
Proceedings of A. Razmadze
Mathematical Institute
Vol. 168 (2015), 63–77

ON REGULARITY OF DYNAMIC VALUE FUNCTION
RELATED TO THE UTILITY MAXIMIZATION PROBLEM

M. MANIA AND R. TEVZADZE

Abstract. We study the regularity properties of both the dy-
namic value function and the optimal solution to the utility
maximization problem for utility functions defined on the whole
real line. These properties are needed to show that the value
function satisfies the corresponding backward stochastic par-
tial differential equation. In particular, in the case of complete
markets we give conditions on the utility function when this
equation admits a solution.

ÒÄÆÉÖÌÄ. ÛÄÓßÀÅËÉËÉÀ ÓÀÒÂÄÁËÉÀÍÏÁÉÓ ÌÀØÓÉÌÉÆÉÒÄÁÉÓ
ÀÌÏÝÀÍÀÓÈÀÍ ÃÀÊÀÅÛÉÒÄÁÖËÉ ÃÉÍÀÌÉÖÒÉ ×ÀÓÉÓ ×ÖÍØÝÉÉÓÀ
ÃÀ ÏÐÔÉÌÀËÖÒÉ ÊÀÐÉÔÀËÉÓ ÐÒÏÝÄÓÉÓ ÒÄÂÖËÀÒÏÁÉÓ ÈÅÉÓÄ-
ÁÄÁÉ ÌÈÄË ÒÉÝáÅÉÈ ÙÄÒÞÆÄ ÂÀÍÓÀÆÙÅÒÖËÉ ÓÀÒÂÄÁËÉÀÍÏ-
ÁÉÓ ×ÖÍØÝÉÄÁÉÓÈÅÉÓ. ÀÌ ÈÅÉÓÄÁÄÁÆÄ ÃÀÚÒÃÍÏÁÉÈ ÍÀÜÅÄÍÄ-
ÁÉÀ, ÒÏÌ ×ÀÓÉÓ ×ÖÍØÝÉÀ ÀÊÌÀÚÏ×ÉËÄÁÓ ÛÄÓÀÁÀÌÉÓ ÛÄØÝÄÖË
ÓÔÏØÀÓÔÖÒ ÊÄÒÞÏ ßÀÒÌÏÄÁÖËÄÁÉÀÍ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏ-
ËÄÁÀÓ. ÊÄÒÞÏÃ, ÓÒÖËÉ ×ÉÍÀÍÓÖÒÉ ÁÀÆÒÉÓ ÛÄÌÈáÅÄÅÀÛÉ
ÌÏÚÅÀÍÉËÉÀ ÆÄÌÏÀÙÍÉÛÍÖËÉ ÂÀÍÔÏËÄÁÉÓ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄ-
ÁÏÁÉÓ ÐÉÒÏÁÄÁÉ.

1. Introduction

We consider a financial market model, where the dynamics of asset prices
is described by the continuous semimartingale S defined on the complete
probability space (Ω,F , P ) with continuous filtration F = (Ft, t ∈ [0, T ]),
where F = FT and T < ∞. We work in discounted terms, i.e. the bond is
assumed to be a constant.

Denote by Me a set of probability measures Q equivalent to P on FT
such that S is a local martingale under Q.
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Throughout the paper, we assume that the filtration F is continuous (i.e.
all F -local martingales are continuous) and

Me ̸= ∅. (1)
The continuity of F and the existence of an equivalent martingale measure
imply that the structure condition is satisfied, i.e. S admits the decompo-
sition

St =Mt +

t∫
0

λs d⟨M⟩s,
t∫

0

λ2s d⟨M⟩s <∞

for all t P–a.s., where M is a continuous local martingale and λ is a pre-
dictable process.

Let U = U(x) : R → R be a utility function taking finite values at all
points of real line R such that U is continuously differentiable, increasing,
strictly concave and satisfies the Inada conditions

U ′(∞) = lim
x→∞

U ′(x) = 0, U ′(−∞) = lim
x→−∞

U ′(x) = ∞. (2)

We also assume that U satisfies the condition of reasonable asymptotic
elasticity (see [6] and [13]), i.e.

lim sup
x→∞

xU ′(x)

U(x)
< 1, lim inf

x→−∞

xU ′(x)

U(x)
> 1. (3)

We consider the utility maximization problem, i.e. the problem of finding
a trading strategy (πt, t ∈ [0, T ]) such that the expected utility of terminal
wealth Xx,π

T becomes maximal. The wealth process, determined by a self-
financing trading strategy π and initial capital x, is defined as a stochastic
integral

Xx,π
t = x+

t∫
0

πudSu, 0 ≤ t ≤ T.

