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Martingale Method of Solving Lobachevsky’s
Functional Equation

Michael Mania

Razmadze Mathematical Institute of Tbilisi State University,
Georgian-American University, Tbilisi, Georgia.

Abstract. The aim of this paper is to give a probabilistic (martin-
gale) method to find the general measurable solution of the Lobachevsky
functional equation. We show that to find general solution of this
equation is equivalent to establish that a space-transformation of a
Brownian Motion by suitable function is a martingale. This method
can be applied for Cauchy’s, Jensen’s, Pexider’s and other functional
equations.

1 Introduction

We consider the Lobachevsky functional equation

f(x)(f(y) = f 2
(x+ y

2

)
, for all x, y ∈ R, (1)

where f = (f(x), x ∈ R) is a real valued function ( see, e.g. Aczel [1] about
this and other functional equations and related results). It was shown by
Neamptu [5] that if f, f(0) �= 0 is a solution of (1) bounded on a neighborhood
(−r, r) of zero, then f(x) = f(0)eλx, for some λ ∈ R.

We give a martingale method to find the general measurable solution of
the Lobachevsky functional equation. We don’t require the boundedness on
(−r, r) for solutions of (1), but consider measurable solutions. We show that
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f is a measurable solution of functional equation (1) if and only if the process
Mt = ln f(0)f(Wt), t ≥ 0 is a martingale.

To this end we are using two facts from probability theory:
The first one is the Bernstein theorem ([3]) (see also [6] for definitive form)

according to which if X and Y are independent random variables such that
the random variables X + Y and X − Y are also independent, then X and
Y admit normal distribution. Bernstein’s theorem was used by S. Smirnov
[7] to show that any measurable solution of Caushy’s functional equation is
locally integrable. We use this idea from [7] to show the integrability of the
transformed process of Brownian motion f(Wt).

The second assertion we used is that if the transformed process g(Wt) is
a martingale, then the function g is linear

g(x) = ax+ b, for some constants a ∈ R, b ∈ R.

This fact follows from results of [2] or [4], where the semimartingale functions
of Brownian motion are studied.

2 The proof of the main result

First we mention some simple properties of equation (1) which will be used
in what follows. It is obvious and well known (see [5]) that a solution of (1)
is either everywhere or nowhere 0 and if f(0) �= 0 then

signf(x) = signf(0). (2)

Indeed, if f(x0) = 0 for some x0 ∈ R, then f 2(x) = f(x0)f(2x− x0) = 0 for
all x ∈ R and if f(0) �= 0 it follows from (1) by taking y = 0 that

f(0)f(x) = f 2
(x
2

)
> 0, (3)

which implies (2).

It is easy to see that the function g defined by g(x) = ln f(x)
f(0)

is odd, since

for y = −x we have f(x)f(−x) = f 2(0), which is equivalent to f(x)
f(0)

f(−x)
f(0)

= 1

and implies ( since f(x)/f(0) > 0 for all x ∈ R) that

ln
f(x)

f(0)
+ ln

f(−x)

f(0)
= 0. (4)
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Let W = (Wt, t ≥ 0) be a standard Brownian Motion defined on a com-
plete probability space (Ω,F ,P) and denote by F = (Ft, t ≥ 0) the filtration
generated by the Brownian Motion W . Assume that Ft is completed by sets
from F having P -measure zero. As it is well known, all martingales with
respect to such filtration are continuous. We consider martingales only with
respect to this filtration.

Theorem 1. Let (f (x) , x ∈ R) be a measurable function and f(0) �= 0.
Then the following assertions are equivalent:

a) the function f is a solution of the functional equation (1).
b) The process Mt = ln f(0)f(Wt), t ≥ 0 is a martingale.
c) f(x) = f(0)eλx for some constant λ ∈ R.

Proof. a) → b). Assume that f is a measurable solution of (1) with f(0) �= 0.
Let us show that the process (ln f(0)f (Wt) , t ≥ 0) is a martingale. Let first
show that

E|lnf(0)f (Wt) | < ∞

for all t ≥ 0. Let

X = f(0)f (Wt) and Y = f(0)f (Bt) ,

where Bt is a Brownian motion independent of Wt. It follows from (1) and
(3) that

XY = f 2(0)f (Wt) f (Bt) = f 2(0)f
(Wt + Bt

2

)
= f 3(0)f (Wt + Bt) . (5)

On the other hand, substituting x = Wt−Bt, y = Bt in (1) we have from
(3) that

f(Wt − Bt)f(Bs) = f 2
(Wt

2

)
= f(0)f(Wt),

which implies that
X

Y
=

f(Wt)

f(Bt)
=

f(Wt − Bt)

f(0)
. (6)

Since Wt +Bt and Wt −Bt are independent, equations (5) and (6) imply
that the random variables XY and X

Y
will be also independent. Therefore, it

follows from Bernstein’s theorem thatX = (f(0)f (Wt) (and Y = f(0)f (Bt))
will have the lognormal distribution and lnf(0)f (Wt) admits the normal
distribution, hence lnf(0)f (Wt) is integrable for any t ≥ 0.
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Let us show now the martingale equality.
Substituting x = Wt −Ws, y = Ws in (1) we have

f(Wt −Ws)f(Ws) = f 2(
Wt

2
) = f(0)f(Wt). (7)

Multiplying both parts of (7) by f 2(0) and taking logarithms we obtain that

ln f(0)f(Wt −Ws) + ln f(0)f(Ws) = (8)

= ln f 3(0)f(Wt) = ln f 2(0) + ln f(0)f(Wt)

which implies that

ln f(0)f(Wt)− ln f(0)f(Ws) = ln f(0)f(Wt −Ws)− ln f 2(0) =

= ln
f(Wt −Ws)

f(0)
. (9)

By independent increment property of the Brownian motion ln f (Wt −Ws)
is independent of Fs and taking conditional expectation in (9) we have that
P − a.s.

E
(
ln f(0)f(Wt)− ln f(0)f(Ws)/Fs) = E

(
ln

f(Wt −Ws)

f(0)
/Fs) =

= E ln
f(Wt −Ws)

f(0)
. (10)

But E ln f(Wt−Ws)
f(0)

= 0 since by equality (4) the function ln f(x)
f(0)

is odd and
Wt −Ws is symmetrically distributed.

Thus, for any s, t, s ≤ t

E
(
ln f(0)f(Wt)− ln f(0)f(Ws)/Fs) = 0; P − a.s

and the process (ln f(0)f(Wt), t ≥ 0) is a martingale.
b) → c) Now let us assume that process ln f(0)f (Wt) is a martingale and

f(0) �= 0. This implies that the function ln f(0)f(x) is linear

ln f(0)f (x) = λx+ c, (11)

4
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for some constants λ ∈ R and c ∈ R. Hence

f(0)f (x) = exp{λx+ c} = eceλx,

which implies (taking x = 0 in this equality) that ec = f 2(0) and since
f(0) �= 0, we obtain that f(x) = f(0)eλ.

c) → a) It is easy to verify that the function f(x) = f(0)eλ satisfies
equation (1).

Remark. Since f(0) = 0 implies that f(x) = 0 for all x ∈ R and
f(x) = 0 is a solution of (1),

f(x) = αeλx, for some constants α ∈ R, λ ∈ R

will be the most general solution of (1).
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