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Abstract

In this paper, annth order functional differential equation is considered for which the genera
Emden–Fowler-type equation

u(n)(t) + p(t)
∣∣u(t)

∣∣µ(t) signu(t) = 0, t � 0, (0.1)

can be considered as a nonlinear model. Here, we assume thatn � 2, p ∈ Lloc(R+;R), and
µ ∈ C(R+; (0,1]) is a nondecreasing function. In caseµ(t) ≡ const> 0, oscillatory properties o
Eq. (0.1) have been extensively studied, where as ifµ(t) /≡ const, to the extent of authors’ know
edge, the analogous questions have not been examined. It turns out that the oscillatory prop
Eq. (0.1) substantially depend on the rate at which the functionµ+ −µ(t) tends to zero ast → +∞,
whereµ+ = limt→+∞ µ(t). In this paper, new sufficient conditions for a general class of nonli
functional differential equations to have Properties A and B are established, and these resul
to the special case of Eq. (0.1) as well.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let τ ∈ C(R+;R+) with limt→+∞ τ(t) = +∞. Let V (τ) denote the set of continuou
mappingsF :C(R+;R) → Lloc(R+;R) satisfying the condition

F(x)(t) = F(y)(t) holds for anyt ∈ R+ andx, y ∈ C(R+;R), provided that

x(s) = y(s) for s � τ(t).

This work is dedicated to the study of oscillatory properties of the functional differe
equation

u(n)(t) + F(u)(t) = 0, (1.1)

wheren � 2 andF ∈ V (τ). For any t0 ∈ R+, we let Ht0,τ denote the set of all func
tionsu ∈ C(R+;R) satisfyingu(t) �= 0 for t � t∗, wheret∗ = min{t0, τ∗(t0)} andτ∗(t) =
inf{τ(s): s � t}. Throughout this work, where ever the notationV (τ) andHt0,τ occur, it
will be understood that the functionτ satisfies the conditions stated above, unless spec
otherwise. It will always be assumed that either

F(u)(t)u(t) � 0 for t � t0 andu ∈ Ht0,τ , (1.2)

or

F(u)(t)u(t) � 0 for t � t0 andu ∈ Ht0,τ , (1.3)

holds.
Let t0 ∈ R+. A function u : [t0,+∞) → R is said to be aproper solutionof Eq. (1.1)

if it is locally continuous along with its derivatives of order up to and includingn − 1,
sup{|u(s)|: s ∈ [t0,+∞)} > 0 for t � t0, there exists a function̄u ∈ C(R+;R) such that
ū(t) ≡ u(t) on [t0,+∞), and the equalitȳu(n)(t) + F(ū)(t) = 0 holds fort ∈ [t0,+∞).
A proper solution of Eq. (1.1) is said to beoscillatory if it has a sequence of zeros tendi
to +∞. Otherwise, the solution is said to benonoscillatory.

Definition 1.1 [1]. We say that Eq.(1.1) has Property A if any proper solutionu is oscilla-
tory if n is even, and is either oscillatory or satisfies∣∣u(i)(t)

∣∣ ↓ 0 ast ↑ +∞ (i = 0, . . . , n − 1) (1.4)

if n is odd.

Definition 1.2 [2]. We say that Eq.(1.1) has Property B if any proper solutionu is either
oscillatory, satisfies(1.4), or satisfies∣∣u(i)(t)

∣∣ ↑ +∞ ast ↑ +∞ (i = 0, . . . , n − 1) (1.5)

if n is even, and is either oscillatory or satisfies(1.5) if n is odd.

The higher order nonlinear ordinary differential equation∣ ∣

u(n)(t) + p(t)∣u(t)∣λ signu(t) = 0, (1.6)
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wherep ∈ Lloc(R+;R), λ > 0, andλ �= 1, is a special case of Eq. (1.1). The problem
determining criteria for nonlinear differential equations of the second and higher o
to have each solution oscillatory or converge to zero (or be oscillatory, converge to
or diverge to∞) has been of interest to researchers even before the now commonly
names of Properties A and B. It has its roots in the pioneering paper of Atkinson [
second-order equations, the work of Kiguradze [4], who gave sufficient conditions fo
behavior in casen is even andλ > 1, and Lǐcko and Švec [5], who gave necessary and
ficient conditions forn both even and odd as well as both 0< λ < 1 andλ > 1. There have
been a number of survey papers and monographs written on various aspects of os
of nonlinear differential equations, and we refer the reader to Kartsatos [6], Kiguradz
Chanturia [2], Ladde, Lakshmikantham, and Zhang [7], Györi and Ladas [8], Erbe, K
and Zhang [9], Agarwal, Grace, and O’Regan [10], and Koplatadze and Canturia [11
analogous problems for the equations of the type (1.1) in case where the operatorF has
either a nonlinear or a linear minorant are extensively studied in the monograph [1
the paper [13].

In the present paper, oscillatory properties of the functional differential equation
are investigated, and this allows us to obtain results for

u(n)(t) + p(t)
∣∣u(t)

∣∣µ(t) signu(t) = 0, (1.7)

wherep ∈ Lloc(R+;R) andµ ∈ C(R+; (0,1]) is nondecreasing. Clearly, this equation
a generalization of Eq. (1.6). If we letλ = limt→+∞ µ(t) andµ(t) /≡ λ for t ∈ R+, then
it turns out (see Remarks 4.1 and 7.1 below) that in certain cases, Eq. (1.7) may no
Property A (B), but the “limiting” equation does have this property.

2. Some auxiliary lemmas

In the sequel,C̃n−1
loc ([t0,+∞)) denotes the set of all functionsu : [t0,+∞) → R that

are absolutely continuous on any finite subinterval of[t0,+∞) along with their derivatives
of order up to and includingn − 1.

Lemma 2.1 (Kiguradze [4]). Let u ∈ C̃n−1
loc ([t0,+∞)) satisfyu(t) > 0 and u(n)(t) � 0

(u(n)(t) � 0) for t � t0 and u(n)(t) /≡ 0 in any neighborhood of+∞. Then there exis
t1 � t0 and� ∈ {0, . . . , n} such that� + n is odd(even) and

u(i)(t) > 0 for t � t1 (i = 0, . . . , � − 1),

(−1)i+lu(i)(t) > 0 for t � t1 (i = �, . . . , n − 1). (2.1�)

Note. In case� = 0, we mean that the second inequality in(2.1�) holds, while if� = n, the
first one holds.

Lemma 2.2. Let u ∈ C̃loc([t0,+∞)) and (2.1�) be satisfied for some� ∈ {1, . . . , n − 1}
with � + n odd(even). Then

+∞∫
n−�−1

∣
(n)

∣

t ∣u (t)∣dt < +∞. (2.2)
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If, moreover,

+∞∫
tn−�

∣∣u(n)(t)
∣∣dt = +∞, (2.3)

then there existst∗ � t0 such that

u(i)(t)

t�−i
↓,

u(i)(t)

t�−i−1
↑ +∞ (i = 0, . . . , � − 1), (2.4i )

u(t) � t�−1

�! u(�−1)(t) for t � t∗, (2.5)

and

u(�−1)(t) � t

(n − �)!
+∞∫
t

sn−�−1
∣∣u(n)(s)

∣∣ds

+ 1

(n − �)!
t∫

t∗

sn−�
∣∣u(n)(s)

∣∣ds for t � t∗. (2.6)

The proof of the lemma in the case whereu(n)(t) � 0 can be found in [14]. The cas
whereu(n)(t) � 0 can be proved analogously.

Remark 2.1. Inequality(2.6) was first proved in this form in [15].

