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Abstract

In this paper, amth order functional differential equation is considered for which the generalized
Emden—Fowler-type equation

W™ @)+ p)|u) |V signu(y =0, >0, (0.1)

can be considered as a nonlinear model. Here, we assume th&, p € Lioc(R+; R), and

n € C(Ry; (0,1)) is a nondecreasing function. In cagé) = const> 0, oscillatory properties of

Eqg. (0.1) have been extensively studied, where agij & const, to the extent of authors’ knowl-

edge, the analogous questions have not been examined. It turns out that the oscillatory properties of
Eg. (0.1) substantially depend on the rate at which the fungtibr- ..(r) tends to zero as— +oo,
whereu® = lim;_, 1o 1(z). In this paper, new sufficient conditions for a general class of nonlinear
functional differential equations to have Properties A and B are established, and these results apply
to the special case of Eq. (0.1) as well.
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1. Introduction
Lett € C(Ry; Ry) with lim,— 1o T(f) = +00. Let V(z) denote the set of continuous
mappingsF : C(Ry; R) — Lioc(R4; R) satisfying the condition
F(x)(t)=F(y)(t) holds for anyt € R, andx, y € C(R4; R), provided that
x(s) =y(s) fors > 1t (¢).

This work is dedicated to the study of oscillatory properties of the functional differential
equation

u™ () + F(u)(r) =0, (1.1)

wheren > 2 and F € V(r). For anyfy € Ry, we let Hy, ; denote the set of all func-
tionsu € C(R4; R) satisfyingu(t) # 0 for ¢ > t,, wheret, = min{tg, t.(f0)} andt.(¢) =
inf{z(s): s > r}. Throughout this work, where ever the notatiitr) and H,, . occur, it

will be understood that the functiansatisfies the conditions stated above, unless specified
otherwise. It will always be assumed that either

F(u)(t)u(t) >0 fort >1tgandu € Hy, -, (1.2)
or
Fu)(Hu(t) <0 fort>1toandu € Hy ¢, (1.3)

holds.

Let 7o € R+. A functionu : [tp, +00) — R is said to be groper solutionof Eq. (1.1)
if it is locally continuous along with its derivatives of order up to and including 1,
supu(s)|: s € [tg, +00)} > O for ¢ > tg, there exists a function € C(Ry; R) such that
i(t) = u(t) on [f9, +00), and the equalityi™ (r) + F(it)(r) = 0 holds forz € [tg, +00).
A proper solution of Eq. (1.1) is said to lescillatoryif it has a sequence of zeros tending
to +o0. Otherwise, the solution is said to henoscillatory

Definition 1.1 [1]. We say that Eq¢1.1) has Property A if any proper solutionis oscilla-
tory if n is even, and is either oscillatory or satisfies

[u®@)| 10 astt+oo(i=0,...,n—1) (1.4)
if nis odd.
Definition 1.2 [2]. We say that Eq(1.1) has Property B if any proper solutionis either
oscillatory, satisfiegl.4), or satisfies

[u® )| 4 +00 astt+oco(i=0,....,n—1) (1.5)

if n is even, and is either oscillatory or satisfi@s) if n is odd.

The higher order nonlinear ordinary differential equation

u™ () + p()|u() ]A signu(r) =0, (1.6)
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wherep € Lioc(R4+; R), A > 0, andA £ 1, is a special case of Eq. (1.1). The problem of
determining criteria for nonlinear differential equations of the second and higher orders
to have each solution oscillatory or converge to zero (or be oscillatory, converge to zero,
or diverge tooco) has been of interest to researchers even before the now commonly used
names of Properties A and B. It has its roots in the pioneering paper of Atkinson [3] for
second-order equations, the work of Kiguradze [4], who gave sufficient conditions for this
behavior in case is even and. > 1, and LEko and Svec [5], who gave necessary and suf-
ficient conditions for both even and odd as well as botkO. < 1 andx > 1. There have
been a number of survey papers and monographs written on various aspects of oscillation
of nonlinear differential equations, and we refer the reader to Kartsatos [6], Kiguradze and
Chanturia [2], Ladde, Lakshmikantham, and Zhang [7], Gyo6ri and Ladas [8], Erbe, Kong,
and Zhang [9], Agarwal, Grace, and O’'Regan [10], and Koplatadze and Canturia [11]. The
analogous problems for the equations of the type (1.1) in case where the ogetsasr
either a nonlinear or a linear minorant are extensively studied in the monograph [12] and
the paper [13].

In the present paper, oscillatory properties of the functional differential equation (1.1)
are investigated, and this allows us to obtain results for

u® @) + p@)|u@) " signu(r) =0, (1.7)
wherep € Lioc(R+; R) andu € C(R4; (0, 1]) is nondecreasing. Clearly, this equation is
a generalization of Eq. (1.6). If we let=lim;_, o u(¢) andu(z) # A for t € Ry, then

it turns out (see Remarks 4.1 and 7.1 below) that in certain cases, Eq. (1.7) may not have
Property A (B), but the “limiting” equation does have this property.

2. Some auxiliary lemmas
In the sequelﬁ(ggl([to, +00)) denotes the set of all functions [fg, +00) — R that
are absolutely continuous on any finite subintervdk@f+oo) along with their derivatives
of order up to and including — 1.

Lemma 2.1 (Kiguradze [4]) Letu € é{ggl([ro, +00)) satisfyu(r) > 0 and u™(r) <0
™ (1) > 0) for r > 1o and u™(r) # 0 in any neighborhood of-co. Then there exist
1 >tandf €{0,...,n} suchthat +n is odd(even and

uP@)y>0 fort > (i=0,...,6—1),
() uD)>0 fore>n =t ....n—1). (2.1)

Note. In case? = 0, we mean that the second inequality21l,) holds, while if¢ = n, the
first one holds.

Lemma 2.2. Letu € Cioc([to, +00)) and (2.1,) be satisfied for somée {1,...,n — 1}
with £ +n odd (even. Then

+o0
/ " Hu ™ (1) | dt < +oo. (2.2)
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If, moreover,
+o00
f " u™ (1) dt = +oo, (2.3)
then there exists, > g such that
u (1) ud (1) .
pras s pres Y400 (i =0,...,£-1), (2.4;)
-1
u(t) > T”(H)(” fort >1t,, (2.5)
and
400
uDi) > P / s"_e_1|u(”)(s)|ds
t
t
+ — /s”*‘|u(”)(s)|ds fors > t,. (2.6)

Ly

The proof of the lemma in the case whet®) (1) < 0 can be found in [14]. The case
wherex ™ () > 0 can be proved analogously.

