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Abstract We propose a modified procedure for extracting the numerical value for the strong coupling constant
o from the 7 lepton hadronic decay rate into non-strange particles in the vector channel. We employ the con-
cept of the quark—hadron duality specifically, introducing a boundary energy squared s, > 0, the onset of
the perturbative QCD continuum in Minkowski space (Bertlmann et al. in Nucl Phys B 250:61, 1985; de
Rafael in An introduction to sum rules in QCD. In: Lectures at the Les Houches Summer School. arXiv:
9802448 [hep-ph], 1997; Peris et al. in JHEP 9805:011, 1998). To approximate the hadronic spectral function
in the region s > s,, we use analytic perturbation theory (APT) up to the fifth order. A new feature of our
procedure is that it enables us to extract from the data simultaneously the QCD scale parameter Agg and
the boundary energy squared s,. We carefully determine the experimental errors on these parameters which

come from the errors on the invariant mass squared distribution. For the MS scheme coupling constant, we
obtain o (m%) = 0.3204 £ 0.0159.xp.. We show that our numerical analysis is much more stable against
higher-order corrections than the standard one. Additionally, we recalculate the “experimental”” Adler function
in the infrared region using final ALEPH results. The uncertainty on this function is also determined.

1 Introduction

The hadronic t decays serves as an ideal laboratory for testing quantum chromodynamics (QCD) in a relatively
low energy regime. In the past, various techniques (fixed order perturbation theory, contour improved pertur-
bation theory, effective charge approach, renormalons, dispersive approach) have been devised to improve the
reliability of the predictions of the theory for the T system. In this boundary area of the energy, perturbative ideas
are still applicable due to relatively large mass of the t lepton, while non-perturbative effects are expected to be
small. Usually, they are under control within Wilson operator product expansion (OPE) [4]. It is known that the
main calculational tool in perturbative QCD (pQCD) the renormalization group improved perturbation theory
augmented with the OPE can not be used locally in the time-like region even at high energy. Fortunately, this
problem has been resolved in earlier work [5] by using the idea of the quark—hadron duality. The assumption
is that the QCD perturbation theory may still be used in Minkowski region to describe some global (inclusive)
quantities like t lepton decay rate. Although the quark—hadron duality cannot be justified rigorously from the
first principles, in practice this idea works good enough. On this basis, an accurate description of the 7 lepton
decay data was achieved (see the seminal work [6] and the literature therein). However, one should always keep
in mind that the duality between a physical quantity and its quark—gluon perturbation theory representation is
only approximative and thus it must inevitable be violated (see the review [7] and the literature therein). To
identify general mechanism of duality violations (DVs), special QCD inspired models for the hadronic spectral
functions (e.g. the instanton-based and resonance-based models [7] as well as the models motivated by the
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large N, limit of the theory [8—10]) have been studied. In these models DVs in fact occur. Presumably, DVs
arise due to the lack of the convergence of the OPE on the Minkowski axis. If this is the case, then the analytical
continuation of the truncated OPE series from the Euclidean region to the physical axis is questionable [7,10].

On the other hand, in recent years, the accuracy of the measurements of the observables of the T lepton
system has been essentially improved (for the recent results of the ALEPH collaboration see [11-14]). This
enables one to extract the parameters of the standard model from t data with very high precision. Of partic-
ular interest is the numerical value of the strong coupling constant ;. Admittedly, one of the most precise
determinations of the strong coupling constant comes from the analysis of the t data (for most recent results
see [14]). An independent low-energy highest-precession determination of oy comes from lattice QCD simu-
lations combined with experimental data for hadron masses [15]. These two highest-precision determinations
extrapolated to the Z mass yield

as(M?) = 0.1212 4 0.0011 ( decay) (1)
as(M2) = 0.1170 £ 0.0012  (lattice). )

Note that the agreement between these two results, with the errors quoted, is not good. They differ from
each other by about 2.6 standard deviations. Furthermore, the lattice determination is closer to o (M. 22) values
obtained from high energy experiments. Thus, the reliability of the estimates from the t-lepton data has been
called in question [9,10,14,16].

To estimate systematic effects from DVs, recently the authors of [14] have analyzed the ALEPH t data
for the V + A spectral function using two different models for the spectral function. These models were
previously considered in [7,9]. It was confirmed that DVs effects in this channel within these models are com-
pletely negligible. However, this result has been reanalyzed in [10]. There the vector (V) and axial-vector (A)
spectral functions have separately been considered. To describe DVs coming from the region s > 1.1 GeV?
physically motivated models for these spectral functions have been suggested. Analyzing the t data pro-
vided by the ALEPH collaboration, the authors of [10] have concluded that DVs are not small. An additional
systematic error in the value of the coupling constant coming from DVs has been estimated on the level
Satg(m?) = 0.003 — 0.010.

As is well known, in the time-like region the renormalization group (RG) invariance cannot be used unam-
biguously. Usually, the QCD corrections to the 7 lepton decay rate R; is expressed via the contour integral of
the associated Adler function multiplied by the known weight function. This representation is valid owing to
special analyticity structure of the corresponding exact current—current correlation function. The Adler func-
tion is represented via the truncated perturbation theory series and the integral is taken over the circle of radius
m% (m- stands for the T-lepton mass) in the complex energy squared plane [6]. One possibility is to integrate
term-by-term the truncated perturbation theory series over the contour and then perform the RG improvement.
This approach is referred to as fixed order perturbation theory (FOPT). Alternatively, one can insert the RG
improved truncated series for the Adler function inside the contour integral and then perform the integral.
This approach suggested in [17—19] was termed contour improved perturbation theory (CIPT). The advantage
of CIPT is that it enables to resume some higher-order contributions to the rate. These two approaches lead
to differing results. The values of «; extracted from t decays employing CIPT have always been higher.
A detailed comparison of these two approaches may be found in recent works [20,21]. A practical review of
various approaches to the t decay rate may be found in [13].

The inclusive quantity like hadronic 7 decay rate may be accurately described within pure perturbative
approach, provided the DVs are small. Indeed, the nonperturbative power suppressed contributions described
by the OPE (continued analytically to the time-like region) have been estimated to be small [6]. However, the
large value of the running coupling parameter at the T lepton mass scale leads to the large renormalization
scheme dependence of perturbative predictions. To reduce this dependence various resummation techniques
have been developed (see, for example, [22-24]). In [22], to determine more accurately the value for the cou-
pling constant from the t-lepton data a modified extraction procedure (based on the effective charge approach)
has been employed. The numerical analysis has been performed in the internal renormalization scheme of the
7 system and then the result was translated into the MS scheme using renormalization scheme transformation.
This procedure yields smaller value for the coupling constant. Similarly, in [23] and [24] in calculations of the
T decay rate the minimal sensitivity and effective charge schemes were used. In this way the reliability of the
estimates for the coupling constant has been improved.

A serious shortcoming of the conventional perturbation theory approximations to the current—current cor-
relation functions parameterized in terms of the running coupling is that they do not obey correct analytical
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properties of the corresponding exact quantities. The analytical properties are violated due to the non-physical
Landau singularities of the perturbative running coupling which occur at small space-like momenta (for the
analytical structure of the perturbative coupling beyond the one-loop order see [25-28]). Supposedly, these
singularities may deteriorate the extracted values of the parameters [29]. On the other hand, this shortcoming
may be avoided by using dispersive or analytic approaches to pQCD. At present, several such approaches
are being intensively developed [30-43]. In works [33] and [34], the T lepton decay rate has been analyzed
within a simple and effective dispersive technique, the Analytic Perturbation Theory (APT) (for reviews see
[35,36,38,43]). However, the minimal analytic QCD model (the same APT) predicts, from the non-strange t
lepton decay data, too large value for the strong coupling constant, o (m%) = 0.40340.015 [34]. The advanta-
ges and shortcomings of the three approaches to the t decays (FOPT, CIPT and APT) were thoroughly analyzed
in [39]. It should be noted that the APT as well as its generalized versions suggested more later [42] proved to
be very useful from the phenomenological point of view. A remarkable feature of these modified expansions is
the better convergence and improved stability property with respect to change of the renormalization scheme.
Nevertheless, one should keep in mind that an analytic approach based only on perturbation theory can not
be defined unambiguously, since there is not a unique recipe for removing the Landau singularities from the
running coupling.

A particular problem emerges from the observation that the QCD perturbation theory augmented with the
OPE fail to describe the detailed infrared behavior of the Adler function associated with the T decay rate [3].
To treat this problem a more general framework is required. A suitable theoretical framework was suggested
in [3]. There the hadronic non-strange vector spectral function v (s)! was approximated by a simple ansatz

v1(s) & B(sp — V™ (5) + 0G5 — sp)vf 0 (s), (3)

CD
where vf Q

() is the perturbation theory approximation to the spectral function and s, is the onset of perturba-

tive continuum,’ an infrared boundary in Minkowski region above which we trust pQCD. The non-perturbative
component of the spectral function vrllp’ (s) was described by a resonance based model (“the lowest meson domi-
nance approximation to large-N. QCD”). Using this model the authors of [3] have achieved correct matching in
the intermediate region between the pQCD and Chiral Perturbation Theory predictions for the Adler function.?
To compare the Adler function evaluated from (3) to the experiment the authors of [3] have also constructed
the “experimental” spectral function

0,5 (5) = 0(sp — )V (5) + 0(s — 5P (s), (4)
where vap "(s) is the genuine experimental part of the total “experimental” spectral function which is measured
with high precision by ALEPH [11,44] and OPAL [45] collaborations in the range 0 < /s < m; = 1.777 GeV.
Formula (4) extends the spectral function beyond the range accessible in the experiment. Formula (3) or (4)
can be treated as a practical realization of the concept of the quark—hadron duality (see the original works
[1,2]). In this formulation one does not rely on the procedure of the analytical continuation of the truncated
OPE to Minkowski region, a source of the possible DVs. The conventional formulation of the duality may be
recovered from formulas (3) or (4) by taking the limit s, — 0 and introducing the OPE contributions.* Note
that, model (3) describes non-perturbative corrections to the spectral function which are essentially confined
in the low energy region 0 < s < sp.