3. On solutions of the type (2.1�)

In this section, sufficient conditions will be given in order for Eq. (1.1) to have
solutions of the type(2.1�), where� ∈ {1, . . . , n − 1}. Everywhere below, it is assume
that for sufficiently larget0, we have

∣∣F(u)(t)
∣∣ �

m∑
i=1

σi(t)∫
τi (t)

∣∣u(s)
∣∣µi(s) dsri(s, t) for t � t0 andu ∈ Ht0,τ , (3.1)

where{
τi, σi ∈ C(R+;R), andτi(t) � σi(t) for t ∈ R+,

limt→+∞ τi(t) = +∞ (i = 1, . . . ,m),
(3.2)

µi ∈ C
(
R+; (0,1]) are nondecreasing functions(i = 1, . . . ,m), (3.3)

and

ri(s, t) are measurable int and nondecreasing ins (i = 1, . . . ,m). (3.4)
Also, for i ∈ {1, . . . ,m}, j ∈ {0,1, . . . , n − 1}, andϕ ∈ C([t0,+∞); (0,+∞)), we let
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ηϕ,σi
(t) =

{
1 for ϕ(t) � σi(t),
(σi (t))

µi (σi (t))

(ϕ(t))µi (ϕ(t)) for ϕ(t) > σi(t),
(3.5)

ρji(t) =
σi(t)∫

τi (t)

sj µi(s) dsri(s, t) (i = 1, . . . ,m), (3.6)

and

µ∗(t) = min
{
µi(t): i = 1, . . . ,m

}
, (3.7)

where the functionsτi , σi , µi , andri satisfy conditions (3.2)–(3.4).

Proposition 3.1. Let F ∈ V (τ), conditions (1.2) ((1.3)) and (3.1)–(3.4) hold, � ∈
{1, . . . , n − 1}, � + n be odd(even), and

+∞∫
tn−�−1

m∑
i=1

σi(t)∫
τi (t)

s�µi(s) dsri(s, t) dt = +∞. (3.8�)

Moreover, assume there is a nondecreasing functionϕ ∈ C(R+; (0,+∞)) such that

lim
t→+∞ϕ(t) = +∞ and ϕ(t) � t for t � 1, (3.9)

and

lim sup
t→+∞

m∑
i=1

((
ϕ(t)

)µ∗(ϕ(t))

+∞∫
t

sn−�−1

(σi(s))µi(σi (s))
ηϕ,σi

(s)ρ�,i (s) ds

+ (
ϕ(t)

)µ∗(ϕ(t))−µi(ϕ(t))

t∫
ϕ(t)

sn−�−1

(σi(s))µi(σi (s))
ηϕ,σi

(s)ρ�,i (s)
(
ϕ(s)

)µi(ϕ(s))
ds

+ (
ϕ(t)

)µ∗(ϕ(t))−µi(ϕ(t))−1

ϕ(t)∫
0

sn−�

(σi(s))µi(σi (s))

(
ϕ(s)

)µi(ϕ(s))
ηϕ,σi

(s)ρ�,i (s) ds

)

> δ
(
µ+∗

)
�!(n − �)!, (3.10�)

where

µ+∗ = lim
t→+∞µ∗(t) and δ(s) =

{
1 if s = 1,

0 if 0< s < 1.
(3.11)

Then Eq.(1.1) has no solution of the type(2.1�).

Proof. We will first show that (3.9) and (3.10�) imply

+∞∫
tn−�

m∑ σi(t)∫
s(�−1)µi(s) dsri(s, t) dt = +∞. (3.12�)
i=1τi (t)
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Indeed, if this is not the case, then in view of (3.3), (3.9), the inequality

ηϕ,σi
(t)ρ�,i(t) �

(
σi(t)

)µi(σi (t))

σi (t)∫
τi (t)

s(�−1)µi(s) dsri(s, t) (i = 1, . . . ,m),

and the fact that(ϕ(t))µ∗(ϕ(t)) is nondecreasing, we have

m∑
i=1

(
ϕ(t)

)µ∗(ϕ(t))

+∞∫
t

sn−�−1

(σi(s))µi(σi (s))
ηϕ,σi

(s)ρ�,i(s) ds

�
m∑

i=1

+∞∫
t

sn−�−1(ϕ(s)
)µ∗(ϕ(s))

σi (s)∫
τi (s)

ξ (�−1)µi(ξ) dξ ri(ξ, s) ds

�
m∑

i=1

+∞∫
t

sn−�

(
ϕ(s)

s

)µ∗(ϕ(s))
σi (s)∫

τi (s)

ξ (�−1)µi(ξ) dξ ri(ξ, s) ds

�
m∑

i=1

+∞∫
t

sn−�

σi(s)∫
τi (s)

ξ (�−1)µi(ξ) dξ ri(ξ, s) ds → 0 ast → +∞, (3.13)

m∑
i=1

(
ϕ(t)

)µ∗(ϕ(t))−µi(ϕ(t))

t∫
ϕ(t)

sn−�−1

(σi(s))µi(σi (s))

(
ϕ(s)

)µi(ϕ(s))
ηϕ,σi

(s)ρ�,i(s) ds

�
m∑

i=1

t∫
ϕ(t)

sn−�

(
ϕ(s)

s

)µi(ϕ(s))
σi (s)∫

τi (s)

ξ (�−1)µi(ξ) dξ ri(ξ, s) ds

�
m∑

i=1

t∫
ϕ(t)

sn−�

σi (s)∫
τi (s)

ξ (�−1)µi(ξ) dξ ri(ξ, s) ds → 0 ast → +∞, (3.14)

and

m∑
i=1

(
ϕ(t)

)µ∗(ϕ(t))−µi(ϕ(t))−1

ϕ(t)∫
0

sn−�

(σi(s))µi(σi (s))

(
ϕ(s)

)µi(ϕ(s))
ηϕ,σi

(s)ρ�,i (s) ds

�
m∑

i=1

(
ϕ(t)

)−1

ϕ(t)∫
0

sn−�
(
ϕ(s)

)µi(ϕ(s))

σi (s)∫
τi (s)

ξ (�−1)µi(ξ) dξ ri(ξ, s) ds

�
m∑(

ϕ(t)
)−1

t∗∫
sn−�

(
ϕ(s)

)µi(ϕ(s))

σi (s)∫
ξ (�−1)µi(ξ) dξ ri(ξ, s) ds
i=1 0 τi (s)
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+
m∑

i=1

(
ϕ(t)

)−1

ϕ(t)∫
t∗

sn−�
(
ϕ(s)

)µi(ϕ(s))

σi (s)∫
τi (s)

ξ (�−1)µi(ξ) dξ ri(ξ, s) ds

�
m∑

i=1

(
ϕ(t)

)−1
t∗∫

0

sn−�
(
ϕ(s)

)µi(ϕ(s))

σi (s)∫
τi (s)

ξ (�−1)µi(ξ) dξ ri(ξ, s) ds

+
m∑

i=1

+∞∫
t∗

sn−�

σi(s)∫
τi (s)

ξ (�−1)µi(ξ) dξ ri(ξ, s) ds

�
(
ϕ(t)

)−1
m∑

i=1

t∗∫
0

sn−�
(
ϕ(s)

)µi(ϕ(s))

σi (s)∫
τi (s)

ξ (�−1)µi(ξ) dξ ri(ξ, s) ds + ε, (3.15)

whereε > 0 is an arbitrary positive number andt∗ is chosen so that

+∞∫
t∗

sn−�
m∑

i=1

σi(s)∫
τi (s)

ξ (�−1)µi(ξ) dξ ri(ξ, s) ds < ε.

Sinceε is arbitrary, we have

m∑
i=1

(
ϕ(t)

)µ∗(ϕ(t))−µi(ϕ(t))−1

ϕ(t)∫
0

sn−�

(σi(s))µi(σi (s))

(
ϕ(s)

)µi(ϕ(s))
ηϕ,σi

(s)ρ�j (s) ds → 0

ast → +∞. (3.16)

Now, (3.13), (3.14), and (3.16) contradict(3.10�), and this shows that (3.12�) holds.
Suppose next that Eq. (1.1) has a proper nonoscillatory solutionu : [t0,+∞) →

(0,+∞) satisfying (2.1�), where� ∈ {1, . . . , n − 1} with � + n odd (even). In view of
(2.1�), it is clear that there existsc > 0 such thatu(t) � ct�−1 for t � t∗, wheret∗ is a
sufficiently large number. Therefore, from (3.1) and (3.12�), we see thatu satisfies the
hypotheses of Lemma 2.2, that is, condition (2.4�−1) is satisfied and

u(�−1)
(
ϕ(t)

)
� ϕ(t)

(n − �)!
+∞∫

ϕ(t)

sn−�−1
∣∣u(n)(s)

∣∣ds

+ 1

(n − �)!