Remark 2.1. Inequality (2.6) was first proved in this form in [15].

3. On solutions of the type (2.1,)

In this section, sufficient conditions will be given in order for Eg. (1.1) to have no
solutions of the typ&2.1,), wheret € {1, ...,n — 1}. Everywhere below, it is assumed
that for sufficiently largeg, we have

m oi(t)
|Fu)(t)| > Z / |u(s)|/“(s) dgri(s,t) fort>toandu € Hy, -, (3.1)
=150
where
7;,0; € C(Ry; R), andrt;(t) <o;(t) forte Ry, 3.2)
iMoo tit) =400 (=1,...,m), '
i € C(R4; (0, 1]) are nondecreasing functiotis=1, ..., m), (3.3)
and
ri (s, t) are measurable inand nondecreasing n(i =1, ..., m). (3.4)

Also, fori e {1,...,m}, j €{0,1,...,n— 1}, andp € C([tg, +0); (0, +00)), we let
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1 foro(t) <oi(?),
Ng,0; (1) = { 7(2222;:22(3) for ¢(t) > 0i (1), (3.5)
oi (1)
pji(t) = / st dris, ) (=1,...,m), (3.6)
7i (1)
and
ps(®) =minfu;(0): i=1,...,m}, (3.7)

where the functions;, o;, u;, andr; satisfy conditions (3.2)—(3.4).

Proposition 3.1. Let F € V(r), conditions (1.2) ((1.3)) and (3.1)—(3.4) hold, ¢ €
{1,...,n—1}, £ +n be odd(even, and

+0o0 m oi()
/tn_e_lzfsm(s)dsri(s,t)dt=+oo. (3:8¢)
=10

Moreover, assume there is a nondecreasing funatienC (R ; (0, +00)) such that

z"T p(t)y=40c0 and @) <t forr>1, (3.9
— 100
and
- ¢ P
I:T*S‘gop; (‘ﬂ(t)) / Wﬂw,oi (8)pe,i(s)ds
= t
t
1 (9 (D) = 11 (1)) st 1 (9(s))
+ (o) | G e ©ps) () ds
(s
@)
P@) net
X — Wi -1 s i
+ (<p(t))” () —wi(p@)) / W((p(”)u (¢(s))mp’0i (S)pg,,‘(s)ds)
1
0
> 8(ul)ein — 0, (3.100)
where
. 1 ifs=1
—+ _ _ 1l
P _t—llTooM*(t) and S(S)_{O if0<s <1 (3.11)

Then Eq.(1.1) has no solution of the typ@.1;).

Proof. We will first show that (3.9) and (3.2Dimply
+00 m OiD)
/ "ty / sEDHO) gpi (s, 1) dt = 4-00. (3.1%)

=l
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Indeed, if this is not the case, then in view of (3.3), (3.9), the inequality
i (1)
Mgy (D pe.i (1) < (070)) ") / s gy (s,0) (i =1,....m),
i (1)
and the fact thaty (r))*+(*®) is nondecreasing, we have

oo n—€—1

Z(QD(I‘))M*(WO)) / mw,m (8)p¢,i(s)ds
t

i=1
00 oi(s)
Sn—e—l((p(s))u*(fﬂ(s)) f S(Z—l)/“ Q) deri(§,s)ds
7i (8)
o i (s)

M (p(s))
§ e((p(&)) / g(é l)u,(é)dsr (,s)ds
7 (s)

+

<

&

Il
N
~

1

~

+o0 oi(s)
< /s"*i / gD geri (&, 5)ds — 0 ast — 4o, (3.13)
i=17 7 (s)

t
n—0—1

m

M (@ (1)) =i (@(1)) ni(@(s)) )
;(w(t)) / o yren @) e (5)pei(s) ds
= ()
m 0i(s)

@(s) wi(p(s))
Z § f( ) / %—(f 1)M[(§)dér (€,5)ds
S
=Ty 7i(s)
m b 0i (s)
< /s"*f / eCDE) gy (£, 5)ds — 0 ast — +o0, (3.14)
=) 7i(s)
and
@(1) n—t

m
* — i -1 § i(p(s
Z(ﬂﬂ(f))u @) i (p()) / W(w(s))u ((p(?))n(p’(’i ) pes(s)ds
i=1 !

m @(1) i (s)
< Z((p(t)) / sn Z((p(s))l/« (p(s)) / é(f D (&) déri(%-,s) ds
i=1 0 7 (s)
1y i (s)

Z( (t)) /sn—f(ga(s))ﬂi((ﬁ(s)) / E(f—l);l,,‘(s) d%‘r[(s,s)ds

i=1 0 7;(s)
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@(t) oi(s)

m
+Z(<p(t))_l/s"_e(fp(S))“i(W(s)) / £CDI® gy (£, 5 ds
i=1 iy % (s)
m 1y oi (s)
Z( (t)) /Sn—f(w(s))ﬂi((ﬂ(s)) / E(Z_l)“"@)dgri(é,s)ds
=t 0 i (s)
m oo oi(s)
+Z/s"—f / gCVE Geri (€, 5)ds
=1 7 (s)
m I 0 (s)
<(e) ™Y / (p(s))" @ / D@ g & s)ds +e,  (3.15)
l=10 o (s)

wheree > 0 is an arbitrary positive number andis chosen so that

+0o0 m (9

/S,,_gz / E(Z—l)m(é)dsri(g’s)ds<8.

I =1

Sincee is arbitrary, we have

m P nt
# (@) —pi(p())—1 S i(p(s))
Z(ﬁ"(t))u v f W(‘P(S))M O .0 (8)pej(s)ds — O
i=1
ast — +o0. (3.16)

Now, (3.13), (3.14), and (3.16) contradi@&10,), and this shows that (3.12holds.