The value function V associated to the problem is given by

V (x) = sup
π∈Πx

E

[
U

(
x+

T∫
0

πu dSu

)]
, (4)

where Πx is a class of admissible strategies (to be specified later).
For the utility function U , we denote by Ũ its convex conjugate

Ũ(y) = sup
x
(U(x)− xy), y > 0. (5)

The problem dual to (4) is

Ṽ (y) = inf
Q∈Me

E[Ũ(yZQT )], y > 0, (6)
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where ZQt = dQt/dPt is the density process of the measure Q ∈ Me relative
to the basic measure P .

Let us introduce the dynamic value function of the problem (4) defined
as

V (t, x) = ess sup
π∈Πx

E

(
U

(
x+

T∫
t

πudSu

)
/Ft

)
, (7)

and the value function of the dual problem is

Ṽ (t, y) = ess inf
Q∈Me

E

[
Ũ
(
y
ZQT
ZQt

)
/Ft

]
,

Our goal is to study the properties of the dynamic value function V (t, x)
and the optimal wealth process Xt(x). It is well known (see e.g., [10]) that
for any x ∈ R the process (V (t, x), t ∈ [0, T ]) is a supermartingale admitting
an RCLL (right-continuous with left limits) modification.

Therefore, using the Galchouk–Kunita–Watanabe (GKW) decomposi-
tion, the value function is represented as

V (t, x) = V (0, x)−A(t, x) +

t∫
0

ψ(s, x) dMs + L(t, x),

where for any x ∈ R the process A(t, x) is increasing and L(t, x) is a local
martingale, orthogonal to M .

Let us consider the following assumptions:
a) V (t, x) is two-times continuously differentiable at x P–a.s. for any

t ∈ [0, T ],
b) for any x ∈ R, the process V (t, x) is a special semimartingale with

bounded variation part, absolutely continuous with respect to ⟨M⟩, i.e.

A(t, x) =

t∫
0

a(s, x) d⟨M⟩s,

for some real-valued function a(s, x) which is predictable and ⟨M⟩ is inte-
grable for any x ∈ R,

c) for any x ∈ R, the process V ′(t, x) is a special semimartingale with
the decomposition

V ′(t, x) = V ′(0, x)−
t∫

0

a′(s, x) d⟨M⟩s +
t∫

0

ψ′(s, x) dMs + L′(t, x),

where V ′, a′, ψ′ and L′ are partial derivatives at x of V , a, ψ and L,
respectively.

We shall say that (V (t, x), t ∈ [0, T ]) is a regular family of semimartin-
gales if for V the conditions a), b) and c) are satisfied.
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We shall consider also the conditions
d) the conditional optimization problem (7) admits a solution, i.e., for

any t ∈ [0, T ] and x ∈ R there exists a strategy π(t, x) such that

V (t, x) = E
(
U(x+

T∫
t

πu(t, x)dSu)|Ft), (8)

e) for each s ∈ [t, T ], the function (Xs(t, x) = x+
∫ s
t
πu(t, x)dSu, s ≥ t)

is continuous at (t, x) P− a.s.
It was shown in [8, 9, 10] that if the value function satisfies the conditions

a)–e), then it solves the following backward stochastic partial differential
equation (BSPDE)

V (t, x) = V (0, x) +
1

2

t∫
0

(φ′(s, x) + λ(s)V ′(s, x))2

V ′′(s, x)
d⟨M⟩s+

+

t∫
0

φ(s, x) dMs + L(t, x), V (T, x) = U(x). (9)

Our aim is to study the conditions on the basic objects (on the asset price
model and on the objective function U) which will guaranty that the value
function V (t, x) is a regular family of semimartingales and the conditions
d) and e) are also satisfied, in order to show that the solution of equation
(9) exists. In Theorem 1 below we provide such type conditions in the case
of complete markets.