ϕ(t)∫
t∗

sn−�
∣∣u(n)(s)

∣∣ds for t � t∗, (3.17)

where t∗ is sufficiently large. As it is noted below,u(�−1)/t ↓ 0 as t ↑ +∞. Hence the
functions(u(�−1)(t)/t)µi(t) (i = 1, . . . ,m) are nonincreasing for larget . Taking this fact

into account, in view of (1.1), (3.1), (3.3), (2.4�−1), and (2.5), we obtain
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u(�−1)
(
ϕ(t)

)
� 1

�!(n − �)!ϕ(t)

+∞∫
ϕ(t)

sn−�−1
m∑

i=1

(u(�−1)(σi(s)))
µi(σi (s))

(σi(s))µi(σi (s))

×
σi(s)∫

τi (s)

ξ �µi(ξ) dξ ri(ξ, s) ds

+ 1

�!(n − �)!

ϕ(t)∫
t∗

sn−�
m∑

i=1

(u(�−1)(σi(s)))
µi(σi (s))

(σi(s))µi(σi (s))

×
σi(s)∫

τi (s)

ξ �µi(ξ) dξ ri(ξ, s) ds.

On the other hand, according to (2.1�) and (3.3), since the functions(u(�−1)(t))µi(t) (i =
1, . . . ,m) are nondecreasing for larget due to second relation of (2.4�), for sufficiently
larget , we have(

u(�−1)
(
σi(t)

))µi(σi (t)) �
(
u(�−1)

(
ϕ(t)

))µi(ϕ(t)) (3.18)

providedϕ(t) � σi(t) (i = 1, . . . ,m). Since the functions(u(�−1)(t)/t)µi(t) (i = 1, . . . ,m)

are nonincreasing, we have

(
u(�−1)

(
σi(t)

))µi(σi (t)) � (σi(t))
µi(σi (t))

(ϕ(t))µi(ϕ(t))

(
u(�−1)

(
ϕ(t)

))µi(ϕ(t)) (3.19)

if ϕ(t) > σi(t) (i = 1, . . . ,m). From (3.18), (3.19), and (3.5), we obtain(
u(�−1)

(
σi(t)

))µi(σi (t)) � ηϕ,σi
(t)

(
u(�−1)

(
ϕ(t)

))µi(ϕ(t))
(i = 1, . . . ,m)

for sufficiently larget . Therefore, (3.17) together with (3.3) and (3.9) imply

u(�−1)
(
ϕ(t)

)
� 1

�!(n − �)!

×
m∑

i=1

[
ϕ(t)

+∞∫
t

sn−�−1

(σi(s))µi(σi (s))
ηϕ,σi

(s)
(
u(�−1)

(
ϕ(t)

))µi(ϕ(s))
ρ�,i(s) ds

+ ϕ(t)

t∫
ϕ(t)

sn−�−1

(σi(s))µi(σi (s))
ηϕ,σi

(s)
(
u(�−1)

(
ϕ(t)

))µi(ϕ(s))
ρ�,i(s) ds

+
ϕ(t)∫
t1

sn−�

(σi(s))µi(σi (s))
ηϕ,σi

(s)
(
u(�−1)

(
ϕ(t)

))µi(ϕ(s))
ρ�,i(s) ds

]

for t � t1, wheret1 � t∗ is sufficiently large and the functionsηϕ,σi
andρ�,i (i = 1, . . . ,m)
are defined by (3.5) and (3.6), respectively. From the last inequality, taking into account
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sing
the fact that(u(�−1)(t))µ∗(t) is nondecreasing and(u(�−1)(t)/t)µ∗(t) is nonincreasing, we
obtain

u(�−1)
(
ϕ(t)

)
� (u(�−1)(ϕ(t)))µ∗(ϕ(t))

�!(n − �)!
m∑

i=1

[
ϕ(t)

+∞∫
t

sn−�−1

(σi(s))µi(σi (s))
ηϕ,σi

(s)ρ�,i (s) ds

+ (
ϕ(t)

)1−µi(ϕ(t))

t∫
ϕ(t)

sn−�−1

(σi(s))µi(σi (s))

(
ϕ(s)

)µi(ϕ(s))
ηϕ,σi

(s)ρ�,i (s) ds

+ (
ϕ(t)

)−µi(ϕ(t))

ϕ(t)∫
t1

sn−�

(σi(s))µi(σi (s))
ηϕ,σi

(s)ρ�,i(s)
(
ϕ(s)

)µi(ϕ(s))
ds

]
(3.20)

for t � t1, where the functionµ∗(t) is defined by (3.7). On the other hand, from (2.1�),
(3.1), (3.12�), and the first condition in (2.4�), we can easily derive that

u(�−1)(t)

t
↓ 0 if t ↑ +∞.

Therefore, (3.3) and (3.7) imply that

lim sup
t→+∞

(
u(�−1)(ϕ(t))

ϕ(t)

)1−µ∗(ϕ(t))

� δ
(
µ+∗

)
,

whereδ andµ+∗ are given in (3.11). So from (3.20), we have

lim sup
t→+∞

m∑
i=1

((
ϕ(t)

)µ∗(ϕ(t))

+∞∫
t

sn−�−1

(σi(s))µi(σi (s))
ηϕ,σi

(s)ρl,i (s) ds

+ (
ϕ(t)

)µ∗(ϕ(t))−µi(ϕ(t))

t∫
ϕ(t)

sn−�−1

(σi(s))µi(σi (s))

(
ϕ(s)

)µi(ϕ(s))
ηϕ,σi

(s)ρ�,i(s) ds

+ (
ϕ(t)

)µ∗(ϕ(t))−µi(ϕ(t))−1

ϕ(t)∫
t1

sn−�

(σi(s))µi(σi (s))

(
ϕ(s)

)µi(ϕ(s))
ηϕ,σi

(s)ρ�,i (s) ds

)

� δ
(
µ+∗

)
�!(n − �)!.

But this contradicts (3.10�), and completes the proof of the proposition.�
Remark 3.1. For a rather wide class of operatorsF , condition (3.12�) is also necessary fo
Eq. (1.1) not to have a solution of the type (2.1�) (see Lemma 4.1 in [12]).

Proposition 3.2. Let F ∈ V (τ), conditions(1.2) ((1.3)) and (3.1)–(3.4) hold, and let
� ∈ {1, . . . , n − 1} with � + n odd(even). Moreover, suppose there exists a nondecrea

functionϕ ∈ C(R+; (0,+∞)) such that conditions(3.8�) and(3.9) hold, and
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of
lim sup
t→+∞

m∑
i=1

((
ϕ(t)

)µ∗(ϕ(t))

+∞∫
t

sn−�−1ηϕ,τi
(s)ρ�−1,i (s) ds

+ (
ϕ(t)

)µ∗(ϕ(t))−µi(ϕ(t))

t∫
ϕ(t)

sn−�−1(ϕ(s)
)µi(ϕ(s))

ηϕ,τi
(s)ρ�−1,i (s) ds

+ (
ϕ(t)

)µ∗(ϕ(t))−µi(ϕ(t))−1

ϕ(t)∫
0

sn−�
(
ϕ(s)

)µi(ϕ(s))
ηϕ,τi

(s)ρ�−1,i (s) ds

)

> δ
(
µ+∗

)
�!(n − �)!. (3.21�)

Then Eq.(1.1) has no solution of the type(2.1�).

