f(0) \neq 0$ then

$$signf(x) = signf(0).$$
⁽²⁾

Indeed, if $f(x_0) = 0$ for some $x_0 \in R$, then $f^2(x) = f(x_0)f(2x - x_0) = 0$ for all $x \in R$ and if $f(0) \neq 0$ it follows from (1) by taking y = 0 that

$$f(0)f(x) = f^2\left(\frac{x}{2}\right) > 0,$$
(3)

which implies (2).

It is easy to see that the function g defined by $g(x) = \ln \frac{f(x)}{f(0)}$ is odd, since for y = -x we have $f(x)f(-x) = f^2(0)$, which is equivalent to $\frac{f(x)}{f(0)}\frac{f(-x)}{f(0)} = 1$ and implies (since f(x)/f(0) > 0 for all $x \in R$) that

$$\ln \frac{f(x)}{f(0)} + \ln \frac{f(-x)}{f(0)} = 0.$$
(4)

Let $W = (W_t, t \ge 0)$ be a standard Brownian Motion defined on a complete probability space $(\Omega, \mathcal{F}, \mathcal{P})$ and denote by $F = (\mathcal{F}_t, t \ge 0)$ the filtration generated by the Brownian Motion W. Assume that \mathcal{F}_t is completed by sets from \mathcal{F} having P-measure zero. As it is well known, all martingales with respect to such filtration are continuous. We consider martingales only with respect to this filtration.

Theorem 1. Let $(f(x), x \in R)$ be a measurable function and $f(0) \neq 0$. Then the following assertions are equivalent:

- a) the function f is a solution of the functional equation (1).
- b) The process $M_t = \ln f(0)f(W_t), t \ge 0$ is a martingale.
- c) $f(x) = f(0)e^{\lambda x}$ for some constant $\lambda \in R$.

Proof. a) \rightarrow b). Assume that f is a measurable solution of (1) with $f(0) \neq 0$. Let us show that the process $(\ln f(0)f(W_t), t \geq 0)$ is a martingale. Let first show that

$$E|lnf(0)f(W_t)| < \infty$$

for all $t \ge 0$. Let

$$X = f(0)f(W_t) \text{ and } Y = f(0)f(B_t),$$

where B_t is a Brownian motion independent of W_t . It follows from (1) and (3) that

$$XY = f^{2}(0)f(W_{t})f(B_{t}) = f^{2}(0)f\left(\frac{W_{t} + B_{t}}{2}\right) = f^{3}(0)f(W_{t} + B_{t}).$$
 (5)

On the other hand, substituting $x = W_t - B_t$, $y = B_t$ in (1) we have from (3) that

$$f(W_t - B_t)f(B_s) = f^2(\frac{W_t}{2}) = f(0)f(W_t),$$

which implies that

$$\frac{X}{Y} = \frac{f(W_t)}{f(B_t)} = \frac{f(W_t - B_t)}{f(0)}.$$
(6)

Since $W_t + B_t$ and $W_t - B_t$ are independent, equations (5) and (6) imply that the random variables XY and $\frac{X}{Y}$ will be also independent. Therefore, it follows from Bernstein's theorem that $X = (f(0)f(W_t) \text{ (and } Y = f(0)f(B_t))$ will have the lognormal distribution and $lnf(0)f(W_t)$ admits the normal distribution, hence $lnf(0)f(W_t)$ is integrable for any $t \ge 0$. Let us show now the martingale equality. Substituting $x = W_t - W_s$, $y = W_s$ in (1) we have

$$f(W_t - W_s)f(W_s) = f^2(\frac{W_t}{2}) = f(0)f(W_t).$$
(7)

Multiplying both parts of (7) by $f^2(0)$ and taking logarithms we obtain that

$$\ln f(0)f(W_t - W_s) + \ln f(0)f(W_s) =$$

$$= \ln f^3(0)f(W_t) = \ln f^2(0) + \ln f(0)f(W_t)$$
(8)

which implies that

$$\ln f(0)f(W_t) - \ln f(0)f(W_s) = \ln f(0)f(W_t - W_s) - \ln f^2(0) =$$
$$= \ln \frac{f(W_t - W_s)}{f(0)}.$$
(9)

By independent increment property of the Brownian motion $\ln f (W_t - W_s)$ is independent of F_s and taking conditional expectation in (9) we have that P - a.s.

$$E\left(\ln f(0)f(W_t) - \ln f(0)f(W_s)/F_s\right) = E\left(\ln \frac{f(W_t - W_s)}{f(0)}/F_s\right) = E\ln \frac{f(W_t - W_s)}{f(0)}.$$
(10)

But $E \ln \frac{f(W_t - W_s)}{f(0)} = 0$ since by equality (4) the function $\ln \frac{f(x)}{f(0)}$ is odd and $W_t - W_s$ is symmetrically distributed.

Thus, for any $s, t, s \leq t$

$$E(\ln f(0)f(W_t) - \ln f(0)f(W_s)/F_s) = 0; P - a.s$$

and the process $(\ln f(0)f(W_t), t \ge 0)$ is a martingale.

 $b \to c$) Now let us assume that process $\ln f(0)f(W_t)$ is a martingale and $f(0) \neq 0$. This implies that the function $\ln f(0)f(x)$ is linear

$$\ln f(0)f(x) = \lambda x + c, \tag{11}$$

for some constants $\lambda \in R$ and $c \in R$. Hence

$$f(0)f(x) = \exp\{\lambda x + c\} = e^c e^{\lambda x},$$

which implies (taking x = 0 in this equality) that $e^c = f^2(0)$ and since $f(0) \neq 0$, we obtain that $f(x) = f(0)e^{\lambda}$.

 $c) \rightarrow a$) It is easy to verify that the function $f(x) = f(0)e^{\lambda}$ satisfies equation (1).

Remark. Since f(0) = 0 implies that f(x) = 0 for all $x \in R$ and f(x) = 0 is a solution of (1),

$$f(x) = \alpha e^{\lambda x}$$
, for some constants $\alpha \in R, \lambda \in R$

will be the most general solution of (1).

References

- [1] J.Aczel, Lectures on Functional Equations and their Applications, Academic Press 1966.
- [2] Cinlar, E., Jacod, C., Protter, P. and Sharpe, M.J., Semimartingales and Markov processes. Z. Warscheinlichkeitstheor. Verw. Geb. V. 54, (1980), p.161-218.
- [3] S. N. Bernstein, Ob odnom svoystve, harakterizuyushhem zakon Gaussa (in Russian) [On a characteristic property of the normal law]. Tr. leningr.Polytech. Inst.3, (1941), pp. 21-22
- [4] M. Mania and R. Tevzadze, Semimartingale functions for a class of diffusion processes. (in Russian) Teor. Veroyatnostei i Primenenija. 45 (2000), No. 2, 374-380; English transl.: Theory Probab. Appl. Vol. 45, No. 2 (2000), pp. 337-343.
- [5] N. Neamptu, About some Classical Functional Equations, Tr. J. of Mathematics, 22, (1998), pp. 119-126.
- [6] M. P. Quine, On Three Characterizations of the Normal Distribution, Probability Theory and Mathematical Statistics, Vol 14, Fasc 2, (1993), pp. 257-263.
- [7] S. N. Smirnov, A probabilistic note on the Cauchy functional equation, Aequat. Math.Vol. 93, Issue 2, (2019), pp. 445-449,