Condition d) is satisfied if following [13] we assume that
d′) For each y > 0, the dual value function Ṽ is finite and the minimizer

Q∗(y) ∈ Me (called the minimax martingale measure) exists.
Let ZT (y) ≡ yZ

Q∗(y)
T , where Z

Q∗(y)
t is a density process of the mini-

max martingale measure with respect to the measure P , i.e. Zt(y) is a
P -martingale with Z0(y) = y = V ′(x).

Let Πx be the class of predictable S–integrable processes π such that
U(x + (π · S)T ) ∈ L1(P ) and π · S is a martingale under the minimax
martingale measure Q∗(y), where y = V

′
(x) and the notation π · S stands

for the stochastic integral.
It was shown in [13] that under assumptions d′) and an assumption of

reasonable asymptotic elasticity (3) there exists the optimal strategy π(x)

of the problem (4) in the class Πx. Denote by Xt(x) = x+
∫ t
0
πu(x)dSu the

optimal solution to (4).
It follows from [13] that Assumption d′) likewise implies the existence of

an optimal solution to the conditional optimization problem (7) (where the
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optimal strategy may depend on t, in general), i.e., for any t ∈ [0, T ] there
exists a strategy π(t, x) ∈ Πx such that (8) is satisfied.

The following duality relation holds true almost surely (see e.g., [12])

U ′(XT (x)) = ZT (y), or equivalently XT (x) = −Ũ ′(ZT (y)), (10)

where XT (x) = x+
∫ T
0
πu(x) dSu and y = V ′(x);

Similarly to [12], one can show that the value process V (t, x) is differen-
tiable at x P–a.s. for any t ∈ [0, T ] (see Proposition A3 from [11]) and it
follows from [13] that

V ′
(
t, x+

t∫
0

πu(x) dSu

)
= Zt(y), t ∈ [0, T ], (11)

where y = V ′(x). Hereafter we shall use these results without further
comments.

The main example, where all conditions a)–e) are satisfied is the case of
an exponential utility function

U(x) = −e−γx

with a risk aversion parameter γ ∈ (0,∞). In this case Ũ(y) = y
γ

(
ln y

γ − 1
)

and Assumption d′) is equivalent to the existence of Q ∈ Me with a finite
relative entropy EZQT lnZQT (see e.g. [1]).

In this case, the corresponding value function is of the form V (t, x) =
−e−γxVt, and

Vt = essinf
π∈Πx

E(e−γ(
∫ T
t
πudSu)|Ft) (12)

is a special semimartingale. Therefore, it is evident that conditions a)–c) are
satisfied and the BSPDE (9) is transformed into a usual backward stochastic
differential equation (BSDE). In particular, Theorem 3.1 from [10] implies
that V (t, x) = −e−γxVt, where Vt satisfies the BSDE

Vt = V0 +
1

2

t∫
0

(φs + λsVs)
2

Vs
d⟨M⟩s +

t∫
0

φsdMs + Lt, VT = 1, (13)

where L is a local martingale, strongly orthogonal to M , and the optimal
wealth process is expressed as

Xt(x) = x+

t∫
0

φu + λuVu
γVu

dSu. (14)

The problem related with condition a) was studied in [5] for utility func-
tions defined on the positive real line for value functions at time 0 and in
[11] for dynamic value function V (t, x) corresponding to utility functions
defined on the whole real line.
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The problems related with conditions b) and c) we connect with the
existence of the inverse flow X−1

t (x) of the optimal wealth. In [11], the
conditions are given where for any t the optimal wealth is an increasing
function of x P–a.s. and an adapted inverse of Xt(x) exists.

In Proposition 1 we derive a stochastic differential equation for the inverse
of the optimal wealth ψt(x) = X−1

t (x) and based on this result, we give in
Proposition 2 sufficient conditions when b) and c) are fulfilled.

Let

R1(x) = −U
′′
(x)

U ′(x)
, R2(x) = −U

′′′
(x)

U ′′(x)
, x ∈ R. (15)

Assuming that the market is complete, we shall use one of the following
conditions:

r1) U is three-times differentiable, R1(x) is bounded away from zero and
infinity and R2(x) is bounded and Lipschitz continuous.

r2) U is four-times differentiable and the density ZT of the unique mar-
tingale measure is bounded.