Proof. Similar to the proof of Proposition 3.1, we will use (3.21�) to show that (3.12�)
holds. Assume that Eq. (1.1) has a proper solution satisfying (2.1�), where� ∈ {1, . . . ,

n − 1} with � + n odd (even). The functionu obviously satisfies the conditions
Lemma 2.2, so as in the proof of Proposition 3.1, (3.17) holds fort∗ sufficiently large.
From (2.5) and the first condition in (2.4�−1), we obtain

u(�−1)
(
ϕ(t)

)
� ϕ(t)

�!(n − �)!
+∞∫

ϕ(t)

sn−�−1
m∑

i=1

(
u(�−1)

(
τi(s)

))µi(τi (s))

×
σi(s)∫

τi (s)

ξ (�−1)µi(ξ) dξ ri(ξ, s) ds

+ 1

�!(n − �)!

ϕ(t)∫
t∗

sn−�
m∑

i=1

(
u(�−1)

(
τi(s)

))µi(τi (s))

×
σi(s)∫

τi (s)

ξ (�−1)µi(ξ) dξ ri(ξ, s) dx. (3.22)

If we then proceed as in the proof of Proposition 3.1 with the functionsσi replaced byτi ,
we have

lim sup
t→+∞

m∑
i=1

((
ϕ(t)

)µ∗(ϕ(t))

+∞∫
t

sn−�−1ηϕ,τi
(s)ρ�−1,i (s) ds

+ (
ϕ(t)

)µ∗(ϕ(t))−µi(ϕ(t))

t∫
sn−�−1(ϕ(s)

)µi(ϕ(s))
ηϕ,τi

(s)ρ�−1,i (s) ds
ϕ(t)
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ing
+ (
ϕ(t)

)µ∗(ϕ(t))−µi(ϕ(t))−1

ϕ(t)∫
t∗

sn−�
(
ϕ(s)

)µi(ϕ(s))
ηϕ,τi

(s)ρ�−1,i (s) ds

)

� �!(n − �)!δ(µ+∗
)
.

The last inequality contradicts (3.21�), and this completes the proof of the proposition.�
The previous two propositions were concerned with the caseϕ(t) � t . The next two are

for the caseϕ(t) � t .

Proposition 3.3. Let F ∈ V (τ), conditions(1.2) ((1.3)) and (3.1)–(3.4) hold, and let
� ∈ {1, . . . , n− 1} with �+n odd(even). In addition, suppose there exists a nondecreas
functionϕ ∈ C(R+; (0,+∞)) such that

ϕ(t) � t for t ∈ R+ (3.23)

and

lim sup
t→+∞

{
m∑

i=1

((
ϕ(t)

)µ∗(ϕ(t))

+∞∫
ϕ(t)

sn−�−1

(σi(s))µi(σi (s))
ηϕ,σi

(s)ρ�,i (s) ds

+ (
ϕ(t)

)µ∗(ϕ(t))−1

ϕ(t)∫
t

sn−�

(σi(s))µi(σi (s))
ηϕ,σi

(s)ρ�,i (s) ds

+ (
ϕ(t)

)µ∗(ϕ(t))−µi(ϕ(t))−1
t∫

0

sn−�

(σi(s))µi(σi (s))

(
ϕ(s)

)µi(ϕ(s))
ηϕ,σi

(s)ρ�,i(s) ds

)}

> �!(n − �)!δ(µ+∗
)
. (3.24�)

Then Eq.(1.1) has no solution of the type(2.1�).

Proof. Again following the line of proof used for Proposition 3.1, (3.24�) implies (3.8�)
holds. Assume that Eq. (1.1) has a proper solution satisfying (2.1�), where� ∈ {1, . . . ,

n − 1} with � + n odd (even). As before, we can show that (3.17) holds fort∗ sufficiently
large. On the other hand, in view of (1.1), (3.1), (2.5), (2.4�−1), and (3.23), for larget ,
inequality (3.17) yields

u(�−1)
(
ϕ(t)

)
� ϕ(t)

�!(n − �)!
+∞∫

ϕ(t)

sn−�−1
m∑

i=1

ηϕ,σi
(s)ρ�,i (s)

(u(�−1)(ϕ(s)))µi(ϕ(s))

(σi(s))µi(σi (s))
ds

+
m∑

i=1

[ ϕ(t)∫
t

sn−�

(σi(s))µi(σi (s))
ηϕ,σi

(s)ρ�,i (s)(u
(�−1))µi(ϕ(s)) ds

+
t∫

sn−�

µ (σ (s))
ηϕ,σi

(s)ρ�,i(s)(u
(�−1))µi(ϕ(s)) ds

]

t∗

(σi(s)) i i
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ality,
se

sing

itions

e-
for larget . If, in the first and second summands on the right-hand side of this inequ
we take into account the second condition in (2.4�−1), and in the first summand, we u
the first condition in (2.4�−1), we will easily obtain an inequality opposite to (3.24�). This
completes the proof of the proposition.�

Proposition 3.4 below is proved analogously to Propositions 3.1–3.3.

Proposition 3.4. Let F ∈ V (τ), conditions(1.2) ((1.3)) and(3.1)–(3.4) hold, and let� ∈
{1, . . . , n − 1} with � + n odd(even). Moreover, assume that there exists a nondecrea
functionϕ ∈ C(R+; (0,+∞)) such that(3.23) holds and

lim sup
t→+∞

{
m∑

i=1

((
ϕ(t)

)µ∗(ϕ(t))

+∞∫
ϕ(t)

sn−�−1ηϕ,τi
(s)ρ�−1,i (s) ds

+ (
ϕ(t)

)µ∗(ϕ(t))−1

ϕ(t)∫
t

sn−�ηϕ,τi
(s)ρ�−1,i (s) ds

+ (
ϕ(t)

)µ∗(ϕ(t))−µi(ϕ(t))−1
t∫

t∗

sn−�
(
ϕ(s)

)µi(ϕ(s))
ηϕ,τi

(s)ρ�,i (s) ds

)}

> �!(n − �)!δ(µ+∗
)
. (3.25�)

Then Eq.(1.1) has no solution of the type(2.1�).

4. Functional differential equations with Property A

Based on the results obtained in Section 3, in this section we obtain sufficient cond
for Eq. (1.1) to have Property A.

Theorem 4.1. Let F ∈ V (τ), conditions(1.2) and (3.1) hold, and there exists a nond
creasing functionϕ ∈ C(R+; [0,+∞)) satisfying(3.9) such that for any� ∈ {1, . . . , n−1}
with � + n odd, conditions(3.8�) and(3.10�) are satisfied. If, in addition,n is odd, let

+∞∫
tn−1

m∑
i=1

(
ri

(
σi(t), t

) − ri
(
τi(t), t

))
dt = +∞. (4.1)

Then Eq.(1.1) has PropertyA.