Suppose next that Eq. (1.1) has a proper nonoscillatory solutidry, +00) —
(0, +00) satisfying (2.1), where¢ € {1,...,n — 1} with £ + n odd (even). In view of
(2.1,), it is clear that there exists > 0 such that(r) > ct‘~1 for t > t,, wherer, is a
sufficiently large number. Therefore, from (3.1) and (3)12ve see thai: satisfies the
hypotheses of Lemma 2.2, that is, condition (24 is satisfied and

“+o00

u(éfl)((p(t)) > (nwitz)' / sn7€71|u(n)(s)’ds

@)
@)
/" Hu™(s)|ds fore >t (3.17)

Lx

1
a0

wherer, is sufficiently large. As it is noted below, ¢~V /r | 0 asr 1 +o0. Hence the
functions(u“~D (r)/n)® (i =1,...,m) are nonincreasing for large Taking this fact
into account, in view of (1.1), (3.1), (3.3), (2.4), and (2.5), we obtain
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=D (g, 1i (0 (5))
t-1) net1 (u (0:(s)))
u ((p(t)) E)[(p(t)/ Z (Ui(S))Mi(O-i(S))
@)
o (s)
X f Egui(s)d%‘ri(g,s)ds
7 (s)
@(t)
+ 1 f n—li(M(e_l)(a,-(s)))ﬂi(vi(s))
IV N s
Li(n —0)! = (07 (s))Hi (@i ()
1 =
0i(s)
x /Eeui(S)dsri(g,S)ds.
Ti(s)

On the other hand, according to (2./and (3.3), since the functiorg ¢~ (1))%® (i =
1,...,m) are nondecreasing for largedue to second relation of (2.4 for sufficiently
larget, we have

(u(e—l) (Ui (t)))ui (0i (1)) > (u(ﬁ—l) (¢(t)))“i (p®) (3.18)

providedyp (1) < 0;(¢) (i =1,...,m). Since the function&“= D)/ )% ® (i =1,...,m)
are nonincreasing, we have

=Dy rilaie) o (@i ()
(M ((71 (t))) > (¢(Z))Mi 700
if () >0;(t) (i =1,...,m). From (3.18), (3.19), and (3.5), we obtain

(u(efl) (Ui (t)))l/-i(ai(l)) > Npo; (t)(u(efl) ((p(t)))ui(w(t)) G=1....m
for sufficiently larges. Therefore, (3.17) together with (3.3) and (3.9) imply

u(pw) =

(M(Z—l) ((p(t)))ui(w(t)) (3.19)

_t
0 —0)!

—Z—l

" Z[‘”’) / e e O TP ) i) ds

sn—f—l B (@
“”(’)/ e oo @@ P ) (5 ds
1
@)
@(t)

n—{
+ / mnm(s)(u“—l)(w(t)))""“”“”pe,i(s)ds}

n

for t > 11, wherery > t, is sufficiently large and the functiong ,, andp,; (i =1,...,m)
are defined by (3.5) and (3.6), respectively. From the last inequality, taking |nto account
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the fact that(u“~D (r))*+® is nondecreasing an@“~2 (r)/1)*+® is nonincreasing, we
obtain

V() =

+o00
(-1 M (p(r)) ™ n—e—1
) Z[w(t) f S M ()pei(s) ds

dn—0l & /@iy
t
@) [ ) )i ds
v (01 ()i @i (o) P N0 (S)PE.115) 65

@(t)
@) nt

+ (o) f mnw,m(s)pe,i(s)(ws))“"“"“”ds} (3.20)
4%

for t > 1, where the functionu,(¢) is defined by (3.7). On the other hand, from (2,1
(3.1), (3.12), and the first condition in (2,4, we can easily derive that

u((f—l) (1)
t
Therefore, (3.3) and (3.7) imply that

u(ﬁfl) ((p(l)) 1—s(@(1))
( @(1) )
wheres andp are given in (3.11). So from (3.20), we have

10 ift 4 4oo.

limsup <8(u),

t——+00

+00
. m i sn—é—l
I|msupz<(<p(z))”'(‘p(m / Ww,o,-(sm,i(s)ds

t—+00 i=1 ,

t
—(-1
1 (@) =11 (1)) 5" 1 (9(s)) ,
* ) / (07 (5))Hi (@i () (v) Ng.oi ($)pe.i () ds
w()
e n—~

(0 () —pi (p(1))—1 s wip(s)) )
+ow) | Gy ) w,oxsw,msws)

41
<8(uf)ein— 0.

But this contradicts (3.10, and completes the proof of the propositiorn

Remark 3.1. For a rather wide class of operatdrscondition (3.12) is also necessary for
Eq. (1.1) not to have a solution of the type (9.lsee Lemma 4.1 in [12]).

Proposition 3.2. Let F € V(t), conditions(1.2) ((1.3)) and (3.1)—(3.4) hold, and let
Lef{l,...,n—1} with £ + n odd (even. Moreover, suppose there exists a nondecreasing
functiong € C(Ry; (0, 400)) such that condition$3.8,) and (3.9) hold, and
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+00
hmsupZ( (p(0))" / "My 1 (5)pe-1i(5) ds

t——+00 i=1 f

t
+ (w(t))u*w(z))—m@(z)) / Sn_z_l((p(s))m«p(s))n(m (5)pe_14(s)ds

0]

P
* —Hi -1 - i(p(s
0

> 8(ul)ein — o). (3.21)
Then Eq.(1.1) has no solution of the typ@.1,).

Proof. Similar to the proof of Proposition 3.1, we will use (3,210 show that (3.12
holds. Assume that Eq. (1.1) has a proper solution satisfying)(2nhere? € {1, ...,
n—1} with £ + n odd (even). The function: obviously satisfies the conditions of
Lemma 2.2, so as in the proof of Proposition 3.1, (3.17) holds.faufficiently large.
From (2.5) and the first condition in (2.41), we obtain

+00
_ @(1) i (T
ut 1)(<p(t))> / n—{— 12 - 1) r( )))U— (7i (s))
L(n—0)!
(1) i=1
i (s)
% /E(E_l)“"@)dgri(é,s)ds
7 (s)
p@) m
1 n—¢ (-1 i (Ti(s))
w2 EG)
f i=1
i (s)
X /S(e_l)“[(é)dgri(é,s)dx. (3.22)
7 (s)

If we then proceed as in the proof of Proposition 3.1 with the functigneplaced byt;,
we have

+o00
ImsupZ( (p(1)) “*(“’(’)) / " g 5 () pe—1.i (s) ds

t——+4o00
i=1 t

t

+ ((p(t))u*(w(t))—m(w(t)) / Snfefl((p(s))mp(s»nm ($)pe_14(s)ds
@)
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@(t)
* — i -1 - i (p(:
T (p0)" (@) —11i (p(1)) /sn (o))" (‘p(v))w,n(s)pz1,i(s)ds)

Ty
<O —0168(uf).
The last inequality contradicts (3.21and this completes the proof of the propositiom

The previous two propositions were concerned with the gése< ¢. The next two are
for the casen(t) >r.