As a corollary of Propositions 1–3 we get

Theorem 1. Assume that the market is complete and one of the condi-
tions r1) or r2) is satisfied. Then conditions a)–e) are fulfilled and the value
function V (t, x) satisfies BSPDE (9).

In the paper [3] a new approach was developed, where the solution of the
problem (4) was reduced to the solvability of a system of Forward–Backward
equations which is also a heavy task. Note that they showed that in case of
complete markets this system admits a solution under the conditions similar
to condition r1).

In the work [4], the wealth inverse process and the duality relations are
used to derive some type of SPDE and SDE for the progressive dynamic
utility, its derivative and Fenchel conjugate. From their results it follows
that there exists a whole class of the dynamic value functions satisfying
regularity conditions of the present paper.

2. The Main Results

It has been shown in [11] (Theorem 1.4) that if the filtration F is con-
tinuous, condition d′) is satisfied and there are the constants c2 > c1 > 0
such that

c1 ≤ R1(x) ≤ c2, (16)
then for any t ∈ [0, T ] there exists a modification of the optimal wealth
process (Xt(x), x ∈ R) almost all paths of which are strictly increasing and
absolutely continuous with respect to dx. Besides,

X ′
t(x) > 0, lim

x→∞
Xt(x) = ∞, lim

x→−∞
Xt(x) = −∞ (17)
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P–a.s. for any t ∈ [0, T ] and the adapted inverse X−1
t (x) of the optimal

wealth process exists.
Under the stronger conditions we shall derive a Stochastic Differential

Equation (SDE) for the inverse process X−1
t (x).

For stochastic process ξt(x), by ξ′t(x) (or ∂ξt(x)) we denote the deriv-
ative with respect to x, µ⟨S⟩ denotes Dolean’s measure for ⟨S⟩, i.e., the
measure d⟨S⟩dP on [0, T ] × Ω. If F (t, x) is a family of semimartingales,
then

∫ T
0
F (ds, ξs) denotes a generalized stochastic integral (see [7]), or sto-

chastic line integral by terminology from [2]. If F (t, x) = xGt, where Gt
is a semimartingale, then the generalized stochastic integral coincides with
the usual one denoted by

∫ T
0
ξsdGs, or (ξ ·G)T .

Now we shall derive an SDE for the inverse of the optimal wealth ψt(x) =
X−1
t (x) of the form

dψt = σt(ψt)dSt + µt(ψt)d⟨S⟩t, ψ0 = x, (18)

where σt(z) = − πt(z)
X′

t(z)
, µt(z) =

1
2X′

t(z)

(
π2
t (z)
X′

t(z)

)′
.

Proposition 1. Let X ′′
t (x), π′

t(x) exist µ⟨S⟩−a.e. and are locally Lips-
chitz functions with respect to x µ⟨S⟩−a.e. Then SDE (18), or equivalently

dψt = − πt(ψt)

X ′
t(ψt)

dSt +
π′
t(ψt)πt(ψt)

X ′
t(ψt)

2
d⟨S⟩t −

1

2

X ′′
t (ψt)π

2
t (ψt)

X ′
t(ψt)

3
d⟨S⟩t, (19)

ψ0 = x (20)
admits a unique maximal solution coinciding with X−1

t (x).

Proof. The SDE (18) admits a unique maximal solution up to time τ(x) ≤
T , where |ψτ(x)−| = ∞, if τ(x) < T (see [7]). Applying the Ito-Ventzel
formula for Xt(ψt) ≡ X(t, ψt) (see [7] or [14]) and bearing in mind that ψt
satisfies (19), we get

dX(t, ψt) = X(dt, ψt) +X ′(t, ψt)dψt +
1

2
X ′′(t, ψt)d⟨ψ⟩t+

+d

⟨ ·∫
0

X ′(dr, ψr(x)), ψ(x)

⟩
t

= πt(ψt)dSt +X ′
t(ψt)

[
− πt(ψt)

X ′
t(ψt)

dSt+

+
π′
t(ψt)πt(ψt)

X ′
t(ψt)

2
d⟨S⟩t −

1

2

X ′′
t (x)π

2
t (ψt)

X ′
t(ψt)

3
d⟨S⟩t

]
+

+
1

2

X ′′
t (x)π

2
t (ψt)

X ′
t(ψt)

2
d⟨S⟩t −

π′
t(ψt)πt(ψt)

X ′
t(ψt)

d⟨S⟩t = 0,

ψ0(x) = x.