Proof. Let Eq. (1.1) have a proper nonoscillatory solutionu : [t0,+∞) → (0,+∞) (the
caseu(t) < 0 is similar). Then by (1.1), (1.2), and Lemma 2.1, there exists� ∈ {0, . . . ,

n − 1} such that� + n is odd and condition (2.1�) holds. In view of (3.9), (3.10�), and
Proposition 3.1, we have� /∈ {1, . . . , n − 1}. Therefore,n is odd and� = 0. We claim that

(1.4) holds. If this is not the case, then there existc > 0, t∗ > t0, and t1 > t∗ such that
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.

s of

h
the
u(t) � c for t � t∗ andτi(t) � t∗ for t � t1 (i = 1, . . . ,m). Therefore, in view of (2.1�) and
(3.1), Eq. (1.1) yields

n−1∑
i=1

(n − i − 1)!t i1
∣∣u(i)(t1)

∣∣ � c

t∫
t1

sn−1
m∑

i=1

(
ri

(
σi(s), s

) − ri
(
τi(s), s

))
ds

for t � t1, which contradicts (4.1). Thus, (1.4) holds, and so Eq. (1.1) has Property A�
Corollary 4.1. LetF ∈ V (τ), condition(1.2) hold, and

∣∣F(u)(t)
∣∣ �

m∑
i=1

pi(t)

βi t∫
αi t

∣∣u(s)
∣∣µi(s) ds for t � t0 andu ∈ Ht0,τ , (4.2)

where

αi,βi ∈ (0,+∞), αi < βi, βi � 1, pi ∈ Lloc(R+;R+), (4.3)

µi(t) = µi − di

ln t
, 0< µi � 1, di � 0. (4.4)

Moreover, for any� ∈ {1, . . . , n − 1} with � + n odd, let

lim sup
t→+∞

m∑
i=1

(β
�µi+1
i − α

�µi+1
i )e−di (�−1)

β
µi

i (1+ �µi)

(
tµ0

+∞∫
t

sn−�+µi(�−1)pi(s) ds

+ tµ0−µi−1

t∫
0

sn+1−�(µi−1)pi(s) ds

)

> ed0�!(n − �)!δ(µ0) (4.5�)

hold, whereµ0 = min{µi : i = 1, . . . ,m} andd0 = max{di : i = 1, . . . ,m}. Then Eq.(1.1)

has PropertyA.

Proof. To prove the corollary, it suffices to note that (4.2)–(4.4) imply the condition
Theorem 4.1 are satisfied withτi(t) = αit , σi(t) = βit , ri(s, t) = pi(t)s (i = 1, . . . ,m),
andϕ(t) ≡ t .

If, in Corollary 4.1, the functionspi(t) (i = 1, . . . ,m) are in a sense “close” to eac
other, then the conditions (4.5�) can be replaced by one condition. In fact, we have
following result. �
Corollary 4.1′. Let F ∈ V (τ), conditions(1.2) and (4.2)–(4.4) hold with µi = 1 (i =
1, . . . ,m), and there exist̃p ∈ Lloc(R+;R+) such that

lim inf t

+∞∫
sn−1(pi(s) − p̃(s)

)
ds � 0, (4.6)
t→+∞
t
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ol-

and

t

and

lim inf
t→+∞

1

t

t∫
0

sn
(
pi(s) − p̃(s)

)
ds � 0 (i = 1, . . . ,m) (4.7)

hold. Then, for Eq.(1.1) to have PropertyA, it is sufficient that

lim sup
t→+∞

(
t

+∞∫
t

sn−1p̃(s) ds + 1

t

t∫
0

snp̃(s) ds

)

> ed0 max

{
(1+ �)!(n − �)!

(
m∑

i=1

e−di (�−1)(β�+1
i − α�+1

i )

βi

)−1

:

� ∈ {1, . . . , n − 1}, � + n is odd

}
, (4.8)

whered0 = max{di : i = 1, . . . ,m}.

Proof. Sinceµ0 = min{µi : i = 1, . . . ,m} = 1, δ(µ0) = 1, conditions (4.6)–(4.8) imply
(4.5�) holds for any� ∈ {1, . . . , n − 1} with �+ n odd. Therefore, the hypotheses of Cor
lary 4.1 are satisfied, and the conclusion follows.�
Corollary 4.1′′. Let F ∈ V (τ), conditions(4.2)–(4.4) hold with µi = 1 (i = 1, . . . ,m),
and let there exist a functioñp ∈ Lloc(R+;R+) such that

pi(t) = p̃(t) + o(tn+1) (i = 1, . . . ,m). (4.9)

Then condition(4.8) is sufficient for Eq.(1.1) to have PropertyA.

Proof. To prove the corollary, it suffices to note that condition (4.9) implies that (4.6)
(4.7) hold, so the hypotheses of Corollary 4.1′ are satisfied. �
Theorem 4.2. LetF ∈ V (τ) and conditions(1.2), (3.1)–(3.4), and(4.1) hold. Assume tha
there is a nondecreasing functionϕ ∈ C(R+; (0,+∞)) such that(3.9) holds, and for any
� ∈ {1, . . . , n − 1} with � + n odd, condition(3.21�) holds. Then Eq.(1.1) has PropertyA.

Corollary 4.2. Let F ∈ V (τ), conditions(1.2) and (4.2)–(4.4) hold with αi � 1 (i =
1, . . . ,m), and for any� ∈ {1, . . . , n − 1} with � + n odd, let

lim sup
t→+∞

m∑
i=1

α
µi

i (β
1+(�−1)µi

i − α
1+(�−1)µi

i )e−(�−1)di

1+ (� − 1)µi

×
(

tµ0

+∞∫
t

sn−�+(�−1)µi pi(s) ds + tµ0−µi−1

t∫
0

sn+�(µi−1)+1pi(s) ds

)

> ed0�!(n − �)!δ(µ0), (4.10)
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e sat-

y

whereµ0 = min{µi : i = 1, . . . ,m}. Then Eq.(1.1) has PropertyA.

Proof. The conditions of the corollary imply that the hypotheses of Theorem 4.2 ar
isfied withτi(t) = αit , σi(t) = βit , ri(s, t) = pi(t), andϕ(t) ≡ t . �
Corollary 4.2′. Let F ∈ V (τ), conditions (1.2) and (4.2)–(4.4) hold with αi � 1,
µi = 1 (i = 1, . . . ,m), and suppose there exists̃p ∈ Lloc(R+;R+) such that for any
� ∈ {1, . . . , n − 1} with � + n odd, we have

lim inf
t→+∞

m∑
i=1

αi

(
β�

i − α�
i

)
e−(�−1)di

(
t

+∞∫
t

sn−1(pi(s) − p̃(s)
)
ds

+ t−1

t∫
0

sn+1(pi(s) − p̃(s)
)
ds

)
� 0. (4.11)

Then for Eq.(1.1) to have PropertyA, it is sufficient that

lim sup
t→+∞

(
t

+∞∫
t

sn−1p̃(s) ds + 1

t

t∫
0

sn+1p̃(s) ds

)

> max

{
ed0��!(n − �)!

(
m∑

i=1

αi

(
β�

i − α�
i

)
e−(�−1)di

)−1

:

� ∈ {1, . . . , n − 1}, � + n is odd

}
. (4.12)

Proof. It suffices to note that the conditions (4.11) and (4.12) imply (4.10).�
Corollary 4.2′′. Let F ∈ V (τ), conditions(1.2) and(4.2)–(4.4) hold withα1 � 1, µi = 1
(i = 1, . . . ,m), and there exist̃p ∈ Lloc(R+;R+) such that(4.9) holds. Then the inequalit
(4.12) is sufficient for Eq.(1.1) to have PropertyA.

The proof follows from the observation that(4.9) implies (4.11).

Theorem 4.3. LetF ∈ V (τ) and conditions(1.2), (3.1)–(3.4), and(4.1) hold. In addition,
suppose there is a nondecreasing functionϕ ∈ C(R+; (0,+∞)) such that(3.23) is satis-
fied, and for any� ∈ {1, . . . , n − 1} with � + n odd, conditions(3.24�) and (3.8�) hold.
Then Eq.(1.1) has PropertyA.

Corollary 4.3. Let F ∈ V (τ), (1.2) and (4.2)–(4.4) hold, and for any� ∈ {1, . . . , n − 1}
with � + n odd, let

lim sup
m∑ β

1+�µi

i − α
1+�µi

i
�di

(
tµ0

+∞∫
sn−�(1−µi)−µi pi(s) ds
t→+∞
i=1

e (1+ �µi)
β∗t
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s

.3

is
y

+ (β∗)−µi edi

β∗t∫
t

sn−�(1−µi)+1−µi pi(s) ds

+ β∗µ0−µi−1edi tµ0−µ−1

t∫
0

sn−�(1−µi)+1pi(s) ds

)

> ed0�!(n + �)!δ(µ0), (4.13�)

whereβ∗ = max{βi : i = 1, . . . ,m}. Then Eq.(1.1) has PropertyA.