In this paper we concentrate on formula (4). Our aim is to utilize the total information encoded in this
representation. We recall that the authors of [3] have used ansatz (4) to extract the numerical value for the
parameter s from the experimental data. For the MS scheme scale parameter (for the three active flavours)
they have used the estimate

Agis = (372 + 72) MeV. 5)

The QCD component of the spectral function, vlf QCb (s), was determined from the order (’)(af) approximation
to the Adler function, while the exact numeric two-loop running coupling constant, normalized at the scale sp,

! We use the normalization of the spectral function with the naive parton prediction vy paive = 1/2.

2 1t is assumed that the inequality 0 < sp < m% holds.

3 The infrared behaviour of the Adler function was also correctly described within APT [40]. However, APT requires large
effective quark masses to reproduce the t data.

4 Strictly speaking this is true if the perturbation theory component of the spectral function UEQCD (s) is evaluated using FOPT
or APT.
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was employed. The experimental component UTXP' (s) has been reconstructed from the ALEPH collaboration
data obtained in 1999 [44]. Note that the estimate (5) is close to the ALEPH result for the scale parameter
obtained for that time

Aggs = (370 + 51) MeV.

However, direct comparison of these two results for Aggg will not be completely correct. The final result of the
collaboration for the coupling constant corresponds to the average of the two values obtained within the FOPT
and CIPT approaches, while in [3] only FOPT was used. Furthermore, in the ALEPH analysis the estimate for
(’)(a;‘) term have also been included, while the QCD scale parameter was extracted using the exact (numeric)
four-loop running coupling. Using the ansatz (4) the authors of [3] have derived consistency condition from
the OPE, an equation relating the parameters s, and Aggg. From this equation, with the estimate (5), they have
found that

sp = (1.60 +0.17) GeV>. (©)

Usually, it is more convenient to compare the time-like experimental data with theory via the Adler function,
the object determined in the space-like region [46].

o [ 2ui(s)ds
DY) =0 0/—(S+Q2)2, )

for this quantity reliable approximations are constructed in pQCD, in massless [47-51] as well as in massive
cases [51,46]. The “experimental” Adler function is obtained by inserting ansatz (4) into integral (7)

Deexp(0%) = Dexp. (02, 5p) + Dpocp (02, 5p), (8)

where the experimental and perturbation theory components of the total “experimental” Adler function are
defined as

ZUTXP'(S)dS

ZvE)QCD (s)ds
(s+0%)%°

(s + 0%)? ©

Sp oo
Dexp (Q?, 5p) = Q2 / Dpacn(Q2, 5p) = 02 /
0 Sp

Note that the “experimental” Adler function is not wholly experimental quantity, since it depends also on the
theoretical component DpQCD(QZ, sp). The latter may be calculated using different theoretical approaches.
For example, one may apply FOPT or APT. Furthermore, the result will depend on the higher order corrections
to the B-function and to the Adler function. In the past years, the “experimental” Adler function was employed
for testing various theoretical approximations to the Adler function [3,40,41].

In view of appearance of final ALEPH data in 2005 [11,12] it is worthwhile to recalculate the “experi-
mental” Adler function. In this paper we extend the analysis of work [3] in several directions. First, we will
use different strategy for extracting numerical values of the parameters from the data. The distinguishing
feature of our analysis is that we will determine both parameters (Agzg and sp) self-consistently. Secondly,
we pay particular attention to the estimation of the experimental errors on the parameters and Adler function.
Furthermore, we choose the APT approach which is, in fact, an analytic generalization of CIPT.

In Sect. 2 we evaluate the perturbative component of the hadronic spectral function up to order O(a? )
within the APT approach. Then, we derive a transcendental system of equations for the parameters Agzg and
sp. The first equation of the system follows from the OPE for the current—current correlation function in the
limit of massless quarks.® The second equation for the parameters is a consequence of the quark—hadron duality
implemented by means of the ansatz (4). It follows from this ansatz that one may employ perturbation theory
to calculate the decay rate of the 7-lepton into hadrons of invariant mass larger than , /sp. In Sect. 3 we solve the
system of equations for the parameters numerically. To determine the empirical contributions in the equations,
we employ the final ALEPH data on the non-strange vector invariant mass squared distributions which are
available in [12]. To test the stability of the numerical results against the QCD perturbative corrections, we use
different approximations to the Adler function from order O(«;) to order O(af). This enables us to determine

5 We use notation q2 = —0%and 0% > 0 for space-like momenta.
6 The FOPT version of this equation has been derived in [3].
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the so-called indicative theoretical errors [22] on the extracted numerical values of the parameters. The statis-
tical errors on the parameters are carefully estimated. Our approach, which we refer to as APTY, is compared
with the standard CIPT. In the most of the calculations, we use the four-loop running coupling. In Sect. 4,
we present numerical results for the “experimental” Adler function obtained from the final ALEPH data. The
values and associated experimental errors of the function are tabulated in the region Q = 0 — 1.5 GeV. Our
conclusions are given in Sect. 5. In Appendix A we give some practical formulas obtained with the explicit
(series) solution to the higher order RG equation. The errors are analyzed in detail in Appendix B. In Appendix
C we present some required results obtained within standard CIPT.

2 Theoretical Framework
The main quantity of interest for following analysis is the Adler function associated with the vector cur-

rent two-point correlator. The perturbative expansion of this function in the limit of vanishing quark masses
reads [20]

00 n+1 Q2
D(0*%) = Za;'(,u,z)chn,kLk*l where L =In F’ (10)
n=0 k=1

2
as(u?) = % with o (1?) being the strong coupling constant renormalized at the scale . Since the Adler

function is a physical quantity, it satisfies a homogenous RG equation. This fact enables us to choose > = Q2.
Then the expansion (10) may be reexpressed as an asymptotic expansion in powers of the running coupling

s (Q?)
00 RN
Drai(Q%) = > di (@) , (11)
k=0

where d, = c¢,,1 and the subscript “RGI” refers to the renormalization group improved perturbation theory.
The first two coefficients in series (11) are universal dy = d; = 1. The coefficients of order a? and @ in
the MS scheme have been calculated about thirty and fifteen years ago [47—49]. Recently, the authors of [50]
have calculated the coefficient dy in the case of massless quarks by using powerful computational techniques.
The known higher order coefficients in the MS scheme for = 3 quark flavours take values d >~ 1.6398,
d3 >~ 6.3710 and dsy =~ 49.0757.

In practice the series (11) should be truncated. The obtained approximations to the Adler function do not
obey correct cut-plane analyticity properties of the exact function because of the unphysical “Landau singu-
larities” which present in the perturbative running coupling. The exact Adler function D(z) (z = Q% = —¢?)
is known to be analytic except the cut running along the negative real axis. This fact enables us to calculate
the hadronic non-strange vector spectral function from the Adler function via the contour integral

—s+10

vl(S)=4L ]{ &dz, (12)

Tl Z
—s—10

where the path of integration, connecting the points —s F 10 on the complex z-plane, avoids the cut running
along the real negative axis. The integral being traversed in a positive (anticlockwise) sense. In this paper
we shall assume, without loss of generality, that the approximation (11) to the Adler function has only one
unphysical singularity located on the positive real axis. This is the case, for example, if we use the exact
(explicitly solved) two-loop order running coupling in MS like renormalization schemes.” On the other hand,
a running coupling at higher orders may be expanded in powers of the exact (explicitly solved) two-loop order
coupling [52,53]

00
K—loons —loops
a§ oop%)(Q2) — Z Cr(lk)as(two OOpq)n(Q2)|exactv (13)

n=1

7 The analytic structure of the explicit exact solution to the RG equation at the two-loop order has been determined in [25-27].
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ImQ?

Fig. 1 Contour in the complex O plane used in the Cauchy relation (15). Branch points on the real axis are represented by the
blobs and brunch cuts by the zigzagging line

where the numerical coefficients C,gk) are determined in terms of the B-function coefficients (see Appendix
A). It has been shown in [28] that this series has a sufficiently large radius of convergence in the space of the
coupling constants, and its partial sums provide very accurate approximations to the exact k-th order (k > 2)
coupling in the complex Q2 plane. To construct accurate approximations to the running coupling for small
values of |Q|?, one should retain sufficiently large number of terms in the partial sum. The Adler function
evaluated with this approximation to the coupling has an unphysical singularity located on the positive Q%-axis.
The corresponding cut runs along the finite interval of the positive Q2-axis. Nevertheless, formula (12) is still
valid provided that the integration contour avoids the physical and unphysical cuts.
Let us separate out the parton level term from the perturbative Adler function

Drai(Q?) = 1 +drai(Q%) : drai(Q?) = D drat(0?). (14)
k=1

where a;(0?) = o, (0Q3?) /7. As it was discussed above, the function drai(0?) is analytic except the cuts
running along the real Q2-axis. The physical cut runs along the real negative interval —oo < Q2 < 0, and the
unphysical cut runs along the positive interval 0 < Q2 < si, where the point Q% = Qi = 51, > 0 corresponds
to the “Landau singularity”. We may then write a Cauchy relation

1 d
dra1(Q?) = I —JG_I(IQUZ)
T

dw (15)

where the integral is taken round the closed contour I" drawn in Fig. 1. The contour consists of the arc of the
circle | Q% — sp| = s1, straight lines parallel to the real negative O axis and passes round a big circle. Using
formula (15) together with the asymptotic condition drgi(z) — 0 as |z] — oo, we derive a violated dispersion
relation (DR) for the function drgi(Q?). The violated DR reads

dra1(Q%) = dapr(Q?) + dL(Q?) (16)

where the function dapr(Q?) satisfies the normal DR

oo

1
dapr(Q?) = - /

0

Peft (0)
o+ 0?

do, (17

with the effective spectral density

pett (o) = Im{drgi(—0 —10)}. (18)
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It is to be noted here that the function

Dapr(Q%) = 1 +dapr(0?) (19)

is the analytic image of the perturbative Adler function determined in the sense of the analytic perturbation
theory (APT) approach of Shirkov and Solovtsov [35,36]. The second term in (16), which violates the DR,
corresponds to the contribution to the integral (15) coming from the “Landau branch cut”. It is represented by
the contour integral

1 d,
dL(0%) = 57 REI(QZ)

+
Cr

deg, (20)

taken round the circle {¢ : { = sy + sLexp (1¢), —7 < ¢ < 7} in the positive (anti-clockwise) direction.