HenceX(t, ψt(x)) = x on [0, τ(x)) . Since |X−1
τ(x)(x)| <∞, we have τ(x) = T

P–a.s. and ψt(x) = X−1
t (x). �
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Remark 1. Let πt(x) = Ht(Xt(x)). Then

dψt = −Ht(Xt(ψt))

X ′
t(ψt)

dSt +
H ′
t(Xt(ψt))Ht(Xt(ψt))

X ′
t(ψt)

2
d⟨S⟩t−

− 1

2

X ′′
t (ψt)H

2
t (Xt(ψt))

X ′
t(ψt)

3
d⟨S⟩t.

Using equalities Xt(ψt(x)) = x, 1
X′

t(ψt(x))
= ψ′

t(x), and −X′′
t (ψt(x))

X′
t(ψt(x))

=
ψ′′

t (x)
ψ′

t(x)
2

we obtain the linear Partial SDE (linear PSDE)

dψt(x) = −Ht(x)ψ
′
t(x)dSt +H ′

t(x)Ht(x)ψ
′
t(x)d⟨S⟩t +

1

2
H2
t (x)ψ

′′
t (x)d⟨S⟩t

or a PSDE in the divergence form

dψt(x) = −Ht(x)ψ
′
t(x)dSt +

1

2
(H2

t (x)ψ
′
t(x))

′d⟨S⟩t.

Let us define martingale random fields

M(t, x) = E[U(XT (x)|Ft],
M(t, x) = E[U ′(XT (x)|Ft].

Proposition 2. Let the conditions of Proposition 1 be satisfied.
a) If M(t, x) is two times continuously differentiable with respect to x,

then the finite variation part of V (t, x) = M(t, ψt(x)) is absolutely contin-
uous with respect to ⟨S⟩.

b) If M(t, x) is two times continuously differentiable with respect to x,
then V

′
(t, x) is a special semimartingale, and the finite variation part of

V ′(t, x) = M(t, ψt(x)) is absolutely continuous with respect to ⟨S⟩.

Proof. a) By the optimality principle, V (t,Xt(x)) is a martingale, and since
V (T, x) = U(x), we find that V (t,Xt(x)) = E[U(XT (x))|Ft] = M(t, x).
Therefore, by the duality relation (10),

M′(t, x) = V ′(t,Xt(x))X
′
t(x) = Zt(y)X

′
t(x) (21)

is a martingale and let

M′(t, x) = V ′(x) +

t∫
0

hr(x)dMr + Lt(x), L(x)⊥M

be the GKW decomposition of M′(t, x). From (19), we have⟨ ·∫
0

M′(dr, ψr(x)), ψ(x)

⟩
t

= −
t∫

0

hr(ψr(x))
πr(ψr(x))

X ′
r(ψr(x))

d⟨S⟩r. (22)
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Since V (t, x) = M(t,X−1
t (x)), by the Ito-Ventzel formula we get

V (t, x) = V (0, x) +

t∫
0

M(ds, ψs) +

t∫
0

M′(s, ψs)dψs+

+
1

2

t∫
0

M′′(s, ψs)d⟨ψ⟩s +
⟨ ·∫

0

M′(dr, ψr(x)), ψ(x)

⟩
t

. (23)

In view of (19) and (22), one can verify that all finite variation members of
(23) are integrals with respect to ⟨S⟩.

b) By the duality relation (11), we have

M(t, x) = E[U ′(XT (x))|Ft] = E[ZT (y)|Ft] = Zt(y) = V ′(t,Xt(x)), (24)

which (together with (21)) implies that M and M are related as

M′(t, x) = M(t, x)X ′
t(x) (25)

and V ′(t, x)=M(t,X−1
t (x)). It follows from (24) that M′

(t, x)=Z ′
t(y)V

′′(x)
is a martingale and⟨ ·∫

0

M′
(dr, ψr(x)), ψ(x)