Proof. To prove the corollary, it suffices to note that (4.13�) implies that the hypothese
of Theorem 4.3 hold withτi(t) = αit , σi(t) = βit , ri(s, t) = pi(t)s (i = 1, . . . ,m), and
ϕ(t) = β∗t . �
Corollary 4.3′. Let F ∈ V (τ), conditions(1.2) and (4.2)–(4.4) hold with µi = 1 and
di = d0 � 0 (i = 1, . . . ,m). If there existsp̃ ∈ Lloc(R+;R+) such that(4.9) holds and

lim sup
t→+∞

(
β∗t

+∞∫
β∗t

sn−1p̃(s) ds + ed0

β∗t∫
t

snp̃(s) ds + 1

t

t∫
0

sn+1p̃(s) ds

)

> max

{
(� + 1)!(n − l)!β∗e�d0

(
m∑

i=1

(
β�+1

i − α�+1
i

))−1

:

� ∈ {1, . . . , n − 1}, � + n is odd

}
,

(4.14)

whereβ∗ = max{βi : i = 1, . . . ,m}, then Eq.(1.1) has PropertyA.

Proof. Sinceµi = 1 (i = 1, . . . ,m), we haveµ0 = 1 andδ(1) = 1. Now (4.14) implies
(4.13�) for any � ∈ {1, . . . , n − 1} with � + n odd. Thus, the hypotheses of Corollary 4
are satisfied, which proves this corollary.�
Theorem 4.4. Let F ∈ V (τ) and conditions(1.2) and (4.2)–(4.4) hold. Suppose there
a nondecreasing functionϕ ∈ C(R+; (0,+∞)) such that(3.23) is satisfied, and for an
� ∈ {1, . . . , n − 1} with l + n odd, condition(3.25�) holds. Then Eq.(1.1) has PropertyA.

Corollary 4.4. Let F ∈ V (τ), conditions(1.2) and (4.2)–(4.4) hold, and for any� ∈
{1, . . . , n − 1} with � + n odd, let

lim sup
t→+∞

m∑
i=1

(β
1+(�−1)µi

i − α
1+(�−1)µi

i )(αi/β
∗)µi

(1+ (� − 1)µi)e(�−1)di+d0

×
(

(β∗t)µ0

+∞∫
sn−�+(�−1)µi pi(s) ds + (β∗t)µ0−1

β∗t∫
sn−�+(�−1)µi+1pi(s) ds
β∗t t
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hich
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ctions

the
tially
+ edi−d0(β∗t)µ0−µi−1

t∫
0

sn−�(1−µi)+1pi(s) ds

)

> �!(n − �)!δ(µ0), (4.15�)

whereµ0 = min{µi : i = 1, . . . ,m} and d0 = max{di : i = 1, . . . ,m}. Then Eq.(1.1) has
PropertyA.

Proof. The corollary follows from Theorem 4.4 since (4.15�) implies (3.25�) with the
inequality (3.1) replaced by (4.2),ϕ(t) ≡ β∗t , andβ∗ = max{βi : i = 1, . . . ,m}. �
Corollary 4.4′. Let F ∈ V (τ), conditions(1.2) and (4.2)–(4.4) hold with µi = 1 and
di = d0 � 0 (i = 1, . . . ,m), and suppose there exists̃p ∈ Lloc(R+;R+) such that(4.11)
holds and

lim sup
t→+∞

(
β∗t

+∞∫
β∗t

sn−1p̃(s) ds +
β∗t∫
t

snp̃(s) ds + (β∗t)−1

t∫
0

sn+1p̃(s) ds

)

> max

{
��!(n − �)!

(
m∑

i=1

(β�
i − α�

i )αi

β∗ed0�

)−1

: � ∈ {1, . . . , n − 1}, � + n is odd

}
,

(4.16)

whereβ∗ = max{βi : i = 1, . . . ,m}. Then Eq.(1.1) has PropertyA.

Proof. It suffices to note that the conditions (4.11) and (4.16) imply (4.10).�
Remark 4.1. The results given in this section essentially depend on the rate at w
the functionsµ+

i − µi(t) tend to zero ast → +∞, whereµ+
i = limt→+∞ µi(t) (i =

1, . . . ,m). It may happen that the “limiting” equation has Property A while the orig
one does not (by “limiting” equation, we mean the equation obtained when the fun
µi(t) are replaced by their limitsµi ).

To illustrate the situation described in Remark 4.1, we will give two examples. In
first example, the “limiting” equation is linear, while in the second one, it is essen
nonlinear.

Example 4.1. Consider the equation

u(n)(t) +
m∑

pi(t)

t∫ ∣∣u(s)
∣∣µi(s) signu(s) ds = 0, (4.17)
i=1 αi t
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nd

18)

t
it can

ation
pends

,

where 0< αi < 1, pi ∈ Lloc(R+;R+), µi :R+ → (0,1) are nondecreasing functions, a
limt→+∞ µi(t) = 1 (i = 1, . . . ,m). The “limiting” equation for (4.17) has the form

u(n)(t) +
m∑

i=1

pi(t)

t∫
αi t

u(s) ds = 0. (4.18)

It is known (see [14]) that if

lim sup
t→+∞

m∑
i=1

(
1− αn

i

)(
t

+∞∫
t

sn−1pi(s) ds + 1

t

t∫
0

sn+1pi(s) ds

)
> n!, (4.19)

then Eq. (4.18) has Property A. Now chooseci > 0 anddi > 0 (i = 1, . . . ,m) such that

2
m∑

i=1

(
1− αn

i

)
ci > n! (4.20)

and

max

{
(1+ λ)λ(λ − 1) · · · (λ − n + 1)∑m

i=1 cie−diλ(1− α1+λ
i )

: λ ∈ (n − 2, n − 1)

}
� 1, (4.21)

and letpi(t) = ci/tn+1. According to (4.20), it is clear that (4.19) holds, that is, Eq. (4.
has Property A. On the other hand, in view of (4.21), it is also clear that there existsλ0 ∈
(n − 2, n − 1) such that

λ0(1+ λ0)(λ0 − 1) · · · (λ0 − n + 1) =
m∑

i=1

cie
−diλ0

(
1− α

1+λ0
i

)
.

Therefore,tλ0 is a solution of Eq. (4.17) withpi(t) = ci/tn+1 andµi(t) = 1−di/ ln t (i =
1, . . . ,m), that is, Eq. (4.17) does not have Property A. If in Eq. (4.17), we haveµi(t) =
1 − di/tγi , wheredi > 0 andγi > 0 (i = 1, . . . ,m), then condition (4.19) is sufficien
for both Eqs. (4.17) and (4.18) to have Property A. The above example shows that
happen that the “limiting” equation has Property A while the original quasilinear equ
may or may not have Property A. Whether the original Eq. (4.17) has Property A de
on the rate at which the functions 1− µi(t) tend to zero ast → +∞.

Example 4.2. Consider the essentially nonlinear equation

u(n)(t) + p(t)

βt∫
αt

∣∣u(s)
∣∣µ(s) signu(s) ds = 0, (4.22)

where p ∈ Lloc(R+;R+), the function µ ∈ C(R+; (0,1)) is nondecreasing
limt→+∞ µ(t) = µ0 < 1, and 0< α < β < +∞. The “limiting” equation for (4.22) is

u(n)(t) + p(t)

βt∫ ∣∣u(s)
∣∣µ0 signu(s) ds = 0. (4.23)
αt
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It is known (see [12, Corollary 4.1]) that

+∞∫
t1+µ0(n−1)p(t) dt = +∞ (4.24)

is necessary and sufficient for Eq. (4.23) to have Property A. Now consider Eq. (4.22

p(t) = 1

t2+µ0(n−1) ln t
and µ(t) = µ0 − 1

ln ln t
. (4.25)

From the first equality in (4.25), it is clear that (4.24) holds, and so Eq. (4.23) has
erty A. On the other hand, in view of (4.25), we see that

+∞∫
p(t)

βt∫
αt

s(n−1)µ(s) ds < +∞.