The perturbation theory approximation to the hadronic spectral function is calculated by inserting the series
(14) into the inversion formula (12). An important point is that the “Landau part” di.(Q?) does not contribute
into the spectral function, provided that s > 0. To see this, let us rewrite this contribution to the spectral
function, with the aid of formula (20), as follows

| —s+10d ! 5 —s+10d J
201()|L = — 7{ L(Z)dZ _ (L ]{ dz RGI(C)dg
21 z 2w z .-z
—s—10 —s—10 CZ—
—s+10
== ! %d ( ) ! f ! d d (21)
B 27'[[ RGI ; 27-[1 Z(é— _ Z) < gv
ot —s—10

here we have interchanged the order of integration in the repeated integral. Let us consider the integral under
braces. For ¢ # 0 the integrand has two simple poles inside the contour of integration. It is evident that this
integral vanishes by the theorem of residues, provided s > 0,
—s+10
1
— —d
21 z2(¢ —2)
—s5—10

]

and the same result holds for ¢ = 0. We have thus found that only the “analytic component” dapr(Q?) gives
a finite contribution into the hadronic spectral function. Using DR (17) and inversion formula (12), one finds
the expression for the spectral function in terms of the effective spectral density (see [34,39])

UlfQCD(S) = Uzl‘\PT(s) — %(1 + V(S)), (22)
where
r(s) = l/ ’Oeff(a)do. (23)
T o

N

With the help of formula (22), we express the “perturbative component” of the total “experimental” Adler
function in terms of the effective spectral density

o
Dyqen(Q%, ) = / K(Q, 5)(1 +r(s))d s (24)
Sp
where we have introduced the notation (0?2, s) = Q2 /(s + 0%)2. Integrating (24) by parts we obtain a more
convenient representation

0’ 0’ i Peft (07)
ot e 7/ oo+

Sp

Dpocp(Q?,sp) = (25)
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Let us now evaluate power suppressed corrections to the total “experimental” Adler function (8). We may
rewrite the perturbative component of the Adler function identically

Sp

Dpacn(Q?,5p) = Dapr(Q?) — 2 / K(Q%, 5)vFT(s)d s
0
= Drai(Q?) — dp.(Q%) —2 / K(Q?, s)vPT(s)d s, (26)
0

in the first line of (26) we have used the definition of the analytic image of the Adler function

]

Dapr(Q?) = 1 +dapr(Q?) =2 / K(Q%, s)vPPT(s)d s, (27)
0

which is easily deduced from the discussion given above. The last equality on the right of (26) follows from
formula (16). The power suppressed part of the total “experimental” Adler function is determined as

Dps. (0%, 5p) = Deexp(Q?) — Dra1(Q?). (28)

Combining formulas (8), (16) and (26), we rewrite formula (28) in the form

Dps (0%, 5p) = Dexp.(0%, 5p) + Dpacn(Q2, sp) — Drai(Q?)

Z/K(Q2,s)2u‘f"1°'(s)ds —diL(0%) —/K(Qz,s)zv{‘PT(s)ds. (29)
0 0

From definitions (20) and (24), we obtain the asymptotic formulas
K(Q* )~ Q2+ 060™, du(Q) ~cA’Q 2 +0A*'0™ as Q7 — o0 (30)

where A = Ay, the conventional MS-scheme QCD parameter. Since the parameter st is proportional to
A23 the coefficient ¢y is a positive number independent of A

T
o= A2 ]{ drai(¢)d ¢ = Lo / drai(s. + sLe'®)d ¢ (31)
271 2w A2
cf -7

Using formulas (29) and (30), we write asymptotic expansion for Dp,S,(Qz, sp). It follows from the OPE that

the leading term proportional to Q2 in the asymptotic expansion vanishes if the quarks are massless. This
leads to the equation’

Sp Sp Sp

cL A%+ / 200 (5)d s = e L A? + 5, +/r(s)ds - /2UTXP'(S)dS’ (32)
0 0 0

the first equality in Eq. (32) follows from the relation (22). Using Eq. (23), by partial integration we find

P | Sp
/ F)ds = sprisp) + — / peit(0)d 0, (33)
0 0

8 The expressions for s;_ in terms of A up to fourth order in perturbation theory may be found in [28] (see, also, Appendix A).
9 The FOPT version of this equation reads f(ip vlFO ()ds = jg" vTXP'(s)d s (see [3]).
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here we have used the relation sr(s) — 0 as s — 0, which holds in every order of perturbation theory.
Combining Egs. (32) and (33), we obtain

Sp Sp
1
LA+ sp(1 +7(sp)) + - / peit(0)d o = / 2077 (s)d 5. (34)
0 0

The coefficient cr is calculated numerically from formula (31). In this calculation we use the exact (explicit)
two-loop running coupling and also exact (numeric) four-loop running coupling.'? The results are

(oI _ 0 421163, (U IOP — 555401 (35)

It follows from the mixed representation (4) for the spectral function that one may calculate in perturbation
theory the decay rate of the 7 lepton into hadrons of invariant mass larger than /s,

2

m'[
RV s>, = 61 Vua|*Sew / we (v (s)d s, (36)
Sp

where

1 s \? s
wer = U U2z )
T T T

Vi.a and Sgw denote the flavor mixing matrix element and an electro-weak correction term, respectively [6].

.. t. . .
The condition RE?{, |X>Sp = R:f‘e |S>Sp leads to the equation

m? m?
/w,(s)v?PT(s)ds =/wt(s)vTXp'(s)ds. (37)
Sp A'p

Using relation (22), we express the left hand side of (37) in terms of the effective spectral density. By integrating
by parts, after some algebra, we obtain

2

i APT 1 Sp ’ Sp
we (v (8)d s = 1 l_m_% 1+m_% (I +r(sp))
Sp

2
mz

L[ pett(s) s\ s

3 Numerical Results for the Parameters

To extract the parameters s, and A from the data we have to solve the system of equations

Sp

Dy (sp, A?) = / vy (s)d s, (39)
0
m?

Do(sp, AY) = / we ()} (s)d s, (40)
Sp

10° Application of the explicit series solution (13) for the four-loop coupling yield the same result.
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Table 1 The first solution for the parameters s, and A = Ay obtained at N?LO

Observable Approximation to the S-function

Two-loop Four-loop
sp GeV? 1.7112 £ 0.0539 1.7087 £ 0.0539
A GeV 0.3826 £ 0.0337 0.3483 +0.0297
o (m?) 0.3197 £ 0.0152 0.3214 +£0.0158

The two- and four-loop running couplings have been used. The extracted values of the strong coupling constant a (m2) are also
given. The error bars refer to the experimental uncertainty only

Table 2 The same as in Table 1 for the case of the second solution for the parameters

Observable Approximation to the B-function

Two-loop Four-loop
Sp GeV? 0.606 =+ 0.003 0.607 = 0.003
A GeV 0.583 +£0.018 0.522 +£0.016
o5 (m?) 0.417 £ 0.010 0.424 +0.011

where the functions @ » are defined as

1 (sp. A7) = 2(1 i Jo 4 L2 41
1(sp, A7) = 3( +r(sp)) + E/peff(g) o+ T @
0
Da(sp. AY) = (1 —5)° (1 + 5&@
ms
1 ,Oeff(s)(l 53 +5)ds, w)

4
SP

withsp = sp/ m% ands = s/ m% The right hand sides of Egs. (39)—(40) are determined in terms of the empirical

function vTXp'(s). We reconstruct the experimental vector spectral function from the ALEPH 2005 spectral
data for the vector invariant mass squared distribution which is publicly available [12] (see Appendix B). To
interpolate the spectral function between the measured (at discrete points) values, we use cubic splines.

We solve the system of equations (39)—(40) numerically using various approximations to the Adler func-
tion. Since the system is transcendental it has more than one solution. In Table 1, we present the first rea-
sonable solution for the parameters obtained at next-to-next-to-leading order (N?LO).!! From the Table,
we see that the predictions for s, are stable with respect to the loop corrections to the B-function. In this
regard, the predictions for the QCD scale parameter is more sensitive. The two values of A obtained with
the two- and four-loop SB-functions differ in about 10%. However, this corresponds to the small difference
Qs (m%)|four-loop — O (m%)|two-loop ~ 0.0017.

The solution for s}, obtained with the two-loop running coupling should be compared with the estimate
sp = 1.60 4= 0.17 extracted in [3] from the earlier ALEPH data. Our prediction for the central value of s, (see
Table 1) is greater in about 7%. However, with the more accurate data, we have obtained smaller experimental
errors on the parameters (see Appendix B). Our estimate for the central value, A{"o-1°0P} — 383 MeV is
somewhat above the value A{t"o-1°0P} = 372 MeV accepted in [3]. However, one should keep in mind that in
[3] only one equation, the FOPT counterpart of Eq. (39), has been utilized.