⟩
t

= −
t∫

0

h̄r(ψr(x))
πr(ψr(x))

X ′
r(ψr(x))

d⟨S⟩r, (26)

where M′
(t, x) = V̄ ′′(x) +

∫ t
0
h̄r(x)dMr + L̄t(x), L̄(x)⊥M is the GKW

decomposition of M′
(t, x). Therefore the Ito–Ventzel formula implies that

V
′
(t, x) =M(t,X−1

t (x)) is a special semimartingale, and similarly to a), one
can show that the finite variation part of V ′

(t, x) is absolutely continuous
with respect to ⟨S⟩. �

We provide the sufficient conditions which guarantee the existence of all
needed derivatives.

Hereafter we shall assume that the market is complete, i.e.,
dQ = ZT dP, where ZT = ET (−λ ·M)

is the unique martingale measure.

Lemma 1. Let the market be complete and condition r1) be satisfied.
Then the optimal wealth XT (x) is two-times differentiable and the derivatives
X

′

T (x), X
′′

T (x) are bounded and Lipschitz continuous.

Proof. Since Ũ(y) and U(x) are conjugate, Ũ(y) is also three-times differ-
entiable and

Ũ
′′
(y) = − 1

U ′′(x)
, Ũ

′′′
(y) = − U

′′′
(x)

(U ′′(x))3
, y = U

′
(x). (27)



72 M. MANIA AND R. TEVZADZE

Therefore the functions B1(y) and B2(y), where

B1(y) = yŨ
′′
(y) = 1/R1(x), B2(y) = y2Ũ

′′′
(y) = R2(x)/R

2
1(x), (28)

are likewise bounded. This implies that the second and the third order
derivatives of Ũ(yZT ) are bounded, hence the function Ṽ (y) = EŨ(yZT ) is
three-times differentiable and

Ṽ
′′′
(y) = EQŨ

′′′
(yZT )Z

2
T .

Since Ṽ (y) and V (x) are conjugate, V (x) is also three-times differentiable.
The duality relation (10) takes in this case the following form:

U
′
(XT (x)) = yZT , XT (x) = −Ũ

′
(yZT ), y = V

′
(x). (29)

This relation implies that the function XT (x) is two-times differentiable for
all ω ∈ Ω

′
= (ZT > 0) with P (Ω′

) = 1, and differentiating the first equality
in (29), we have

U
′′
(XT (x))X

′

T (x) = V
′′
(x)ZT , (30)

U
′′′
(XT (x))(X

′

T (x))
2 + U

′′
(XT (x))X

′′

T (x) = V
′′′
(x)ZT . (31)

From (29) and (30), we obtain

X
′

T (x) =
V

′′
(x)

V ′(x)

U
′
(XT (x))

U ′′(XT (x))
.

By condition r1) and Proposition 1.2 from [11], c1 ≤ −V
′′
(x)

V ′ (x)
≤ c2. There-

fore this implies that X ′

T (x) is bounded, in particular,
c1
c2

≤ X
′

T (x) ≤
c2
c1
, (32)

where c1 and c2 are constants from (16).
Comparing equations (30) and (31), we have

X
′′

T (x) +
U

′′′
(XT (x))

U ′′(XT (x))
(X

′

T (x))
2 =

V
′′′
(x)

V ′′(x)
X

′

T (x). (33)

Since EQX ′

T (x) = 1 and EQX
′′

T (x) = 0, taking expectations with respect
to the measure Q in equation (33), we get

V
′′′
(x)

V ′′(x)
= EQ

U
′′′
(XT (x))

U ′′(XT (x))
(X

′

T (x))
2, (34)

which together with (32) and condition r1) implies that V
′′′

(x)

V ′′ (x)
is bounded.

Therefore, it follows from (33) that X ′′

T (x) is likewise bounded, hence
X ′
T (x) is Lipschitz continuous.
Since the product of bounded Lipschitz continuous functions are Lipschitz

continuous, it follows from (34) that V
′′′

(x)

V ′′ (x)
is Lipschitz continuous and (33)
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implies that X ′′

T (x) is likewise Lipschitz continuous, since all terms in (33)
are bounded and Lipschitz continuous. �

Lemma 2. Let the market be complete and condition r2) be satisfied.
Then the optimal wealth XT (x) is three-times differentiable, X ′

T (x) is strictly
positive and the derivatives X ′

T (x), X
′′

T (x) and X ′′′
T (x) are uniformly bounded

on every compact [a, b] ∈ R .