Proposition 3.3. Let F € V(r), conditions(1.2) ((1.3)) and (3.1)—(3.4) hold, and let
te{l,...,n—1}with £ +n odd(even. In addition, suppose there exists a nondecreasing
functiong € C(R; (0, +00)) such that

@)=t forte R, (3.23)
and

m oo n—0—1
|imSUp!Z<((p([))l"*(fﬂ(t)) / W”wm(s)p&i(s)ds

t——+00 T
i=1 (1)

60 .

S 20) / Sy e P ) ds

§h £

(‘/’(l))ﬂ*(w(l)) = 1/ (0 (5)) 1 @) (‘P(S))Mi((p(s))’?w,o,-(S),Oz,i(s)ds)}

> 0(n— )!S(M* ) (3.24;)
Then Eq.(1.1) has no solution of the typ@.1;).

Proof. Again following the line of proof used for Proposition 3.1, (3:Rdmplies (3.8)
holds. Assume that Eq. (1.1) has a proper solution satisfying)(2nhere? € {1, ...,
n — 1} with £ + n odd (even). As before, we can show that (3.17) holds faufficiently
large. On the other hand, in view of (1.1), (3.1), (2.5), (244, and (3.23), for large,
inequality (3.17) yields

+00

1 0 i1 (u (K—l)(¢(s)))ui(w(S))
W) > o / ;W PO

@)

m 0 it
- - . =Dy ui(e())
+Z[/ (Gl(s))m(m(s))mpa,(S)pz,z(S)(u ) ds

sn—E 3 .
*/ oy e @) ”)“'“”“”ds}
7 (S
[
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for largez:. If, in the first and second summands on the right-hand side of this inequality,
we take into account the second condition in (24, and in the first summand, we use
the first condition in (2.4_1), we will easily obtain an inequality opposite to (3,24This
completes the proof of the propositionc

Proposition 3.4 below is proved analogously to Propositions 3.1-3.3.

Proposition 3.4. Let F € V (1), conditions(1.2) ((1.3)) and (3.1)—(3.4) hold, and let¢ €
{1,...,n — 1} with £ + n odd (even. Moreover, assume that there exists a nondecreasing
functiong € C(R; (0, +00)) such that(3.23) holds and

+oo

lim sup! Z ((w(t))u*(w(m / Sy ()P, (s) ds

t—>+o0 | .
i=1 (1)

o(t)
" -1 _
+ (o)) / "0y 2 () pe_1.i(s) ds

t
t

+ (w(t))ﬂ*(‘ﬂ(l))—ﬂz((/)(l))—l/Sn—ﬁ ((p(s))ﬂ/i((ﬂ(s))nw’ri (S),O(’Z(S) ds) }
i
> 0(n— E)M(M:). (3.25)
Then Eq.(1.1) has no solution of the typR.1).

4. Functional differential equationswith Property A

Based on the results obtained in Section 3, in this section we obtain sufficient conditions
for Eq. (1.1) to have Property A.

Theorem 4.1. Let F € V (1), conditions(1.2) and (3.1) hold, and there exists a nonde-
creasing functiop € C(R; [0, +00)) satisfying(3.9) such thatforany € {1,...,n —1}
with £ + n odd, conditiong3.8;) and (3.10,) are satisfied. If, in additiory; is odd, let

+00

/ -1 Z(ri (0i (), 1) — ri(Ti(2), 1)) dt = +o0. 4.1)
i=1
Then Eq(1.1) has PropertyA.

Proof. Let Eqg. (1.1) have a proper nonoscillatory solutionzg, +00) — (0, +o0) (the
caseu(r) < 0 is similar). Then by (1.1), (1.2), and Lemma 2.1, there exists{O0, ...,

n — 1} such that? + n is odd and condition (24} holds. In view of (3.9), (3.19, and
Proposition 3.1, we have¢ {1, ...,n — 1}. Thereforep is odd andt = 0. We claim that
(1.4) holds. If this is not the case, then there exist O, ¢, > fp, and#; > f, such that
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u(t)y =cfort >t,andr;(¢) >t fort >n (i =1, ..., m). Therefore, in view of (2.4) and
(3.1), Eq. (1.1) yields

n—1 ! m

Z(n —i— 1)!ti|u(i)(t1)| > c/s"_lz(ri (oi(s),s) —r (r,- (s), s))ds

i=1 ,l i=1

for ¢t > 1, which contradicts (4.1). Thus, (1.4) holds, and so Eqg. (1.1) has PropertyA.

Corollary 4.1. Let F € V (1), condition(1.2) hold, and
Bit

m
|Fu)(0)| > Zp[(t)/|u(s) M) s fort>tpandu € Hy.r, (4.2)
i=1 ot
where
a;, Bi € (0,+00), o; <Bi, Bi =1, pi € Lioc(R1; Ry), (4.3)
d.
Mi(l)zm—ﬁ, O<ui <1, d >0. (4.4)

Moreover, forany € {1,...,n — 1} with £ + n odd, let

400
[Ho / gD 0

t

m Lpi+1 Lpi+ly g (0—1)
. (ﬁ, - Je
IlmsupE BT (1t L)

=1 i !

t—+00 =

t

4 ppo-ni-1 / =D () ds)
0

> e®01(n — 0)18(10) (4.5¢)

hold, whereug = min{u;: i =1,...,m} anddp =maxd;: i =1,...,m}. Then Eq(1.1)
has PropertyA.

Proof. To prove the corollary, it suffices to note that (4.2)—(4.4) imply the conditions of
Theorem 4.1 are satisfied with(¢) = «;t, 0;(t) = Bit, ri(s,t) = pi(t)s (i =1,...,m),
ande(t) =1t.

If, in Corollary 4.1, the functiong; () i =1,...,m) are in a sense “close” to each
other, then the conditions (4)pcan be replaced by one condition. In fact, we have the
following result. O

Corollary 4.1'. Let F € V (1), conditions(1.2) and (4.2)—(4.4) hold withu; =1 (i =
1,...,m), and there exisp € Lioc(R+; R+) such that
“+00
liminf ¢ / s”_l(p,-(s) — ﬁ(s)) ds >0, (4.6)

t— 400
t
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and
1t

Izlinfgz %/s"(pi(s) — ﬁ(s)) ds>0 (i=1...,m) 4.7)
0

hold. Then, for Eq(1.1) to have PropertyA, it is sufficient that

+00 t
; n—1~ 1 n~
limsuplz [ s" " p(s)ds+ — | s"p(s)ds
t——+00 t

t

0
M —di(0-1) g+l _ o b+1y\ T
> 0 max{(l"‘ﬁ)!(n—g)y(Ze (ﬂé. Q; )) :

i=1

Ee{l,...,n—l},ﬂ+nisodd}, (4.8)
wheredp=maxd;: i =1,...,m}.