Note that the system (39)—(40) permits one more solution for the parameters in the range 200 MeV < A <
600 MeV (see Table 2). An attractive feature of this solution is that it predicts a smaller value for the onset of
perturbation theory: s, = 0.607 GeV? ~ m% (m,, stands for the p-meson mass). However, considering current
status of oy we find the extracted value for the strong coupling constant too large. For this reason, we decline
this solution.

I We will use the abbreviation N¥LO to denote the order O(ai‘“) approximation to the Adler function.
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Table 3 Numerical values for the parameters in the MS scheme extracted from the t data order-by-order within the modified
procedure based on APT™

Observable Approximation to the Adler function

LO NLO N’LO N*LO N*LO
Sp GeV? 1.6958 1.7063 1.7087 1.7097 1.7101
A GeV 0.4047 0.3576 0.3483 0.3466 0.3473
oy (m?) 0.3522 0.3263 0.3214 0.3205 0.3208

We also determine the experimental uncertainties on the parameters coming from the uncertainties of the
vector invariant mass squared distribution. The correlations between the errors of the distribution are properly
taken into account. Cumbersome technical details of the error analysis are relegated into Appendix B.

It is useful to determine the so-called indicative estimates of the theoretical uncertainties on the numerical
values of the parameters (for the definition see [22]). This requires us to test convergence of the numerical
results order-by order in perturbation theory. We use consecutive approximations to the Adler function from
LO to N*LO. For the unknown (’)(ozf) correction, we use the geometric estimate ds = d4(ds/d3) = 378 =378
[14]. The results for the extracted values of the parameters are presented in Table 3. Formally, we may write a
series for the numerical value of the coupling constant as follows

4
2 2
a5 (m?)Iniro = os(m?)lLo + D A,
k=1

where Ay = o (m2)|\ko — s (M2)|\k-110- Using the numbers listed in Table 3 (we use abbreviation APT+
for the modified APT accepted in this paper) we obtain the series

o <m3>|§§gg = 0.3522 — 0.0259 — 0.0049 — 0.0009 + 0.0003. (43)

The changes of the leading term induced by the consecutive corrections in the series are found to be: 7.35,
1.39, 0.26 and 0.09%. It is interesting to compare the series (43) with its counterpart obtained within standard
CIPT. In Appendix C, we have analyzed the same data within standard CIPT. We then obtain the series

o (m?)| (i o = 0.485 — 0.095 — 0.023 — 0.013 — 0.007, (44)
we see that within CIPT the corrections provide more sizable changes of the leading term: 19.6, 4.74, 2.68
and 1.44%. The ratio A;(CIPT)/Ax(APTT) monotonically increases as a function of k from 3.7 at k = 1 to
23.3 at k = 4. Evidently, the series (43) converges more rapidly than the series (44). The indicative estimate
of the theoretical uncertainty is determined as a half of the last retained term in the series [22].!? As pointed
out in [22], the error defined in this way is heuristic and indicative. The actual values of the theoretical errors
related to the uncalculated higher order terms in the perturbation theory series for the decay rate might be even
larger (see, for example, papers [6,22,23,44]). In this paper, however, we shall consider only the indicative
theoretical errors. From the series (43), we obtain the estimates

as(m?)|NLo = 0.3263 £ 0.0159xp. £ 0.0130y,
as(m?) N2 o = 0.3214 £ 0.0158xp, £ 0.0025,
a5 (m?) oo = 0.3204 £ 0.0159xp, £ 0.0005¢,
as(m2)|nsLo = 0.3208 £ 0.0160cxp, £ 0.00024,

(45)

here we have also included the experimental errors. Analogically, from the CIPT series (44), one obtains

as(m?)InLo = 0.390 = 0.011exp. %+ 0.048,
a5 (m2)|n2Lo = 0.367 £ 0.009¢xp. & 0.0124,
s (m?) 3o = 0.354 %+ 0.008xp & 0.0074,
s (m?)aro = 0.347 £ 0.008¢xp. % 0.0044,

(46)

12 1 [22] this definition of the uncertainty has been used within FOPT.
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here we have intentionally kept three decimal places, since the theoretical errors in this case are larger. The
N*LO estimates in (45) and (46) correspond to the central value ds = 378. The additional theoretical error
induced from the uncertainty in the unknown coefficient ds takes the values 0.0002 and 0.0007 in the new
and standard extraction procedures, respectively. Comparing the numbers in formulas (45) and (46) we see
that the indicative estimates of the theoretical error on the extracted numerical values of the coupling constant
within the new procedure are considerable smaller. In contrast to this, the experimental errors on the values
of oy within the new procedure increases by the factor of 2. It is remarkable that a more reliable estimate of
the theoretical error presented in [14] is close to the NLO and N*LO values of the indicative error given in
formula (46).
Similarly, determining the indicative theoretical errors on the parameter sp, we find stable results

spINLO = 1.7063 + 0.0539y, & 0.0525,
spln2Lo = 1.7087 % 0.0539yp & 0.00124,

splito = 1.7097 % 0.0540.,, + 0.00064,
splnito = 1.7101 4 0.0540e, + 0.00024,,

(47)

Notice that the ratio oy (sp)/cs (m%) ~ 1.22 is close to 1. Nevertheless, it is reasonable to investigate the
applicability of the perturbation theory in the APT* framework. The issue of the applicability of perturbation
theory in 7 decays has been previously addressed in [54]. It was pointed out that this question is phenomeno-
logical one, and it cannot be answered yet from theoretical grounds. In particular, the decay rate of the t lepton
into hadrons of invariant mass squared smaller than s (sg < m%) has been analyzed within FOPT. Using the
ALEPH spectral data, the authors of [54] have confirmed that the rate can be calculated in pQCD with high
accuracy for sg > Spin. = 0.7 GeV2. Note that our estimate for sp satisfies this inequality, sp/Spmin. ~ 2.4
Nevertheless, it is desirable to investigate numerically the convergence of the perturbative expansion within
APT™. To this end, let us consider the expression for the T-lepton decay rate, formula (36). The integral on
the right of (36) can be approximated by a non-power series. To derive the non-power series, we express the
spectral function in terms of the effective spectral density using formulas (22) and (23). Then we expand the
function pefr(s) in perturbation theory using formulas (14) and (18). So, we obtain

5
RV 1555 = REY Lissp /16 ViaISEW) = D dii(m?. s5p) (48)
k=0
where
Ao(m3, sp) = f(sp/m32), (49)
m?
1 (o/m?)
Wi=1(m?, sp) = ri(sp) f (sp/m?) — -~ / %pfc(o)d o, (50)
S

P

here we have used the notations: f(x) = }‘(1 —x)3(1 +x) and

ok(0) = Im{a¥ (—o — 10)},

~ (51
1
ri(sp) = ;/ pkia)da.
Sp

The first term in the series (48), g, corresponds to the (modified) parton level contribution to the rate. We
calculate the functions 2l numerically by using analytic expressions for the functions pi (o) (see formula
(65) in Appendix A). In the calculation, we employ the four-loop running coupling. For the parameters s, and
A = Aygg, we use the numerical values from the Table 3, namely, the values extracted from the ALEPH data
within APT* at N*LO. Using analytically known coefficients dy, k = 0 — 4 and the estimate ks = 378, we
obtain from Eq. (48) the expansion

ert.

RV ls>s, = 0.3714- 107" 4+ 0.3336 - 1072 4 0.4074 - 107* 4 0.9624 - 10~*
+0.3351 - 10~% 4 (0.5091 - 107°) ~ 0.04102. (52)
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Table 4 Comparison of the expansion functions 2y (m%, sp)s Ak (m%) and the powers of the “couplant” ag (m%)

k ak(m?) Ay (m?) Ay (m?, 5p)

1 0.1021 0.1511 0.3335- 1072
2 0.1043 - 107! 0.1876 - 10! 0.2485-1073
3 0.1065 - 102 0.2000 - 102 0.1511-1074
4 0.1088 - 1073 0.1834-1073 0.6829 - 1076
5 0.1111-1074 0.1383 - 1074 0.1347 - 1077

The four-loop “couplant” is calculated using the value A = 0.3473 GeV. To calculate the functions 2y (m%, sp), we have used the

values Alys o = 0.3473 GeV and sp|ns o = 1.7101 GeV obtained within APT*. To calculate the functions Ay (m2) we have
used the value A|ys o = 0.395 GeV obtained from the ALEPH data within CIPT

Consider now the non-power expansion for the perturbation theory correction §©) obtained within CIPT in
[19] (see Appendix C)

st = D diAx(m?), (53)
k=1
where
Ap(m?) = ! / Re{(1 — €'?)(1 + '?)’ak (m2e'?))d ¢,
T

0

to calculate these functions numerically, we employ the numerical value for the scale parameter A that has
been extracted from the ALEPH data within CIPT at N*LO (see Table 12 in Appendix C). At N*LO, from
Eq. (53), we find the expansion

88 =0.1513 +0.3081 - 107! +0.1276 - 107! +0.9012 - 1072 4 (0.5233 - 1072) ~ 0.2091.  (54)

Comparing the numerical expansions in Eqs. (52) and (54), one sees that the APT™ series (52) displays a
faster convergence. In the CIPT expansion (54), the corrections provide a 38% change of the leading term. In
contrast, in the APT™ expansion (52) they provide only a 16% change of the leading term (we recall that the
leading QCD correction in (52) is the second term in the series).

The rapid convergence of the series (52) may be explained due to the specific properties of the expansion
functions 2, (m%, sp). The set of functions {2y (m%, sp)} can be viewed as a generalization of the analogical
set of functions considered in the Shirkov—Solovtsov APT (for properties of the APT expansion functions
see [37]). In Table 4, we have compared functions 2y (m%, sp) with the functions A (m%). For the sake of
comparison, we also include in the Table the powers of the “couplant” a; (m%). It is seen from the Table that
the functions 2y (m%, sp) decrease with k much more rapidly than the functions Ay (m%) and af (m%).