Proof. Since U(x) and Ũ(y) are conjugate, condition r2) implies that Ũ(y) is
also four times differentiable and the derivatives of Ũ(yZT ) are bounded for
any y ∈ R, hence the function Ṽ (y) = EŨ(yZT ) is four-times differentiable.

Then V (x) is likewise four-times differentiable, since V ′(x) is the inverse
of −Ṽ ′(y). Therefore, the duality relation

XT (x) = −Ũ ′(V ′(x)ZT )

implies that the optimal wealth XT (x) is three-times differentiable and the
derivatives X ′

T (x), X
′′

T (x) and X ′′′
T (x) are bounded on every compact [a, b] ∈

R. Therefore the derivatives X ′

T (x) and X
′′

T (x) satisfy the local Lipschitz
condition.

Besides,
X ′
T (x) = −V ′′(x)ZT Ũ

′′(V ′(x)ZT )) > 0,

since V ′′(x) < 0 and Ũ ′′(y) > 0. �

Corollary 1. The process (X ′′
t (x), (t, x) ∈ [0, T ] × R) admits a contin-

uous modification.

Proof. Since X ′′
t (x) is a Q−martingale, by the Doob inequality and the

mean value theorem we get
EQ sup

t≤T
|X ′′

t (x1)−X ′′
t (x2)|2 ≤ c1E

Q|X ′′
T (x1)−X ′′

T (x2)|2 ≤

≤ c1|x1 − x2|EQ sup
α∈[0,1]

|X ′′′
T (αx1 + (1− α)x2)|2 ≤ c2|x1 − x2|2

for some constants c1, c2. By the Kolmogorov theorem, the map
R ∋ x→ X ′′

· (x) ∈ C[0, T ]

admits a continuous modification which implies the continuity of X ′′
t (x)

with respect to the variables (t, x), P–a.s. �

Proposition 3. Assume that the market is complete and one of the
conditions r1), or r2) is satisfied.

Then the optimal wealth Xt(x), the optimal strategy πt(x) (µ⟨S⟩–a.e.),
martingale flows M(t, x) and M(t, x) are two-times continuously differen-
tiable at x for all t, P−a.s. and the coefficients of equation (19) satisfy the
local Lipschitz condition.
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Proof. Let us first assume that condition r1) is satisfied. According to
Lemma 1, the optimal wealth XT (x) is two-times differentiable and the
derivatives X ′

T (x) and X
′′

T (x) are bounded and Lipschitz continuous.
To show the existence of π′(x), we use the decomposition X ′

T (x) =

1 +
∫ T
0
π
(x)
r dSr with some predictable S–integrable integrand π(1)(x) and

inequalities

EQ
T∫

0

(
π
(1)
t (x+ ε)− π

(1)
t (x)

)2

d⟨S⟩t = EQ ⟨X ′(x+ ε)−X ′(x)⟩T =

= EQ (X ′
T (x+ ε)−X ′

T (x))
2 ≤ ε2EQ max

0≤s≤1
|X ′′

T (x+ sε)|2 ≤

≤ ε2Const.

By the Kolmogorov theorem, π(1)(x) is continuous with respect to x µ⟨S⟩–a.e.
Note that if instead of r1) the condition r2) is satisfied, then we shall

have that there exists a µ⟨S⟩–a.e. continuous modification of π(1)(x) on each
compact of R which will imply the existence of a continuous modification
on the whole real line.