Proof. Sincepp=min{w;: i =1,...,m} =1, §(uo) = 1, conditions (4.6)—(4.8) imply
(4.5) holds forany? € {1, ..., n — 1} with £ 4+ n odd. Therefore, the hypotheses of Corol-
lary 4.1 are satisfied, and the conclusion follows]

Corollary 4.1”. Let F € V (1), conditions(4.2)—(4.4) hold withu; =1 (i =1, ..., m),
and let there exist a functiofi € Lioc(R4; Ry) such that

pi()=p@)+o(t™Yy (i=1,...,m). (4.9)
Then condition(4.8) is sufficient for Eq(1.1) to have PropertA.

Proof. To prove the corollary, it suffices to note that condition (4.9) implies that (4.6) and
(4.7) hold, so the hypotheses of Corollary’afe satisfied. O

Theorem 4.2. Let F € V(r) and conditiong1.2), (3.1)—(3.4), and(4.1) hold. Assume that
there is a nondecreasing functigne C (R ; (0, +00)) such that(3.9) holds, and for any
¢e{l,...,n—1} with £ +n odd, condition(3.21,) holds. Then Eq(1.1) has PropertyA.

Corollary 4.2. Let F € V(r), conditions(1.2) and (4.2)—(4.4) hold witho; <1 (i =
1,...,m),andforanyl €{1,...,n — 1} with £ + n odd, let

m Wi o (=D p; H+H=Dpiy —(e—1 d;
imsupy_ 2 — i
. 1+ (- Dy

+00 !
% ([MO / == pi(s)ds + t;/.o—u,-—l/sn+€(l/-i—l)+lpi (s) dS)
t 0

> P01 (n — 0)18(uo), (4.10)
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whereug =min{u;: i =1,...,m}. Then Eq(1.1) has PropertyA.

Proof. The conditions of the corollary imply that the hypotheses of Theorem 4.2 are sat-
isfied witht; () = o;t, 0;(t) = Bit, ri(s,t) = p;(t), andp(t) =¢t. O

Corollary 4.2'. Let F € V(r), conditions (1.2) and (4.2)—(4.4) hold with o; < 1,
wi=1(@G=1,...,m), and suppose there exisgse Lioc(R+; R+) such that for any
Lef{l,...,n—1} with £+ n odd, we have

+00

I|m|ana, (Bf —af)e " 1)‘1< /s”’l(pi(s)—ﬁ(s))ds

t——+00
t

t

+ fl/‘s”Jrl(p,- (s) — ﬁ(s)) ds) >0. (4.11)
0
Then for Eq.(1.1) to have PropertyA, it is sufficient that

400 1 '
limsup t/s"_lﬁ(s)ds+—/s”+lﬁ(s)ds
t—>—+00 t

t 0

m -1
>max{ed0€£'(n—€)'(zal Bi —aj)e™ " 1)d> ;

i=1

ee{l,...,n—l},e+nisodd}. (4.12)

Proof. It suffices to note that the conditions (4.11) and (4.12) imply (4.10).

Corollary 4.2”. Let F € V (), conditions(1.2) and (4.2)—(4.4) hold witha; <1, u; =1
(i=1,...,m),andthere exisp € Lioc(R+; R+) suchthat(4.9) holds. Then the inequality
(4.12 is sufficient for Eq(1.1) to have PropertyA.

The proof follows from the observation thet.9) implies (4.11).

Theorem 4.3. Let F € V(r) and conditiong1.2), (3.1)—(3.4), and(4.1) hold. In addition,
suppose there is a nondecreasing funcioa C (R ; (0, +00)) such that(3.23) is satis-
fied, and for anyt € {1, ...,n — 1} with £ + n odd, conditiong3.24) and (3.8;) hold.
Then Eq.(1.1) has PropertyA.

Corollary 4.3. Let F € V (1), (1.2) and (4.2)—(4.4) hold, and forany € {1,...,n — 1}
with £ + »n odd, let

m 1+Ep,, _ O[1+ZM, +oo
lim supz W (;#0 / A=) —pi pi(s)ds

t—+00 .
i=1 B*t
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Bt
+ (B*)Hie® /s”_z(l_“")ﬂ_’” pi(s)ds

t
t

+ﬂ*uoui1edituou1/Sn/é(1ui)+lpl,(s)ds>
0
> e01(n + )18 (uo), (4.13)
whereg* =max{g;: i =1,...,m}. Then Eq(1.1) has PropertyA.
Proof. To prove the corollary, it suffices to note that (4 18nplies that the hypotheses

of Theorem 4.3 hold with; (t) = «;t, 0;(¢t) = B;it, ri(s,t) = p;(t)s (i =1,...,m), and
p(t)=p%. O

Corollary 4.3. Let F € V (1), conditions(1.2) and (4.2)—(4.4) hold with u; = 1 and
di=do>0(@=1,...,m).If there existy € Lioc(R+; R+) such that(4.9) holds and

+o0 Bt 1 t
Iimsup(ﬁ*t / s"—lﬁ(s)dwredo/s”ﬁ(s)dwr;/s"“ﬁ(s)ds)

t——+o0
B*t t 0

m -1
> max{ (€4 1)\(n — 1)1 et (Z(ﬁf“ - af“)) : (4.14)

i=1
Le{l,...,n—=1}, L+n iSOdd},
whereg* =maxg;: i =1,...,m}, then Eq.(1.1) has PropertyA.

Proof. Sinceu; =1 (i =1,...,m), we haveug =1 andé(1) = 1. Now (4.14) implies
(4.13) forany¢ € {1,...,n — 1} with £ + n odd. Thus, the hypotheses of Corollary 4.3
are satisfied, which proves this corollarya

Theorem 4.4. Let F € V(t) and conditiong1.2) and (4.2)—(4.4) hold. Suppose there is
a nondecreasing functiop € C(R; (0, +00)) such that(3.23) is satisfied, and for any
¢e{l,...,n— 1} with/ +n odd, condition(3.25;) holds. Then Eq¢1.1) has PropertyA.

