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ABSTRACT

Su�cient conditions which guarantee the oscillation of all solutions to the
di�erence equation

�2u(k) +
Xm

j=1
pj(k)u (�j(k)) = 0 (1:1)

are established. Here �u(k) = u(k+1)�u(k); �2 = ��� and the coe�cients
pj(j = 1; :::;m) are arbitrary sequences of nonnegative real numbers. It
is to be emphasized that the deviations �j are subject to the restriction

lim infk!1
�j(k)

k
> 0 (j = 1; :::;m) only. In the case where j = 1 and

�1(k)�k, a discrete analogue of the well known Hille's oscillation theorem is
obtained.
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1 Introduction

Consider the equation

�2u(k) +
Xm

j=1
pj(k)u (�j(k)) = 0; (1:1)

where m�1 is a natural number, pj : IN![0;+1); �j : IN!IN (j = 1; :::;m)
are functions de�ned on the set of natural numbers IN = f1; 2; :::g, i.e. se-
quences, �u(k) = u(k + 1)� u(k) and �2 = ���:
Throughout this paper, without further mentioning, we will suppose that

limk!1 �j(k) = +1 (j = 1; :::;m); (1:2)

sup fpj(i) : i�kg > 0 for k2IN (j = 1; :::;m): (1:3)

For any n2IN we set INn = fn; n+ 1; :::g.

De�nition 1.1. For n2IN put n0 = min f�j(k) : k2INn; j = 1; :::;mg.
A function u : INn0 ! IR is said to be a proper solution of (1.1) if it satis�es
(1.1) on INn and

sup fju(i)j : i�kg > 0 for k2INn0 :

De�nition 1.2. We say that a proper solution u : IN!IR of the equa-
tion (1.1) is oscillatory if for any n2IN there are n1; n2 2INn such that
u(n1)u(n2) � 0. Otherwise the proper solution is called nonoscillatory.

The present paper is concerned with the problem of oscillation of all
solutions of the equation (1.1) under the assumption that the deviations
�j(k)� k (j = 1; :::;m) are not necessarily constant and may be unbounded.
The overwhelming majority of the papers devoted to oscillatory properties

of di�erence equations treat the case where the deviations are constant. In
that case (or, more generally, in the case where the deviations are bounded),
a de�nition of the order of di�erence equations (see, e.g., [4, p.163]) considers
the equation (1.1) as a linear di�erence equation of the order

maxf2; �j(k)�k : k2IN; j = 1; :::;mg�minf0; �j(k)�k : k2IN; j = 1; :::;mg:

In the investigation of oscillatory properties, for the most part, it is more
convenient to look at the equation (1.1) as a discrete analogue of the second
order ordinary di�erential equation with deviating arguments

u
00
(t) +

Xm

j=1
pj(t)u(�j(t)) = 0:

1



In the case where the deviations �j(k)�k are unbounded, only the second
approach seems natural since in that case, according to the above mentioned
de�nition, the equation (1.1) should be considered as an in�nite order dif-
ference equation. For this reason we call the equation under consideration a
second order linear di�erence equation with deviating arguments. Of the pa-
pers treating oscillatory properties of linear di�erence equations in the case
of unbounded deviations, we cite [5, 10, 12].
Oscillatory properties of di�erence equations analogous to �rst order ordi-

nary di�erential equations with constant deviations are set forth in Chapter 7
of the monograph [4] and the references cited therein. Of the works studying
oscillatory properties of linear second order di�erence equations we mention
[1, 3, 7, 8, 11] as being most relevant to the matter of the present paper.
In section 2 some auxiliary statements are proved. In section 3 criteria for

oscillation of all solutions of (1.1) are established. They imply, as a corollary,
a discrete analogue of Hille's oscillation theorem [6]. The latter result also
generalizes Theorem 3.4 from [1].
In the sequel it will be assumed that the conditionX1
k=1

Xm

j=1
pj(k)�

�
j (k) = +1; � �j (k) = min f�j(k); kg (j = 1; :::;m) (1:4)

is ful�lled. It can be shown using the Schauder-Tychono� �xed point princi-
ple (see, e.g., [2, p.161-163]) that if (1.4) is violated, then (1.1) has a nonoscil-
latory solution. Hence (1.4) is necessary for oscillation of all solutions of (1.1).
The present paper being devoted to this problem, (1.4) does not restrict the
generality.
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