Usually, it is convenient to perform evolution of the «; results to the reference scale M, = 91.187 GeV.
This is done by using RG equation and appropriate matching conditions at the heavy quark (charm and bottom)
thresholds (see [55] and literature therein). The three-loop level matching conditions in the MS scheme were
derived in [56]. In this paper, we follow the work [57], where a very accurate analytic approximation to the
four-loop running coupling was suggested. We perform the matching at the matching scale my, = 2uy, where
uh is a scale invariant MS mass of the heavy quark pup = 7h(in). We assume for the scale invariant MS

masses the values . = 1.271“8:(1)? GeV and up = 4.201’8:(1); GeV [58]. Following [57], we evaluate the central

value and error of o (MZZ) using the formulas
as(M?) = (af (M2) + a7 (M2)/2 and Aay(M2) = (af (M2) — a; (M2))/2

where oz§IE M Zz) denote the values obtained from océt (m%) =y (m%) + Ao (m%). In the evolution procedure, we
have used the exact numeric four-loop running coupling.' In Table 5, we compare the estimates for oy (M 12)

obtained within the new (APT™) and standard (CIPT) procedures. It is seen from the Table that the estimates
obtained within APTT at N?LO, N>LO and N*LO orders practically coincide.

13 We have confirmed that the approximate analytical coupling derived in [57] leads practically to the same numerical results.
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Table 5 Estimates for o (M. Zz) obtained from the ALEPH t lepton decay data order-by-order in perturbation theory

Approximation oy (M 2) | APT+ oy (M ,2) |crpT

N2LO 0.1187 +0.0019 +£ 0.0005 0.1238 4 0.0009 + 0.0005
N3LO 0.1186 +0.0019 +£ 0.0005 0.1224 4+ 0.0009 +£ 0.0005
N‘LO 0.1186 4+ 0.0019 £ 0.0005 0.1217 4+ 0.0009 +£ 0.0005

The results obtained within APT" and CIPT are compared. Two errors are given, the experimental (first number) and the error
from the evolution procedure (second number)

Table 6 Comparison of the “experimental” Adler function Deexp.~( Q2) and its QCD component DPQCD(Qz, sp) at low energies

Q GeV Deexp(0?) Dpocp (02, 5p) o (Deexp.”) relerr. (%)
0.1 0.0649 0.0063 0.0061 9.5
0.2 0.2300 0.0249 0.0198 8.6
0.3 0.4354 0.0545 0.0333 7.7
0.4 0.6320 0.0933 0.0426 6.7
0.5 0.7944 0.1391 0.0473 6.0
0.6 0.9162 0.1895 0.0484 5.3
0.7 1.0016 0.2426 0.0471 4.7
0.8 1.0583 0.2965 0.0445 4.2
0.9 1.0942 0.3497 0.0412 3.8
1.0 1.1157 0.4013 0.0377 3.4

The perturbative component is evaluated within APT* at N>LO using the four-loop running coupling. The absolute and relative
statistical errors of the “experimental” Adler function are tabulated

4 Numerical Results for the “Experimental” Adler Function

Looking at the numbers in Table 1, we see that our estimates for the parameters are somewhat different than
those used previously in [3]. Hence, it is sensible to recalculate the experimental Adler function in the infrared
region. Another reason to do this is the appearance of the improved t data [12]. More importantly, it is desirable
to carry out the error analysis too. Furthermore, in contrast to [3], in our calculations we will employ APT.

The “experimental” Adler function and its QCD component are tabulated in Table 6. The QCD component
of the “experimental” Adler function is calculated numerically at N>LO from formula (25). In the calculations
we employ the four-loop running coupling. For the parameters s, and A, we use the values from Table 1. The
absolute (£10) and relative (in percents) experimental errors of the “experimental” Adler function are also
tabulated. The error analysis is described in Appendix B. We see from the Table that the pQCD component
has sizeable contribution to the total “experimental” Adler function. Its contribution increases monotonically
with Q from 10% (at Q = 0.1 GeV) to 36% (at Q = 1 GeV).

To test the stability of the numerical results to the QCD corrections to the S-function, we have compared
two results for the “experimental” Adler function that are obtained with the two- and four-loop exact running
couplings. The pQCD component has been evaluated within APT* at N?LO. For the parameters spand A, we
have used the central values given in Table 1. In the region O = 0— 1.5 GeV, the difference between using the
two- or four-loop approximation to the S-function is found to be quite small (~0.05%). The approximation
corresponding to the two-loop running coupling takes slightly large values.

To test the stability of numerical results to higher order perturbation theory contributions, we use various
approximations to the pQCD component (see Table 7). We see from the Table that the differences between the
consecutive approximations to the “experimental” Adler function slowly increase as a function of the scale.
Already, the leading order approximation provides a very accurate result. At O = 1.5 GeV (where the changes
induced by the loop correction take maximal values) the differences between consecutive approximations (i.e.
the differences between the N<~'LO and NKLO approximations) take the values 0.2, 0.04, 0.02 and 0.01% for
k =1, 2,3 and 4, respectively.

It is instructive to investigate numerically the convergence property of the non-power series for the per-
turbation theory component DpQCD(QZ, sp). The non-power series is obtained from formula (25) by using
perturbation theory expansions for the function pefr(s) and r(s) (see formulas (14), (18) and (23)). The non-
power series read

Dpacn(Q%, 5p) = D diDr(Q%, 5p), (55)
k=0
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Table 7 Different approximations to the “experimental” Adler function as a function of the scale

0 GeV DL}, -(0%) D, -(0%) DY), -(0%) DY, -(0?) D), -(0%)
0.1 0.06492 0.06494 0.06494 0.06494 0.06494
0.2 0.22995 0.23003 0.23004 0.23005 0.23006
0.3 0.43523 0.43540 0.43544 0.43546 0.43547
0.4 0.63164 0.63195 0.63201 0.63204 0.63207
0.5 0.79382 0.79428 0.79438 0.79443 0.79445
0.6 0.91546 0.91610 0.91623 0.91630 0.91633
0.7 1.0006 1.0015 1.0016 1.0017 1.0018
0.8 1.0571 1.0581 1.0583 1.0584 1.0585
0.9 1.0927 1.0939 1.0942 1.0943 1.0944
1.0 1.1256 1.1272 1.1276 1.1277 1.1278
1.5 1.1297 1.1320 1.1324 1.1327 1.1328

The function D‘(.I;ip‘,,(Qz) is constructed with the pQCD component evaluated within APT* at N*=DLO. The QCD running
coupling to the four-loop order is used

Table 8 The ratios of the consecutive terms in the non-power series (55) as a function of the scale

Q GeV R1(0%) R>(0?) R3(0?) R4(0%) Rs(0?)
0.1 0.079 0.114 0.229 0.362 0.219
0.3 0.079 0.113 0.229 0.362 0.221
0.5 0.078 0.113 0.229 0.362 0.224
0.7 0.078 0.112 0.228 0.363 0.228
1.0 0.076 0.111 0.227 0.364 0.235
1.3 0.075 0.109 0.225 0.365 0.242
1.5 0.074 0.108 0.224 0.365 0.247
1.8 0.072 0.107 0.222 0.366 0.254
2.0 0.071 0.106 0.221 0.366 0.258
where
Q2
Do(0%, 5p) = —————, (56)
PP (sp 4+ 09
o0
0? 0? k(o)
Dp=1(Q%.5p) = ————>rilsp) — — [ ————>-do, (57)
(sp + Q%) b4 o(o+ Q%)
Sp

the functions pi (o) and ry (sp) are defined in Egs. (51). Let us truncate the non-power expansion (55) at N4LO

(i.e. for k = 5). Using the N*LO estimates for the parameters given in Table 3, we evaluate the ratios of the
consecutive terms of the series

Ri(Q%) = (di/di—1)Dr(Q%, 5p)/D—1(Q?, 5p),

with k = 1 — 5. In Table 8, we tabulate numerical values of these ratios in the region O = 0.1 — 2 GeV.
It is seen from the Table, that the magnitudes of the ratios are sufficiently small to guarantee fast numerical
convergence of the series: Ri(0?) < 0.366 for k = 1 — 5, for all values of Q in the considered interval.

Let us now compare our numerical results on the “experimental” Adler function with the previous results
given in [3]. First, we repeat the calculation described in [3] with the improved data. Assuming the value
Ay = 372 =76 MeV used in [3], we solve numerically the FOPT counterpart of the equation (39). Thus
we find the solution s, = 1.621 £ 0.163 GeV?. The central value of this estimate is slightly large, by 0.021,
than the value obtained in [3]. Using the values s, = 1.621 GeV? and Ays = 372 MeV, we calculate
the “experimental” Adler function within the (modified) FOPT at N?>LO. This is compared with the new
approximation which is computed in the same order within APT™. In the case of APT™, we use the values
Ay = 383MeV and s, = 1.711 GeV? (see Table 1). To be consistent with [3], we use the two-loop exact
running coupling. In Table 9, we compare numerically these approximations to the “experimental” Adler

function, the functions ng(g_?,(Qz) and D“Aefg; (0?). From the Table, we see that the functions are close, but
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Table 9 Comparison of the “experimental” Adler functions evaluated within the modified FOPT and APT™

0 GeV DISPL(0?) DT (0?) rel.diff. (%)
0.1 0.0651 0.0649 031
0.2 0.2305 0.2301 0.20
0.3 0.4364 0.4355 021
0.4 0.6336 0.6321 0.24
0.5 0.7967 0.7945 0.28
0.6 0.9191 0.9164 029
0.7 10050 1.0018 032
0.8 1.0621 1.0586 033
0.9 1.0982 1.0945 0.34
1.0 1.1197 1.1160 033
1.1 1.1316 1.1280 032
12 1.1371 1.1337 0.30
13 1.1386 1.1355 0.27
1.4 1.1377 1.1350 0.24
1.5 11354 11330 021

The pQCD components of the functions are constructed at N>LO using the two-loop order running coupling. The function
ng(gx(Qz) has the pQCD component evaluated with the values Ay = 372MeV and s, = 1.621 GeV2. The pQCD component
of the function Dﬁg{fﬁ (Q?) is evaluated using the values Agg = 383 MeV and s, = 1.711 GeV?2. The relative difference between

these functions is also tabulated

ng(gz(Qz) > D“’\eig.,, (0?). The relative difference between the functions in the considered region varies in

the interval 0.20-0.34%.