Therefore, by Lemma 4.1 in [12], Eq. (4.22) has a solutionu : [t0,+∞) → R satisfying
limt→+∞ u(n−1)(t) = c0 �= 0. Hence, Eq. (4.22) does not have Property A (see De
tion 1.1), that is, in the case of essentially nonlinear equations, the original equatio
not have Property A while the “limiting” does.

5. Differential equations with Volterra-type minorant

Everywhere in this section, it is assumed that the inequality (3.1) holds and

σi(t) � t for t ∈ R+ (i = 1, . . . ,m). (5.1)

If (5.1) holds, then the formulation of the results given in Section 4 become substan
simpler.

Theorem 5.1. Let F ∈ V (τ), conditions(1.2), (3.1)–(3.4), and (5.1) hold, and suppos
there is a nondecreasing functionϕ ∈ C(R+; (0,+∞)) such that either(3.8n−1), (3.9),
and(3.10n−1) hold, or(3.8n−1), (3.9), and(3.21n−1) hold. Then Eq.(1.1) has PropertyA.

Proof. Taking into account (3.6) and (5.1), we easily see that

ρn−1,i (t) � tj ρn−1−j,i (t) (i = 1, . . . ,m, j = 1, . . . , n − 2).

Therefore, in view of (3.10n−1) and (3.8n−1) ((3.21n−1) and (3.8n−1)) conditions (3.10�)
and (3.8�) ((3.10�) and (3.8�)) hold for any� ∈ {1, . . . , n − 1} with � + n odd. On the
other hand, (3.8n−1) and (5.1) clearly imply (4.1) holds. The hypotheses of Theorem
(Theorem 4.2) are satisfied, and so the conclusion follows.�
Corollary 5.1. LetF ∈ V (τ) and conditions(1.2) and(4.2)–(4.4) hold, where

βi � 1 (i = 1, . . . ,m). (5.2)
Then, condition(4.5n−1) is sufficient for Eq.(1.1) have PropertyA.
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Proof. By (5.2) and (4.5n−1), conditions (4.5�) are obviously satisfied for any� ∈
{1, . . . , n − 1} with � + n odd, that is, the hypotheses of Corollary 4.1 are satisfied.�
Corollary 5.1′. Let F ∈ V (τ) and conditions(1.2), (4.2)–(4.4), and (5.2) hold, where
µi = 1 (i = 1, . . . ,m). In addition, suppose there exists̃p ∈ Lloc(R+;R+) such that
pi(t) = p̃(t) + o(tn+1) (i = 1, . . . ,m). Then the condition

lim sup
t→+∞

(
t

+∞∫
t

sn−1p̃(s) ds + 1

t

t∫
0

snp̃(s) ds

)
> n!

(
m∑

i=1

dn−1
i (βn

i − αn
i )

βi

)−1

is sufficient for Eq.(1.1) to have PropertyA.

Using Theorems 4.3 and 4.4, we have the following result that is analogous to
rem 5.1.

Theorem 5.2. Let F ∈ V (τ), conditions(2.1�), (3.1)–(3.4), and(5.1) hold, and suppos
there is a nondecreasing functionϕ ∈ C(R+; (0,+∞)) such that either conditions(3.23)
and(3.24n−1), or conditions(3.23) and(3.25n−1) hold. Then Eq.(1.1) has PropertyA.

6. Differential equations with deviating arguments

Throughout this section, it is assumed that, instead of (3.1), the inequality

∣∣F(u)(t)
∣∣ �

m∑
i=1

pi(t)
∣∣u(

δi(t)
)∣∣µi(δi (t)) for t � t0 andu ∈ Ht0,τ (6.1)

holds for larget0 ∈ R+. Here we ask that

pi ∈ Lloc(R+;R+), µi ∈ C(R+; (0,1]) are nondecreasing,

δi ∈ C
(
R+; (0,+∞)

)
, lim

t→+∞ δi(t) = +∞ (i = 1, . . . ,m). (6.2)

Theorem 6.1. LetF ∈ V (τ), conditions(2.1�), (6.1), and(6.2) hold,

δi(t) � t for t ∈ R+ (i = 1, . . . ,m) (6.3)

and

lim sup
t→+∞

m∑
i=1

((
δ∗(t)

)µ∗(δ∗(t))
+∞∫
t

pi(s)
(
δi(s)

)(n−2)µi(δi (s)) ds

× (
δ∗(t)

)µ∗(δ∗(t))−µi(δ∗(t))
t∫

δ∗(t)

pi(s)
(
δi(s)

)(n−2)µi(δi (s))
(
δ∗(s)

)µi(δ∗(t)) ds

+ (
δ∗(t)

)µ∗(δ∗(t))−µi(δ∗(t))−1
δ∗(t)∫

spi(s)
(
δ∗(s)

)µi(δ∗(t))(δi(s)
)(n−2)µi(δi (s)) ds

)

0
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)
(n − 1)!, (6.4)

whereδ∗(t) = infs�t {minδi(s): i = 1, . . . ,m}. Then Eq.(1.1) has PropertyA.

Proof. In view of (6.1), inequality (3.1) clearly holds with

τi(t) = δi(t) − 1, σi(t) = δi(t), ri(s, t) = pi(t)e
(
s − δi(t)

)
(i = 1, . . . ,m),

where

e(t) =
{

0 for t ∈ (−∞,0),

1 for t ∈ [0,+∞).

Therefore, taking into account (6.2)–(6.4), we can easily check that the conditions o
orem 5.1 are satisfied withϕ(t) = δ∗(t). �
Corollary 6.1. LetF ∈ V (τ) and conditions(1.2) and(6.1) hold, where

αi(t) = αit, αi(0,1], µi(t) = 1− di

ln t
, and di � 0 (i = 1, . . . ,m). (6.5)

Then

lim sup
t→+∞

m∑
i=1

e−(n−2)di

(
α∗t

+∞∫
t

sn−2pi(s) ds + α∗
t∫

α∗t

sn−1pi(s) ds

+ 1

t

α∗t∫
0

snpi(s) ds

)
> (n − 1)!ed0,

whereα∗ = min{αi : i = 1, . . . ,m} and d0 = max{di : i = 1, . . . ,m}, is a sufficient for
Eq. (1.1) to have PropertyA.

Proof. To prove the corollary, it suffices to note that (6.5) and (6.6) imply (6.4) w
δ∗(t) = α∗t . �
Corollary 6.1′. Let F ∈ V (τ), conditions(2.1�), (6.1), and(6.5) hold, and suppose ther
is a functionp̃ ∈ Lloc(R+;R+) such that

pi(t) = p̃(t) + o(tn) (i = 1, . . . ,m) (6.6)

and

lim sup
t→+∞

(
α∗t

+∞∫
t

sn−2p̃(s) ds + α∗
t∫

α∗t

sn−1p̃(s) ds + 1

t

α∗t∫
0

snp̃(s) ds

)

> (n − 1)!ed0

(
m∑

i=1

e−(n−2)di

)−1

. (6.7)
Then Eq.(1.1) has PropertyA.
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Proof. To prove the corollary, just note that (6.6) and (6.7) imply (6.6) withα∗ =
min{αi : i = 1, . . . ,m} andd0 = max{di : i = 1, . . . ,m}. �
Remark 6.1. From the results obtained in the previous sections, it is clear that if
holds, it is possible to obtain results that do not require condition (6.3). We restricte
attention to the situation requiring (6.3) only for the sake of simplicity. In addition
choosing the functionsϕ andµi appropriately, it would be possible to deduce, from
general theorems above, a variety of other conditions for Eq. (1.1) to have Property

Remark 6.2. In caseµi(t) ≡ 1 (i = 1, . . . ,m), i.e., the operatorF has a linear minoran
the above results imply the results in [14].