Corollary 4.4. Let F € V(t), conditions(1.2) and (4.2)—(4.4) hold, and for any? e
{1,...,n — 1} with £ +»n odd, let

14+(0—D)p; 1+ (=D )
Ot 0 Y

lim supg (Lt (€ — L) e=Ddrrdo

+00 Bt
x ((,3*1‘)“0 / sn—f-i-(f—l)mpi(s) ds + (ﬂ*t)ﬂo—lfsn—f+(€—l)lt[+lpi (s)ds
B*t t



152 J.R. Graef et al. / J. Math. Anal. Appl. 306 (2005) 136-160

t
+ edi—dO(IB*t)Mo—Mi—lfS”—f(l—ui)-&-lpl_ (s) ds)
0

> (n — )18 (o), (4.15)

wherepg=min{w;: i =1,...,m} anddo =max{d;: i =1,...,m}. Then Eq.1.1) has
PropertyA.

Proof. The corollary follows from Theorem 4.4 since (4¢)5mplies (3.2%) with the
inequality (3.1) replaced by (4.2)(¢) = B*t, andB* =maxg;: i =1,...,m}. O

Corollary 4.4'. Let F € V (1), conditions(1.2) and (4.2)—(4.4) hold with x; = 1 and
di=do>0(@G=1,...,m), and suppose there exisfse Lioc(Ry; Ry) such that(4.11)
holds and

t——+00

+o0 Bt t
Iimsup(ﬂ*t / s”1ﬁ(s)ds+/s”ﬁ(s)ds+(ﬂ*t)1/s”+lﬁ(s)ds>
0

B*t t

m € 00\ -1
>max{zez(n—@!<2%#) :Ee{l,...,n—l},£+nisodd},
e
i=1
(4.16)

whereg* =max{g;: i =1,...,m}. Then Eq(1.1) has PropertyA.
Proof. It suffices to note that the conditions (4.11) and (4.16) imply (4.10).

Remark 4.1. The results given in this section essentially depend on the rate at which
the functionsy;” — w;(7) tend to zero as — +oo, whereu;f = lim,_ 1oo 11i (1) (i =
1,...,m). It may happen that the “limiting” equation has Property A while the original
one does not (by “limiting” equation, we mean the equation obtained when the functions
w; (t) are replaced by their limitg;).

To illustrate the situation described in Remark 4.1, we will give two examples. In the
first example, the “limiting” equation is linear, while in the second one, it is essentially
nonlinear.

Example 4.1. Consider the equation

m t
W)+ 3" pi(0) / lu(s) |1 signu(s) ds =0, (4.17)
i=1 a;t
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where O< o; < 1, p; € Lioc(R+; Ry), ;i : R+ — (0, 1) are nondecreasing functions, and
liM;— 100 i (1) =1 (@ =1,...,m). The “limiting” equation for (4.17) has the form

m t
u™ (1) + Z pi(t) / u(s)ds = 0. (4.18)
i=1 o;t
Itis known (see [14]) that if
m “+o00 1 t
lim SUDZ(l—a{’)(t / s"Lpi(s)ds + ;fs"“pi(s)ds) > n!, (4.19)
t—400
i=1 t O

then Eq. (4.18) has Property A. Now choaese- 0 andd; >0 (i =1, ..., m) such that

m

2% (1—a})ci > n! (4.20)

i=1
and

A+ A =D (h—n+1)
max{ S ciedit(l—althy ez 1)} >t (4-21)

and letp; (1) = ¢; /" 1. According to (4.20), it is clear that (4.19) holds, that is, Eq. (4.18)
has Property A. On the other hand, in view of (4.21), it is also clear that there gyists
(n — 2,n — 1) such that

ol +i0)Go—1 - (o—n+1) =Y e 9o (1—a).
i=1

Therefores*° is a solution of Eq. (4.17) with; (t) = ¢;/t" L andp; (1) =1—d;/Int (i =
1,...,m), thatis, Eq. (4.17) does not have Property A. If in Eq. (4.17), we haye =
1—4d;/t", whered; > 0 andy; >0 (i =1,...,m), then condition (4.19) is sufficient
for both Eqgs. (4.17) and (4.18) to have Property A. The above example shows that it can
happen that the “limiting” equation has Property A while the original quasilinear equation
may or may not have Property A. Whether the original Eq. (4.17) has Property A depends
on the rate at which the functions-du; (¢) tend to zero as — +oo.

Example 4.2. Consider the essentially nonlinear equation

Bt
W™ (1) + p(r)/]u(s)y““’ signu(s) ds =0, (4.22)
at

where p € Lipc(Ry; Ry), the function u € C(R4+;(0,1)) is nondecreasing,
liM;— yoo (t) = no < 1, and O< @ < B < +o00. The “limiting” equation for (4.22) is

Bt
u® (1) + p(t)/’u(s)’“o signu(s)ds = 0. (4.23)
ot
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It is known (see [12, Corollary 4.1]) that

+00
/ tl+uo(n—l)p(t) dt = +00 (4.24)
is necessary and sufficient for Eq. (4.23) to have Property A. Now consider Eq. (4.22) with
1
N=—"—"__  and 1) = _— 4.25
PO = D in; wt) = o — 1= (4.25)

From the first equality in (4.25), it is clear that (4.24) holds, and so Eq. (4.23) has Prop-
erty A. On the other hand, in view of (4.25), we see that

+o00 Bt

f p(t)/s("_l)“(‘v) ds < +oo.

at

Therefore, by Lemma 4.1 in [12], Eq. (4.22) has a solutioffirg, +00) — R satisfying
liM;— 400 ™D (1) = co # 0. Hence, Eq. (4.22) does not have Property A (see Defini-
tion 1.1), that is, in the case of essentially nonlinear equations, the original equation may
not have Property A while the “limiting” does.

5. Differential equationswith Volterra-type minorant

Everywhere in this section, it is assumed that the inequality (3.1) holds and
oit) <t forteRy (i=1,...,m). (5.2)
If (5.1) holds, then the formulation of the results given in Section 4 become substantially
simpler.

Theorem 5.1. Let F € V (1), conditions(1.2), (3.1)—(3.4), and (5.1) hold, and suppose
there is a nondecreasing functigne C(R; (0, +00)) such that either3.8,_1), (3.9),
and(3.10,-1) hold, or(3.8,_1), (3.9), and(3.21,_1) hold. Then Eq(1.1) has PropertyA.