5 Conclusion

We have extracted the numerical values of the strong coupling constant «; and the parameter s, (the square of
the boundary energy) from the non-strange vector t data provided by ALEPH. Based on the semi-empirical
representation (4) for the hadronic non-strange vector spectral function, we have developed a modified extrac-
tion procedure. This procedure enabled us to avoid direct application of the standard OPE formalism in
Minkowski space. The distinguishing feature of our analysis is that we have determined the two parameters
(a5 and sp) simultaneously from the data.

In Sect. 2, we have derived a violated DR for the RG improved perturbation theory correction to the Adler
function, the formula (16). Using the violated DR, we have shown that the perturbation theory component
of the “experimental” spectral function should be determined via the APT formula (22). This determines the
hadronic spectral function in terms of the effective spectral density, peff (0 ), the basic object of the perturbation
theory calculation. To specify the difference between the APT and APT™ frameworks, a few comments are in
order:

i) In APT the expression (22) for the spectral function is used in the entire region 0 < s < 0o, whereas
v1(s)|apr+ = 0for 0 < s < sp.

ii) In APT the RG improved a;z)proximation to the Adler function, Drg1(Q?), is replaced with corresponding
“analytic” image DapT(Q7) from the outset. Then formula (28), the definition of the power suppressed
contributions to the Adler function must be suitably modified. In our paper, we do not mention this
procedure.

We have then obtained a convenient expression for the pQCD part of the “experimental” Adler function in
terms of the effective spectral density, the formula (25). Using the violated DR (16), we have determined the
power suppressed corrections to the “experimental” Adler function, the formula (29). Making further use of
the consistency condition from the OPE for the “experimental” Adler function, we have derived Eq. (34).
This equation relates the parameters sp and A to the values of the hadronic spectral function on the range
0 < s < sp. Next we used the ansatz (4) for the spectral function to calculate the T decay rate R;y |S>xp. In this
way, we have derived Eq. (37) which relates the parameters to the integral of the hadronic spectral function
(multiplied by known function) over the range s, < s < m%

In Sect. 3, we have solved, numerically, the obtained system of equations for the parameters s, and
A = Aggg. To examine the convergence of the numerical results for the parameters, we have used perturbation
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theory approximations to the Adler function up to the N*LO. The indicative estimates of the theoretical errors
defined in [22] have been used as a criterion of the quality of the approximations. Based on this criterion, we
have demonstrated that the new framework (APT™), compared to the standard one (CIPT), provides a better
numerical convergence for the extracted value of the coupling constant o (m%). The central values of the cou-
pling constant extracted within APT™ at N2LO, N3LO and N*LO practically coincide (see Eq. (45) and Table
5). It is remarkable that the central values of the coupling constant extracted within APT™ in different orders of
perturbation theory become systematically smaller as compared to the corresponding values obtained within
CIPT (cf. formulas (45) and (46)). The changes in the central values are not within the quoted experimental
errors. However, we remark that the new procedure as compared with the standard one has a shortcoming. It
leads to more large experimental error (by the factor ~ 2) on the coupling constant. Nevertheless, the central
values of «a; (m%) in formulas (45) and (46) differ from each other in about 1.7 standard deviation.

We have confirmed that the extracted numerical value for the parameter s, is remarkable stable against
perturbation theory corrections. The associated indicative theoretical error systematically decreases with the
order of the approximation. Thus to the N>LO and N*LO orders the errors take the values 0.03 and 0.01%,
respectively. Our result for the central value of this parameter is higher in about 7% than the value obtained
previously in [3].

To justify the applicability of APT™ in calculations of the 7-lepton decay rates, we examine numerically the
APT™ series. The APT™ expansion for the rate Ry y s~ sp Tepresents asymptotic expansion over a non-power

set of specific functions {2, (m, sp)} rather than the powers of a; (m%). It has been shown (though empiri-
cally) that the non-power series exhibits an improved convergence. The APT™ and CIPT series for the rates
Rf,y|s>xp and R; v have been compared numerically. We have confirmed that the APT* expansion displays
a faster convergence.

Our prediction for the strong coupling constant is in good agreement with the recent high precision deter-
mination of o (m%) presented in [16]. Their estimate within CIPT (extracted from the non-strange vector ©
data provided by ALEPH) is

as(m2)y = 0.321 % 0.007exp. & 0.0124,. (58)

In this work, particular sum rules derived within CIPT and FOPT have been employed to suppress the contribu-
tions associated with poorly known higher dimension condensates. These contributions are known to be large
in the vector and axial vector separate channels. Remarkably, the central values of the coupling constant in
formulas (58) and (45) coincide. Our approach based on a different technique confirms that there is a theoret-
ical systematic uncertainty not included in the error assessments obtained in previous studies by ignoring the
higher order OPE contributions, the conclusion achieved in work [16]. In this connection, our study suggests
that the truncated OPE series cannot approximate sufficiently accurately the integrals of the spectral function
over the low energy region 0 < s <5, ~ 1.7 GeV?2.

We would like to remark that our results for the coupling constant (see Table (5)) are close to the N2LO
estimate obtained in [22]

oy (Mf)|v+A = 0.1184 4= 0.0007¢xp. == 0.0006pg mass» (59)

where the subscript on the left side of Eq. (59) denotes that the coupling constant has been determined using
the V 4+ A spectral function. As we have already discussed, the authors of [22] developed a RG invariant
framework which was utilized within FOPT. One may combine the RG approach with CIPT too. However,
in this case, we expect that the extracted value for o, will be larger than the value quoted in formula (59),
since the values of «; extracted from 7 decays employing CIPT have always been larger than those obtained
employing FOPT.

In Sect. 4, we have recalculated the “experimental” Adler function within the APT™ prescription using
the new estimates for the parameters s, and A. In addition, we have determined the errors on this function
coming from the uncertainties of the parameters and spectral function. Numerical results for the Adler function
obtained within APT™ have been found to be remarkable stable in perturbation theory. To check the numerical
stability we have used the pQCD components for the Adler function up to (and including) N*LO (see Tables 6
and 7).

In Appendix A, we have given practical formulas for numerical calculation of the MS running coupling
at higher orders. The Lambert-W solutions to the RG equation have been reviewed. A very accurate analytic
approximation to the effective spectral density pefr(o) at higher orders is derived. In Appendix B, we have
derived formulas within APT™T for calculating the experimental uncertainties on the extracted values of the
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parameters. A formula for calculating the errors on the “experimental” Adler function is also derived. In Appen-
dix C, we have analyzed the ALEPH non-strange vector spectral data within the standard CIPT prescription:
We have performed some necessary calculations needed for comparing the CIPT and APT™ prescriptions (see
Sect. 3).

The procedure suggested here can obviously be extended to analyze the non-strange t-data from the axial-
vector (A) and vector plus axial-vector (V + A) channels. This may be done by extending the ansatz (4) to
the axial-vector hadronic spectral function too. To check the reliability of the new extraction procedure, it is
desirable to compare the V, A, and V + A determinations of the coupling constant. To estimate total theoretical
errors on the extracted values of the parameters A and s, it is mandatory to define an analogical procedure
within the FOPT prescription too. It should be remarked that a shortcoming of the ansatz (4) is that it com-
pletely ignores the non-perturbative contributions to the spectral function coming from the region s > s,. The
importance of these contributions for accurate determination of the coupling constant has been demonstrated
in recent study [10]. We hope to report on these aspects in future publications.
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Appendix A: A Series Solution to the Renormalization Group Equation

In our notation the RG equation for the running coupling reads

d

T ge® = Blas) = —al > pual, (60)

n=0

where a; = a,(0?) = a,(0?) /7 with o (0?%) being the running coupling. In the MS scheme, the B-function
coefficients are known to four loops [60]. For three active quark flavours the first four coefficients take the
values

Bo=9/4, Bi=4, Br=10.05990, p3=47.22804.