7. Functional differential equations with Property B

Using Propositions 3.1–3.4, in this section we give sufficient conditions for Eq. (1
have Property B similar to the results we obtained above for Property A.

Theorem 7.1. LetF ∈ V (τ), conditions(1.3), (3.1)–(3.4), and(3.8n−1) hold, and suppos
there is a nondecreasing functionϕ ∈ C(R+; (0,+∞)) such that(3.9) holds, and for any
� ∈ {1, . . . , n − 2} with � + n even, conditions(3.8�) and (3.10�) hold. Moreover, ifn is
even, let condition(4.1) hold. Then Eq.(1.1) has Property B.

Proof. Let Eq. (1.1) have a proper nonoscillatory solutionu : [t0,+∞) → (0,+∞) (the
caseu < 0 is similar). Then (1.1), (1.3), and Lemma 2.1 imply the existence of� ∈
{0, . . . , n} such that� + n is even and condition (2.1�) holds. In view of (3.9), (3.8�),
(3.10�), and Proposition 3.1, we have� /∈ {1, . . . , n − 2}. Since� + n is even, either� = n,
or n is even and� = 0. In the latter case, as was shown in the proof of Theorem 4.1, u
(4.1), we can easily show that (1.4) holds. On the other hand, if� = n, then by (2.1n), there
exist c > 1 andt∗ > t0 such thatu(t) � ctn−1 for t � t∗. Therefore, by (2.1n), (3.1), and
(3.8n−1), Eq. (1.1) yields

u(n−1)(t) � u(n−1)(t1) +
t∫

t1

m∑
i=1

σi(s)∫
τi (s)

ξ (n−1)µi(ξ) dξ ri(ξ, s) ds → +∞

as t → +∞, wheret1 > t∗ is sufficiently large. Thus, ifn is even and� = 0, then condi-
tion (1.4) holds, while if� = n, then condition (1.5) holds. This means that Eq. (1.1)
Property B, and the theorem is proved.�
Theorem 7.2. Let F ∈ V (τ), conditions(1.3), (3.1)–(3.4), (3.8n−1), and(5.1) hold, and
there exist a nondecreasing functionϕ ∈ C(R+; (0,+∞)) satisfying conditions(3.9) and
(3.10n−2), if n is even, and satisfying conditions(3.9), (3.10n−2), and(3.101) if n is odd.

Then Eq.(1.1) has PropertyB.
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Proof. In view of (5.1) and (3.10n−2), conditions (3.8�) are obviously satisfied, wher
� ∈ {2, . . . , n − 2} and� + n is even. On the other hand, (3.8n−1) and (5.1) imply (3.8�)
holds with� ∈ {0, . . . , n − 2}. Therefore, the hypotheses of Theorem 7.1. hold, and
completes the proof of the theorem.�
Corollary 7.1. Let F ∈ V (τ) and conditions(1.3) and (4.2)–(4.4) hold withβi � 1. Let
(4.13n−2) hold if n is even, and let conditions(4.131) and(4.13n−2) hold if n is odd. Then
Eq. (1.1) has PropertyB.

Remark 7.1. It is clear that Remark 4.1 is valid in the case of Property B as well.

8. Generalized ordinary differential equations of Emden–Fowler type

Here, we give sufficient conditions for Eq. (1.7) to have Property A or B. The re
of this section are consequences of those of previous sections, but we present the
because the conditions have quite a simple form in this case.

Theorem 8.1. Let p ∈ Lloc(R+;R+), the functionµ ∈ C(R+; (0,1)) be nondecreasing
and

lim sup
t→+∞

(
tµ(t)

+∞∫
t

s(n−2)µ(s)p(s) ds + 1

t

t∫
0

s1+(n−1)µ(s)p(s) ds

)

> δ(µ+)(n − 1)!, (8.1)

whereµ+ = limt→+∞ µ(t). Then Eq.(1.7) has PropertyA.

Corollary 8.1. Letp ∈ Lloc(R+;R+), µ(t) = 1− d/ ln t , d > 0, and

lim sup
t→+∞

(
t

+∞∫
t

sn−2p(s) ds + 1

t

t∫
0

snp(s) ds

)
> e(n−1)d (n − 1)!.

Then Eq.(1.7) has PropertyA.

Theorem 8.2. Letp ∈ Lloc(R+; (−∞,0]), the functionµ ∈ C(R+; (0,1)) be nondecreas
ing, and let

lim sup
t→+∞

(
tµ(t)

+∞∫
t

s1+(n−3)µ(s)
∣∣p(s)

∣∣ds + 1

t

t∫
0

s2+(n−2)µ(s)
∣∣p(s)

∣∣ds

)

> δ(µ+)2(n − 2)! (8.2)
hold if n is even, and let(8.2) and
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lim sup
t→+∞

(
tµ(t)

+∞∫
t

sn−2
∣∣p(s)

∣∣ds + 1

t

t∫
0

sn−1+µ(s)
∣∣p(s)

∣∣ds

)

> δ(µ+)(n − 1)! (8.3)

hold if n is odd, whereµ+ = limt→+∞ µ(t). Then Eq.(1.7) has PropertyB.

Corollary 8.2. Letp ∈ Lloc(R+; (−∞,0]), µ(t) = 1− d/ ln t , d > 0, and

lim sup
t→+∞

(
t

+∞∫
t

sn−2
∣∣p(s)

∣∣ds + 1

t

t∫
0

sn
∣∣p(s)

∣∣ds

)
> e(n−2)d2(n − 2)! (8.4)

hold if n is even, and let(8.4) and

lim sup
t→+∞

(
t

+∞∫
t

sn−2
∣∣p(s)

∣∣ds + 1

t

t∫
0

sn
∣∣p(s)

∣∣ds

)
> ed(n − 1)!

hold if n is odd. Then Eq.(1.7) has PropertyB.

In Theorems 8.1 and 8.2 we put some additional conditions on the functionsp andµ,
then the conditions (8.1), (8.2), and (8.3) can be made simpler. In this respect, bel
give some examples.

Example 8.1. Let the functionµ ∈ C(R+; (0,1)) be nondecreasing,

lim
t→+∞µ(t) = 1, limsup

t→+∞
tµ(t)−1 = γ ∗ > 0, (8.5)

p ∈ Lloc(R+;R+) and for sufficiently larget

P (t) � c

t1+(n−1)µ(t)
,

with c > 0. Then in order that Eq.(1.7) to have Property A, it is sufficient that

c(1+ γ ∗) > (n − 1)!. (8.6)

Example 8.2. Let the functionµ ∈ C(R+; (0,1)) be nondecreasing,

lim
t→+∞µ(t) = 1, lim inf

t→+∞ tµ(t)−1 = γ∗ > 0, (8.7)

p ∈ Lloc(R+;R+) and for sufficiently larget p(t) � c/tn with c > 0. Then the condition
cγ n−2∗ (γ ∗ + γ∗) > (n − 1)! is sufficient in order that Eq.(1.7) to have Property A.

Example 8.3. Let the functionµ ∈ C(R+; (0,1)) be nondecreasing, the condition (8.5)
fulfilled, p ∈ C(R+; (−∞,0]) and for sufficiently larget∣∣p(t)

∣∣ � c

t2+(n−2)µ(t)

with c > 0. Then in order that Eq. (1.7) to have Property B, it is sufficient that the cond

(8.6) hold.
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Example 8.4. Let the functionµ ∈ C(R+; (0,1)) be nondecreasing, the condition (8
be fulfilled,p ∈ Lloc(R+; (−∞,0]) and for sufficiently larget , |p(t)| � c/tn, with c > 0.
Then in order that Eq. (1.7) to have Property B, it is sufficient that

cγ n−3∗ (γ ∗ + γ∗) > 2(n − 2)! (8.8)

if n is even and (8.8) along withc(γ ∗ + γ∗) > (n − 1)! if n is odd.
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