Proof. Taking into account (3.6) and (5.1), we easily see that

Pt <t pp_1_ji(t) (=1....m, j=1..n-2).
Therefore, in view of (3.101) and (3.8_1) ((3.21,_1) and (3.8_1)) conditions (3.10)
and (3.8) ((3.1¢)) and (3.8)) hold for any¢ € {1,...,n — 1} with £ + n odd. On the
other hand, (3.8-1) and (5.1) clearly imply (4.1) holds. The hypotheses of Theorem 4.1
(Theorem 4.2) are satisfied, and so the conclusion follows.
Corollary 5.1. Let F € V(r) and conditiong1.2) and (4.2)—(4.4) hold, where

Bi<l (=1,...,m). (5.2)
Then, condition4.5,_1) is sufficient for Eq(1.1) have PropertA.



J.R. Graef et al. / J. Math. Anal. Appl. 306 (2005) 136-160 155

Proof. By (5.2) and (4.5_1), conditions (4.) are obviously satisfied for any €
{1,...,n — 1} with £ 4+ n odd, that is, the hypotheses of Corollary 4.1 are satisfieul.

Corollary 5.1'. Let F € V(r) and conditions(1.2), (4.2)—(4.4), and (5.2) hold, where
wi =1 (@ =1,...,m). In addition, suppose there exisgse Lioc(R+; R+) such that
pi(t) = p(t) + o™t (i =1,...,m). Then the condition

+o0 1 t m d?“l(ﬁ”—a’?) -1
limsup t/s”ilﬁ(s)ds—i——/s”ﬁ(s)ds > n! Z¥
t—+00 J t J ‘a Bi

is sufficient for Eq(1.1) to have PropertyA.

Using Theorems 4.3 and 4.4, we have the following result that is analogous to Theo-
rem5.1.

Theorem 5.2. Let F € V (1), conditions(2.1;), (3.1)—(3.4), and (5.1) hold, and suppose
there is a nondecreasing functigne C(R; (0, +00)) such that either condition&3.23)
and (3.24,_1), or conditions(3.23) and (3.25,_1) hold. Then Eq(1.1) has PropertyA.

6. Differential equationswith deviating arguments

Throughout this section, it is assumed that, instead of (3.1), the inequality

< i (8 (1))
= i i = 10,7 .
|Fu) ()| > § pi(0)|u(8i (1)) for ¢ > 1o andu € Hy, (6.1)

i=1
holds for largerg € R;+. Here we ask that

pi € Lioc(R+; Ry), i € C(Ry; (0, 1]) are nondecreasing
8i € C(Ry; (0,400)), lim §j(t)=+o0 (i=1,...,m). (6.2)
t——+400

Theorem 6.1. Let F € V (7), conditions(2.1,), (6.1), and(6.2) hold,

i)yt forteR (i=1,...,m) 6.3)
and
m +00
IimsupZ((,g*(t))u*(a*(t)) / pi(s)(si(s))(n—z)ﬂ,-(a,-(s))ds
t——+00 i1

t
t

# (0 (D) =11 s —2)pi (6 i (8
% (5*(t))u( () =i (8+(1)) / pi(S)(5i(S))(n ki (S))((S*(S))M( (t))ds

8x(1)

3 (1)
% (85 (1) — i (85 (1)) —1 : (5s —2) i (i (s
+ (8 () N0 f 5pi () (84 ()OO (8, (5) 21 <é>>ds>
0
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>8(wf)(n =1, (6.4)
wheres, (t) = infy>,{mind;(s): i =1,...,m}. Then Eq(1.1) has PropertyA.

Proof. In view of (6.1), inequality (3.1) clearly holds with
() =8(1) =1, oi()=8(), ri(s,t)=pi(e(s—8&®) (=1...,m),
where

o) = {0 fort e (—o0, 0),

1 forr €0, 4+00).

Therefore, taking into account (6.2)—(6.4), we can easily check that the conditions of The-
orem 5.1 are satisfied with(z) = 8,.(t). O

Corollary 6.1. Let F € V(1) and conditiong1.2) and (6.1) hold, where

d.
o () =ait, «;(0,1], Mi(t):l—ﬁ, and d; >0 (=1,....,m). (6.5)

Then

m +o00 t
IimsupZe_(”_z)d" (Ol*l‘ / s"_zpi(s)ds+ot*/s”_1pi(s)ds
1

t—>—+00 T
1= t oyl

yt

1
+ " / s”pi(s)ds) > (n — 1)le®,
0

wherea, = min{o;: i =1,...,m} anddgo =maxd;: i =1,...,m}, is a sufficient for
Eqg. (1.1) to have PropertA.

Proof. To prove the corollary, it suffices to note that (6.5) and (6.6) imply (6.4) with
S(t)=axt. O

Corollary 6.1'. Let F € V(t), conditions(2.1,), (6.1), and(6.5) hold, and suppose there
is a functionp € Lioc(R+; Ry) such that

pit)y=p@)+olty) (=1,....m) (6.6)
and

+00 ' L at
Iimsup(a*t / s"_zﬁ(s)ds—}—a*/s”_lﬁ(s)ds—i—?/s"ﬁ(s)ds)
t 0

t—+00
Oyt

-1
m
> (n — 1)l (Ze_(”_z)d’) . (6.7)

i=1
Then Eq.(1.1) has PropertyA.
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Proof. To prove the corollary, just note that (6.6) and (6.7) imply (6.6) with=
min{e;: i =1,...,m}anddp=maxd;: i=1,...,m}. O

Remark 6.1. From the results obtained in the previous sections, it is clear that if (6.1)
holds, it is possible to obtain results that do not require condition (6.3). We restricted our
attention to the situation requiring (6.3) only for the sake of simplicity. In addition, by
choosing the functiong and ; appropriately, it would be possible to deduce, from our
general theorems above, a variety of other conditions for Eq. (1.1) to have Property A.

Remark 6.2. In caseu; (1) =1 (i =1,...,m), i.e., the operatoF' has a linear minorant,
the above results imply the results in [14].

7. Functional differential equationswith Property B

Using Propositions 3.1-3.4, in this section we give sufficient conditions for Eq. (1.1) to
have Property B similar to the results we obtained above for Property A.

Theorem 7.1. Let F € V (1), conditions(1.3), (3.1)—(3.4), and(3.8,_1) hold, and suppose
there is a nondecreasing functigne C(R;; (0, +00)) such that(3.9) holds, and for any
Le{l,...,n— 2} with £ + n even, condition$3.8;) and (3.10;) hold. Moreover, ifn is
even, let conditiori4.1) hold. Then Eq(1.1) has Property B.