In general, the RG equation (60), to an arbitrary order in perturbation theory, can not be solved explicitly
for the coupling. Usually, the equation is solved in the asymptotical regime IQ\—E > 1. For our purposes the
asymptotic solution is not suitable, since we need an accurate solution at relatively low energies. One may, of
course, solve the RG equation numerically. However, it is more convenient to derive some accurate analytic
approximation to the coupling. Fortunately, it is possible to solve the RG equation explicitly for the coupling
at the two-loop order [25,26]. The explicit expression for the MS scheme running coupling at the two-loop
order reads

—1/b;
oy P 1 (Q_z) 1
4" (C) Bil+W_i(0)" ¢ eb; \ A? ’ ©b

where fo and B are the first two B-function coefficients

s L (1122 o= L (1003
0= 7% 3 ) Pl =16 3 )

by = Bi1/ ,Bg, A = Ayg and W_ denotes the branch of the Lambert W function [61].
The coupling to higher orders may be expanded in powers of the two-loop order coupling [52,53]

a*2 (0% =3 a0, (62)

n=1



Testing the Concept of Quark—Hadron Duality 161

The first two coefficients in this series are universal: cgk) = land cgk) = 0 (the condition cgk) = 0 follows from

the conventional definition of the A parameter). Other coefficients are determined in terms of the S-function
coefficients. The four-loop expressions for the first several coefficients are given by

WP B C<4>=§(@)2_%
B Y 2800 7 3\ 6By

It was proved in [28] that the series has a finite radius of convergence, and the radius is sufficiently large for
all n s values of practical interest. Partial sums of the series (62) provide very accurate approximations to the
higher order coupling in the wide range of Q2. In particular, these approximations may be safely used at low
energies. Thus, for 0 = 1 GeV and A = 0.347 GeV, the partial sum with the first twelve terms reproduce
the exact four-loop coupling with the precision better than 0.02%. Using the exact solution (61), the analytical
structure of the two-loop coupling in the complex Q>-plane has been determined [25,26]. It was found that
the coupling is an analytic function in the whole complex plane except the cuts running along the real Q2 axis.
Besides the physical cut {Q? : —oo < Q2 < 0} corresponding to the logarithmic singularity at Q% = 0, there
is also the “Landau” cut {Q? : 0 < Q% < Q%} corresponding to the Landau singularity on the positive Q2-axis.
The Landau singularity is a second order algebraic branch point located at QZL = bl_h‘ A? (bl_h1 ~ 1.205 for
n ¢ = 3). The relevant branch of the Lambert function on the complex Q? plane is determined by the analytical
continuation. For the physical vales of ny (0 < ny < 6) the relevant branch is W_; on the upper-half plane,
whereas the branch is Wj on the lower-half plane. A limiting value of the coupling from above the physical
cut (0% = —o 410, 0 > 0) is then determined by [27]

@ __bPo ! ; _ ey oo (L
a;”(—o +10) = BT W) with §+_eb1 (A2) exp | —imw b 1), (63)

similarly, one may write

(g — 0y = P01 - _ Loy 1_
a;”(—o —10) = B TT Wi with ;‘__ebl <A2) exp {17 b 1)t. (64)

Note that the limiting values as(z)(—a =+ 10) satisfy the Schwarz ‘principle of reflection’, a§2)(—a —10) =

as(z) (—o +10), provided that W has near conjugate symmetry [61]:
Wi (@) = W_i(2).

We may construct an analytic approximation to the Adler function in perturbation theory using formula (62)
for the four-loop running coupling. In this approximation, the Adler function is an analytic function in the cut
complex Q7 plane. It has the branch points at Q> = 0 and Q? = Q% = bfbl A% > 0. The effective spectral
density (18) associated with the Adler function is then readily calculated, leading to the analytic expression

N n
peft(0) =1m 1 D" d, (Z caP" (—o — 10)) : (65)
n=1 m=1

where N > 3 and a§2> (—o —10) is determined in terms of the W function as given in formula (64). Formula
(65) considerably simplifies numerical calculations of integrals of the effective spectral function (computer
algebra system Maple has an arbitrary precision implementation of all branches of the Lambert function). In the
most of the calculations, we have used the truncated series (62) for the four-loop running coupling preserving
the first twelve terms in the series. Numerical values of the first twelve coefficients of the series, forny = 3
quark flavours, are tabulated in Table 10.
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Table 10 Numerical values of the first twelve coefficients in the expansion (62) for the four-loop running coupling at ny = 3
quark flavours

n Cn n Cn

1 1 7 392.1241
2 0 8 2413.463
3 3863/864 9 8248.857
4 10.49512 10 31348.18
5 27.09804 11 147697.8
6 190.2642 12 507565.0

Appendix B: The Error Analysis
In this appendix we will evaluate the experimental errors on the extracted values of the parameters. We will
also determine the errors on the “experimental” Adler function. The main quantity employed in our analysis is

the vector (non-strange) spectral function vy (s). It is related with the vector invariant mass squared distribution
(the function s fm?2(s) in the notations of [12])

vi(s) =k (s)sfm2(s), (66)

the kinematical factor « (s) is

N m? By 1 67
<O =N s (5.) TR I v

where | V4| = 0.97464+0.0006 denotes the flavor mixing matrix elements, the factor Sgw = 1.0198 £0.0006
is an electro-weak correction term, m; = 1777.03Jj8§6 MeV, By = (31.82 +£0.22)% and B, = (17.810 &
0.039)% are the vector and leptonic branching fractions, respectively (in this paper, we assume these estimates
following [11]), AV is the normalizing constant

5 —1

mf
1
— 2(s)d N
N / sfm2(s)d s 0.794748
0

The quantity sfm2(s) is measured at 140 equidistant values of the energy squared variable starting from
s1 = 0.0125 GeV with the bin size Ap;, = 0.025 GeV2. Note that the factor Kk (s) is determined within an
accuracy of less than 1% for all values of s in the range s = 0 — m%, while the errors in determination of
sfm?2(s) are considerably large. Hence, it is safe to ignore the uncertainties coming from the factor « (s). We
may then write

oy1lk] = |k (s)losrmalk], k=1,...140 (68)

where oy, [k] and o2 [k] stand for the standard deviations of vy (sx) and sfm2(sx), respectively, and s =
s1+ (kK — 1) Apin (k=1,2...). By definition

og [k] = E[(v1 (s¢) — v1(s0))°], (69)

etc.!4 Similarly, the covariance matrices of the errors associated with the quantities v{(s) and sfm?2(sx) are
related by the formula

14 The symbol E[x] refers to the mean value of x.



Testing the Concept of Quark—Hadron Duality 163

Table 11 A few measured values of sfm?2(s) and v (s)

s GeV?2 sfm2(s) Osfm2 () v1(s) oy, (5)

0.0875 0.004923 0.001251 0.006027 0.001531
0.1125 0.022630 0.003092 0.027745 0.003791
0.1375 0.037048 0.004520 0.045504 0.005551
0.1625 0.056542 0.005747 0.069597 0.007074
0.1875 0.073407 0.005875 0.090583 0.007250
0.2125 0.095429 0.006541 0.118095 0.008095
0.2375 0.122440 0.007574 0.152005 0.009403

The standard errors for these quantities are indicated

Cix = ke (s:)x (51)Cix, (70)

where C;; = cov(v;(s;), vi(sx)) and @ik = cov(sfm2(s;), sfm2(sx)). So that respective correlation coeffi-
cients coincide

Cu . &
oy1lkloy /] UsfmZ[k]Usf'mZ[l]
In Table 11, we present a few measured values of s fm2(s) and v (s) together with the associated uncertainties.
Our goal is to estimate the uncertainties on the extracted values of the parameters induced from the experi-

mental uncertainties of the spectral function. We start from the system of (39)-(40), which we rewrite in the
form

Ry = (71)

Qi(x, y) = &i(x, fur}) (72)
Q2 (x, y) = & (x, {vi}) (73)
where we have introduced the notations x = sp, y = A% and
X
Eilx, {vi}) = / vi(t)d t

0

2
T

E(x, {v1}) =/wr(t)v1(t)dt,

X

m

to avoid a cumbersome notation the superscript “exp.” in function vap' (s) has been omitted. The solution to
the system (72)—(73) should be considered as a functional of v;(s). Let a solution for the parameters, for a
given function v (s), is

x =vY1({v}) (74)
y =vyn({vi}). (75)

we may write vi(s) = v1(s) + dvi(s), where vy (s) is the central (average) value and dv;(s) is the deviation.
The central values of the parameters should be determined by solving the system (72)—(73) for vy (x) = vy (x)
(see, for example, the book [59]) i.e.

x =y1({v}) (76)
y = ¥2({v1}). (77)

Let us expand the functionals & 2(x, {v1}) in powers of a small variation v (s), preserving the terms linear
in 8x and Sv;(s)

E1(x, {v1}) = P1(x, y) + dxv1(x) +/8v1(t)dt + - (78)
0

2
T

E(x, {v1}) = P2(X, y) — w (X)v1(X)dx +/wr(t)3v1(t)dt +- (79)

X

m
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here use has been made of the equations &1 2 (x, {v1}) = ®1.2(x, ¥). Insert these expansions into Egs. (72)—(73)
and expand the left hand sides of the equations in powers of éx and §y

0P X,y 0P X,y
1,2(_)6 y)5x+ 1,2(_X y)5y+
0x ay

Dra(x,y) =P1o(x,y) +

Retaining terms linear in §x, 8§y and §v;, we are led to the following linear algebraic system of equations for
the variations §x and 8y

A15x + B1dy = G

80
Aréx + Brsy = Ga, ®0
where
0D (x,y) _ _ 0P (x,y
4 2 ED 5oy JIRED =/av1<r>dt,
0x ay
0
m3
0D (x, y o 0do(x, y
Ay = M + w:(X)v1(x), By = M, G> :/w,(t)&vl(t)dt.
0x dy J
X
Using the explicit formulas (41) and (42), after some algebra, we obtain
001 (x,y) (1 +7(x)
ax 2
30 ,( ) 1 In(x/y)
1 xa y ~ t CL
dy 3 / Peft ()e + 3
—00
P (x, y) (1+7rx)) x
= Pl=
dax 4m? m?2
In(mz /) .
8CI>2()C, y) l / ~ ! ye
= t P A )
% dm? Pett (1)e 2
In(x/y)

where pefr (1) = pefr(0) with o = A exp(?), P(z) = 2(z — 122z + 1), and r(s) is defined in (23). After
solving the system (80), we take the averages of the deviations squared (the variances)
(6x)2 = (B3G? + BXG2 — 2B, B,G1G,) /D>

o ! - (81)
(8y)? = (ATG} + AJG? — 24, 4,G,G,)/D?,

where D = A| B, — A>Bj, and the overlined symbols refer to the averages: (ch)2 = E[(x — ¥)?] etc. To

calculate the averages G2, G% and GG we replace the integrals G2 by sums over the equidistant mesh,
using the trapezoidal rule,

np ne
G~ A ngﬁvl(l‘k), Gy~ A z nkdvy (fk) (82)
k=1 k:np

where np, = 1 + [(5p — 51)/Alround> 1z = 1+ [(m2 — 1)/ Alround,"> A denotes the width of the mesh which
is identified with the bin size in the data. The mesh points in the sums are determined by 1y = t; + (k — 1) A,

15 here the subscript “round” refers to the integer nearest to the number inside the square bracket.
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k=1,2...,witht; = 0.0125 and A = 0.025. The numerical coefficients g; take the values gy = 1 for
1 <k <npand g1 = g, = 0.5. The factors 7 are determined by

nk = we () if np <k <neg.
e = 05w () if k=np, or k=n;.