Thus, by the stochastic Fubini’s Theorem, (see [14] )

x2 − x1 +

T∫
0

(πr(x2)− πr(x1))dSr = XT (x2)−XT (x1) =

=

x2∫
x1

X ′
T (x)dx = x2 − x1 +

T∫
0

x2∫
x1

π(1)
r (x)dxdSr

and consequently, πr(x2)−πr(x1) =
∫ x2

x1
π
(1)
r (x)dx µ⟨S⟩–a.e. Hence π(1)(x) =

π′(x) µ⟨S⟩–a.e. and

X ′
T (x) = 1 +

T∫
0

π′
r(x)dSr, (35)

for all x P–a.s.
It follows from (35) and Fubini’s theorem that

Xt(x2)−Xt(x1) = x2 − x1 +

t∫
0

(πr(x2)− πr(x1))dSr =

= x2 − x1 +

t∫
0

x2∫
x1

π′
r(x)dxdSr =

x2∫
x1

X ′
t(x)dx
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for any x2 ≥ x1 P−a.s., and Lemma A3 from [11] implies that for each fixed t
there exists a modification of (Xt(x), x ∈ R) which is absolutely continuous
with respect to the Lebesgue measure dx. Since (X ′

t(x), t ∈ [0, T ]) is a
Q-martingale

|X ′
t(x2)−X ′

t(x1)| ≤ EQ(|X ′
T (x2)−X ′

T (x1)|/Ft) ≤ C|x2 − x1| (36)

for any x2 ≥ x1 P−a.s., and Lemma 1 and Corollary 1 imply that there
exists Ω′ ⊂ Ω, P (Ω′) = 1, such that at each ω ∈ Ω′ the inequality (36) is
fulfilled for all (t, x).

Since EX ′′
T (x) = 0 and the market is complete, we have X ′′

T (x) =∫ T
0
π
(2)
r (x)dSr for some predictable S-integrable integrand π(2). Similarly,

one can show that π(2)(x) is continuous at x µ<S>–a.e., π(2)(x) = π′′(x)
µ⟨S⟩–a.e. and, hence X ′′

t (x) admits the representation

X ′′
t (x) =

t∫
0

π′′
r (x)dSr.

Similarly, we can show that one can choose a modification of Xt(x) which
is two-times differentiable and such that X ′′(x) is Lipschitz continuous.

In the case where instead of r1) the condition r2) is fulfilled, X ′′(x) will
satisfy the local Lipschitz condition. Thus, in both cases (i.e., if condi-
tion r1) or r2) is satisfied), the coefficients of equation (19) will be locally
Lipschitz continuous. �

Since the market is complete, M(t, x) = V ′(x)Zt and it is evident that
M(t, x) is two-times continuously differentiable. Besides, equality (25) im-
plies that M(t, x) is also two-times continuously differentiable at x.

Proof of Theorem 1. It is evident that the boundedness of B1(y) and
B2(y) (defined by (28)) implies that the dual value function Ṽ (t, y) =

E(Ũ(yZT

Zt
)/Ft) is two-times continuously differentiable. Since

V ′′(t, x) = − 1

Ṽ ′′(t, y)
, y = V ′(x),

the value function V (t, x) is also two-times continuously differentiable, hence
condition a) is fulfilled.

It follows from Proposition 3 that under the presence assumptions all
conditions of Propositions 1 and 2 are satisfied, therefore these propositions
imply that V (t, x) satisfies conditions b) and c), hence V (t, x) is a regular
family of semimartingales.

Let us show that the condition e) is also satisfied. By the optimality
principle (see [10]), for any t ∈ [0, T ], the process (V (s,Xs(t, x)), s ≥ t)
is a martingale, where Xs(t, x) = x +

∫ s
t
πu(t, x)dSu is the solution of the
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conditional optimization problem (9). This implies that P -a.s.
V (t, x) = E(V (s,Xs(t, x))/Ft). (37)

On the other hand, using again the optimality principle, we have
V (t,Xt(x)) = E(V (s,Xs(x))/Ft),

and substituting in this equality the inverse of the optimal capital Xt(x),
we get

V (t, x) = E(V (s,Xs(X
−1
t (x))/Ft). (38)

Since for any t the function (V (t, x), x ∈ R) is strictly convex, comparing
(37) and (38) we obtain that P -a.s Xs(t, x) = Xs(X

−1
t (x)). By the continu-

ity at (t, x) of X−1
t (x) as a solution of SDE (19), we obtain that condition

e) is satisfied.
Thus, all the conditions of Theorem 3.1 from [10] are satisfied which

implies that V (t, x) is a solution of the BSPDE (9). �
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