Proof. Let Eq. (1.1) have a proper nonoscillatory solutionzg, +00) — (0, +00) (the
caseu < 0 is similar). Then (1.1), (1.3), and Lemma 2.1 imply the existencé ef
{0, ..., n} such that? + n is even and condition (2,) holds. In view of (3.9), (3.8,
(3.10%), and Proposition 3.1, we havet {1, ...,n — 2}. Sincel + n is even, eithef = n,
orn is even and = 0. In the latter case, as was shown in the proof of Theorem 4.1, using
(4.1), we can easily show that (1.4) holds. On the other hardsifi, then by (2.1), there
existc > 1 andr, > 1o such that(¢) > c¢"~1 for t > 1. Therefore, by (2., (3.1), and

(3.8,-1), Eq. (1.1) yields

o a;(s)

W V@) >V + [ S / §0TNO deri 6., 5) ds — +oo

fn izlt,- (s)

ast — +oo, wherer; > 1, is sufficiently large. Thus, if: is even and = 0, then condi-
tion (1.4) holds, while if¢ = n, then condition (1.5) holds. This means that Eqg. (1.1) has
Property B, and the theorem is proveda

Theorem 7.2. Let F € V (1), conditions(1.3), (3.1)—(3.4), (3.8,—1), and(5.1) hold, and
there exist a nondecreasing functipre C (R ; (0, +00)) satisfying condition3.9) and
(3.10,-2), if n is even, and satisfying conditio3.9), (3.10,_2), and(3.10y) if n is odd.
Then Eq.(1.1) has PropertyB.
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Proof. In view of (5.1) and (3.1f>), conditions (3.8) are obviously satisfied, where
Le{2,...,n—2} and? + n is even. On the other hand, (3.8) and (5.1) imply (3.9)
holds with¢ € {0, ..., n — 2}. Therefore, the hypotheses of Theorem 7.1. hold, and this
completes the proof of the theoremm

Corollary 7.1. Let F € V(t) and conditiong1.3) and (4.2)—(4.4) hold with 8; < 1. Let
(4.13,_») hold if n is even, and let condition®.13;) and(4.13,_>) hold if n is odd. Then
Eq. (1.1) has PropertyB.

Remark 7.1. It is clear that Remark 4.1 is valid in the case of Property B as well.

8. Generalized ordinary differential equations of Emden—Fowler type

Here, we give sufficient conditions for Eq. (1.7) to have Property A or B. The results
of this section are consequences of those of previous sections, but we present them here
because the conditions have quite a simple form in this case.

Theorem 8.1. Let p € Lioc(R+; R+), the functionu € C(R4; (0, 1)) be nondecreasing,
and

+o0 '

. 1

lim Sup(t”(’) / s p gy ds + = /slH"_l)“(S)p(s) ds)

t—+00 t
t 0

>8(uh)(n -1, (8.1)

wherepu™ =1im,_, ;o u(t). Then Eq(1.7) has PropertyA.

Corollary 8.1. Let p € Ligc(Ry; R), u(t)=1—d/Int,d > 0, and

+00 X '
lim Sup<t / s”_zp(s) ds + ?/s”p(s) ds) > e Dd G — 1)1,

t—+00
t 0
Then Eq.(1.7) has PropertyA.

Theorem 8.2. Let p € Lioc(Ry; (—o0, 0]), the functionu € C(R4; (0, 1)) be nondecreas-
ing, and let

+0oo t
. 1
Ilmsup<t"(” / s1+<”‘3’“(”|p(s)}ds+;/s”("‘zm(”]p(s)ws)

t——+0o0
t 0

>8(uhH2m —2)! (8.2)

hold if n is even, and le¢8.2) and
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+o0 '
. 1
Ilmsup<t“(’) / s"_2|p(s)|ds+;fs"_1+“(s)|p(s)|ds>

t—400
t 0

>8(uhHm -1 (8.3)
hold if n is odd, whereu* = lim,_, ;o 1(¢). Then Eq(1.7) has PropertyB.

Corollary 8.2. Let p € Ligc(R+; (—00,0]), u(t) =1—d/Int,d > 0, and

400 !
lim SUp(l / s”_2|p(s)|ds + %/s"|p(s)| ds) > =242 — 2)1 (8.4)

t—400
t 0

hold if n is even, and let8.4) and

400 !
lim Sup(t / s"_2|p(s)|ds + %/5”|p(s)|ds) > e (n —1)!
t

t—+00
0

hold if n is odd. Then Eq(1.7) has PropertyB.

In Theorems 8.1 and 8.2 we put some additional conditions on the fungtiansl 1,
then the conditions (8.1), (8.2), and (8.3) can be made simpler. In this respect, below we
give some examples.

Example 8.1. Let the functionu € C(R4; (0, 1)) be nondecreasing,
lim u@) =1, limsup*O~—1=y* >0, (8.5)

I—>+00 t——+o00

p € Lioc(R+; R4+) and for sufficiently large

C
POz o
with ¢ > 0. Then in order that Eq1.7) to have Property A, it is sufficient that
c(1+y">m-21. (8.6)

Example 8.2. Let the functionu € C(R; (0, 1)) be nondecreasing,

lim () =1, liminf t*®O~1 =y, >0, (8.7)

t—+00 t—+00

p € Lioc(R+; Ry) and for sufficiently large p(¢) > ¢/t" with ¢ > 0. Then the condition
ey 2(y* 4 y5) > (n — 1! is sufficient in order that Eq1.7) to have Property A.

Example 8.3. Let the functionu € C(R+; (0, 1)) be nondecreasing, the condition (8.5) be
fulfilled, p € C(R4; (—o0, 0]) and for sufficiently large

C
PO > rzm

with ¢ > 0. Then in order that Eq. (1.7) to have Property B, it is sufficient that the condition
(8.6) hold.
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Example 8.4. Let the functionu € C(R4; (0, 1)) be nondecreasing, the condition (8.7)
be fulfilled, p € Lioc(R4; (—o0, 0]) and for sufficiently large, |p(¢)| > ¢/t", with ¢ > 0.
Then in order that Eq. (1.7) to have Property B, it is sufficient that

cr! 3+ > 2(n = 2)! (8.8)
if n is even and (8.8) along witt(y* + y,) > (n — 1)! if n is odd.
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