Using formula (82) and taking into account the definitions (69) and (70), we calculate the required averages

e np np—1 np

G =) D gtodlkl+2 > > akaiCu | (83)
k=1 k=1 >k

o ne ne—1 ng

Gy =) D njorkl+2 > > mmCu | . (84)
k=np k=np l=k+1
np n

GGy = (A D> amCu. (85)

k=1 l=n,

We are now in a position to determine the uncertainties on the values of the “experimental” Adler function.
They are induced from the errors of the experimental spectral function and from the errors on the parameters A
and sp. Let us represent again the “experimental” Adler function as a sum of the two terms showing explicitly
the dependence of the terms on the parameters and on the spectral function

D“exp.”(Q2s Az, Sp - vy) = Dexp.(Qza Sp - vp) + DpQCD(sz A2, Sp)’ (86)
the experimental and pQCD parts of the function are determined as

Sp

Dexp (0%, sp 1 v1) = / K(Q?, tyvi(t)d t (87)
0
Dpacp(Q?, A2, sp) = / K(Q%, i (n)d 1, (88)

p

where K(Q2, 1) = 207%/(t + 02, v (s) denotes the spectral function measured on the experiment (vy(s) =
vTXp (s)) and U?P T(s) is the approximation to the spectral function evaluated within APT. Consider small
deviations of the spectral function and the parameters from their mean values

vi(t) = 01 () + 8v1(1), sp=5p+8sp, A2 =A2435A2, (89)
the change of the “experimental” Adler function under these variations is
8D“exp.” = ‘SDexp. + SDchDv (90)

here we have used abbreviations Dexp. = Dexp. (02, sp @ v1) etc. The right hand side of (90) can be evaluated
using formulas (87) and (88). Preserving terms linear in the variations dvy, dsp, and SAZ%, we find

8 Deexp. = 8u, Dexp. + Es,05p + E 5200 91)
where
EP
8y Dexp. = /K:(sz névi(dt, (92)
0

dDpoep (02, A2, 5p)

Es, = K(Q%, 5p)01(5p) + o5,

: (93)

_ 9Dpacn(Q%, A%, 5)
IA2 '

Ejz» 94)
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Using the trapezoidal rule, we approximate the integral on the right side of Eq. (92)

np
80, Dexp. & G3 = »_ &iK(Q?, 11)8v1 (), (95)
k=1

where the quantities n,, gx and # are defined below formula (82). To calculate the partial derivatives on the
right hand sides of (93) and (94), we use explicit formula (25) for the pQCD part of the Adler function. We
then obtain

3 Dpacp (02, A, sp) 0?
- — 1
dsp (Q2+Sp)2( )
aD 2 A2 1 7 5
pQcD(Q7, A%, 5p) / e’ Deft (1) gt
aA2 Q2 ’

2
AZ
wpsan (1 G7¢!)
where fefr (1) = pefr (A2e’) and to derive the last formula we have used the relation

ar(sp) 1
EYVE mpeff(sp),

which can be easily derived from the definition (23). The mean squared deviation of the “experimental” Adler
function is then determined as a sum of the six averages

(8Drexp)> = (80 Dexp.)? + E (85p)% + E3,(3A2)>
+ 2E5, E585p8 A2 + 2E5, (84 Dexp.)sp + 2E 75 (8y; Dexp. )3 A2, (96)

With the aid of formula (95), the first term on the right of Eq. (96) can easily be expressed in terms of the
errors oy, and the covariance matrix Cy;

np np—1  np
By Dexp)? = AT 1D~ i KX Q% o [k1+2 D D arglK(Q%, i)K(Q* )Cr f . (97)
k=1 k=1 [=k+1

The second and third terms on the right of (96) are determined in terms of the errors o, and o 5> which we have
already evaluated above (see (81)). In order to evaluate last three terms on the right of (96), we use explicit
expressions for the deviations dsp, and § A?

8sp= D' (B2Gi — B1Ga)

5 . (98)
A" = D (A1G2 — A2Gy),
the solution to the system (80). This enable us to write
35pd A% = D H(ByA| + B1A2)G G — ByArG — B1AIG3), (99)

the averages on the right hand side of (99) have been evaluated above (see Egs. (83), (84) and (85)). It remains
to calculate the last two averages on the right hand side of (96). Using formulas (98) we find

(80 Dexp)dsp = G38s, = D' (B2G1G3 — B1G12G3) (100)
(80 Dexp )8 A% = G38A2 = D' (A1G,G3 — A2G1G3), (101)

employing now the trapezoidal sums (82) and (95), we determine the averages G;G3 and G,G3 in terms of
the correlation coefficients Ry

'p p
G1G3 = A groy (K1 D aiK(Q7, 1)Ry 104, [1]
k=1 =1

ne np
G2G3 = A% D oy, [k1 D @ik (Q%, )Ry 10, [1].
k=n, I=1
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Appendix C: Standard CIPT Consideration

It is instructive to compare the modified procedure for extracting the coupling constant with the standard
procedure formulated within conventional CIPT in the MS scheme. The t decay rate to the non-strange
hadrons in the vector channel is given by [6]

3
Rey = 5|vud|2SEw<1 + 8qcp + SEw) (102)

where dqcp represents the QCD corrections, |V,g| = 0.9746 & 0.0006 is the flavor mixing matrix element,
Sew = 1.0198 is an electro-weak correction term and §gw ~ 0.001 is an additive electroweak correction (for
this values see [11]). The QCD contribution is the sum

Sqep = 8@ + 8@ + sxp. (103)

where 8 is the purely perturbative contribution, § is the dimension D = 2 effects from light quark masses,
and Snp is the total non-perturbative contribution: énp = 8@ 450 4 5@ ( 8P are the OPE terms in powers
of m;P). We will use the estimates §© = (3.3 £ 3) x 107* and §xp = 0.0199 % 0.0027, the ALEPH
results obtained within the CIPT approach [11]. The experimental result for §) can be determined from the
experimental spectral function via the relation

1+ 80 +69 +6xp + 0w =4J0 ), (104)
where
m3
= / we ()vy T (5)d s, (105)
0

and explicit expression of the function w (s) is given in (36). The relation (104) follows from formulas (36)
and (102). Let us now determine the experimental error on J V' induced from the experimental errors on

v, 7P (s). Using the trapezoidal rule, we replace the integral on the right side of Eq. (105) by the sum

Ny

TV~ A gawe(so)vi(se) (106)
k=1

where N; = 1 + [(m% — 51)/Alround, Sk = s1 + (kK — 1)A with s; = 0.0125 and A = 0.025, and g are the
numeric coefficients associated with the trapezoidal rule. From formula (106) one easily evaluates the standard
error on Jte X‘l,)'

1

N: Ny 2
o (V) = {Z > grgnwr (s)we (s2)Ci. } (107)

k=1 n=1

where C denotes the covariance matrix C; y = E[(v1(s;) — v1(s;))(v1(sk) — v1(sx)] which is available in [12].
It follows from Eqgs. (103) and (104) that

o (8qcp) = [07(8%) + o (5np)1'/? = 4o (I, (108)

where we have ignored the small correlation between 8O and Snp. With the data provided by ALEPH [12],
from Egs. (104), (107) and (108) we obtain'®

80 =0.2091 £ 0.0065¢xp., (109)

exp.

16° Alternatively, we could have determined the error on (Sexp directly from the known error on R y using formula (102).
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Table 12 Numerical values for the QCD scale parameter and strong coupling constant in the MS scheme for three active flavours
extracted from the non-strange vector 7 lepton data within the conventional CIPT approach

Orders in perturbation theory A GeV o (m%)

LO 0.604 £+ 0.023 0.485 +0.019
NLO 0.469 £ 0.018 0.390 £0.011
N2LO 0.430+0.016 0.367 = 0.009
N3LO 0.407 £0.015 0.354 £+ 0.008
N*LO 0.395 £ 0.015 0.347 £ 0.008

The results obtained in consecutive orders of perturbation theory are given. The error bars refer to the experimental uncertainty
only

it should be noted that in [14] slightly large value and error have been obtained, namely, Sé%_ = 0.2093 £
0.008xp.. The perturbative QCD correction obtained within CIPT is represented via the contour integral in the
complex momentum squared plane [18, 19]. This integral can be rewritten as

s
1
58) = ;/Re {(1 —e?) (1+ e"")3dRGI(S0€””)} de, (110)
0

where s = m% and drgi(z) denote the RG improved perturbative correction to the Adler function defined
in (14). To calculate drgi(z), usually, the four-loop order RG equation is solved numerically for the running
coupling. We find convenient to use the implicit solution to the RG equation at the four-loop order (relevant
formulas can be found in [28]). The running coupling satisfies a transcendental equation which is solved
numerically. To extract the value of the QCD scale parameter A = Agyg, one solves the equation

38 (A) =89 (111)

exp.

Numerical values for the QCD scale parameter and strong coupling constant (for n y = 3 number of flavours)
extracted from the experimental value (109) are given in Table 12. We have used various approximations to
the Adler function evaluated with the four-loop running coupling. For the unknown N*LO coefficient of the
Adler function, we have used the geometric series estimate ds &~ 378 + 378 [14].
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