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Abstract. I. Vekua’s integral representations of holomorphic functions, whose
m -th derivative (m ≥ 0) is Hölder-continuous in a closed domain bounded by the
Lyapunov curve, are generalized for analytic functions whose m -th derivative is
representable by a Cauchy type integral whose density is from variable exponent
Lebesgue space Lp(·)(Γ;ω) with power weight. An integration curve is taken
from a wide class of piecewise-smooth curves admitting cusp points for certain
p and ω . This makes it possible to obtain analogues of I. Vekua’s results to
the Riemann–Hilbert–Poincaré problem under new general assumptions about
the desired and the given elements of the problem. It is established that the
solvability essentially depends on the geometry of a boundary, a weight function
ω(t) and a function p(t) .

1. Introduction

In many boundary value problems of function theory the boundary

conditions contain not only the sought function, but also its derivatives

up to certain order. Therefore it is useful to have formulas giving an
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integral representation of this holomorphic function. One form of such

representations, quite convenient for applications, was proposed by I. Vekua

([17], [18]). N. Muskhelishvili expounded them in his book, where they are

called I. Vekua’s integral representations (see [15, pp. 224–232]). This is I.

Vekua’s result.

Theorem (I. Vekua). Let D+ be a finite domain bounded by a simple

closed Lyapunov curve Γ and Φ(z) be a holomorphic function in D+ , whose

derivative of order m is continuous in D+ and the boundary belong to the

Hölder’s class H . Then, assuming that the origin is in D+ , the function

Φ is representable for m = 0 as

(1) Φ(z) =

∫
Γ

ϕ(t) dt

1− z
t

+ id

and for m ≥ 1 as

(2) Φ(z) =

∫
Γ

ϕ(t)
(
1− z

t

)m−1

ln
(
1− z

t

)
ds+

∫
Γ

ϕ(t) ds+ id,

where ϕ(t) is a real function from the class H , and d is a real constant;

ϕ(t) and d are defined uniquely with respect to Φ(z) .

Subsequently, B. Khvedelidze [5] gave a generalization of this theorem to

the case where a derivative of order m of the function Φ(z) is representable

in D+ by a Cauchy type integral with a density from the Lebesgue space

Lp(Γ;ω), where p > 1 and

ω(t) =
n∏

k=1

|t− tk|αk , tk ∈ Γ, −1

p
< αk <

1

p′
, p′ =

p

p− 1
.

In that case, ϕ belongs to Lp(Γ;ω). In [1] K. Aptsiauri generalized this

result to the case ω(t) = 1 for a wide subclass of piecewise-smooth curves.

I. Vekua used these representations for investigating quite a general

boundary value problem, namely, the Riemann–Hilbert–Poincaré problem.

An analogous investigation was carried out in [1] and [5].

In recent years, the attention of researchers has been attracted by

Lebesgue spaces with a variable exponent p(t) and the boundary value

problems where the boundary values of the sought functions belong to

these spaces (see, for instance, [3]–[4], [6]–[14]. Thus it is desirable to have

representations (1)–(2) of holomorphic functions Φ with boundary values

having this property and for as wide as possible classes of curves Γ, functions

p(t) and weights ω(t).
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In this paper, we consider the question whether integrals of form (1)–

(2) can be used to present holomorphic functions whose m-th derivative

is representable by a Cauchy type integral with a density from Lp(·)(Γ;ω),
where Γ is a piecewise-smooth curve. Relations are found between the

values of the function p(t) at the angular points of the curve Γ, the values

of these angles and the power exponents of weight functions, which provide

the required representation.

Of the function p(t) it is only required that it satisfies the Log-Hölder’s

condition which we frequently encounter in the literature. For the weight

function ω(t) it is assumed that αk ∈
(
− 1

p(tk)
, 1
p′(tk)

)
, p′(t) = p(t)

p(t)−1 .

The latter condition is necessary and sufficient for a singular operator with

the Cauchy kernel to be continuous in the space Lp(·)(Γ;ω) (see [13], [10])

without which we can hardly do in our consideration. As a result, the range

of domains in which representations (1)–(2) are valid has become much

wider. This has been achieved thanks to the well studied Riemann–Hilbert

problem in the considered classes. For this we had to extend the results

obtained in [7], [8] for bounded domains to the case of unbounded domains.

Also note that in [1], [5], [17]–[18] only the existence of ϕ and d such that

(1), (2) holds is proved. Our approach enables us to indicate a more concrete

construction of the function ϕ by means of the prescribed function Φ(z).

The representations obtained are used in investigating the Riemann–

Hilbert–Poincaré problem under more general assumptions than in [1] and

[5].

The statements we make in connection with this problem are seemingly

analogous to the results in [1], [5], [17], [18], but, in fact, the relations

between the values essentially depend on the geometry of the boundary Γ,

multipliers |t−tk|αk from a weight function ω(t), discontinuity points of the

principal coefficient from the boundary condition, as well as on the values

of a function p(t) at the angular points of Γ and at points tk .

The results of the present paper were announced in [9].

2. Main definitions, the notation and auxiliary statements

10. Let t = t(s), 0 ≤ s ≤ l , be an equation of a simple rectifiable curve Γ

with respect to an arc abscissa. Let, further, p(t) be a positive measurable

function on Γ, and ω(t) be a measurable, a.e. finite and nonzero function.

We denote by Lp(·)(Γ;ω) the set of measurable functions f on Γ for which
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‖f‖Lp(·)(Γ;ω) <∞, where

(3) ‖f‖Lp(·)(Γ;ω) = inf

{
λ > 0 :

∫ l

0

∣∣∣∣f(t(s))ω(t(s))λ

∣∣∣∣p(t(s))ds ≤ 1

}
.

It is assumed that Lp(·)(Γ; 1) = Lp(·)(Γ).
If

inf
t∈Γ

p(t) = p− > 1, sup
t∈Γ

p(t) = p+ <∞,

then Lp(·)(Γ;ω) is a Banach space with norm defined by (3).

20 . Definition 1. We say that a measurable function p on Γ belongs

to the class P̃(Γ) if p− > 1 and, moreover, there exist positive constants

A and ε such that

(4) |p(t1)− p(t2)| < A

| ln |t1 − t2| |1+ε

for arbitrary t1 and t2 on Γ. The set of functions p for which p− > 1 and

equality (4) is fulfilled for ε = 0 is denoted by P(Γ). It is obvious that

P̃(Γ) ⊂ P(Γ).

30 . We say that Γ is a curve of the class C1
D(A1, . . . , Ai; ν1, . . . , νi) if Γ

is a simple closed piecewise-smooth curve with angular points Ak , k = 1, i ,

at which the values of angles with respect to the domain D whose boundary

is Γ are equal to πνk . If, additionally, Γ is a piecewise-Lyapunov curve,

then we say that Γ is a curve of the class C1,L
D (A1, . . . , Ai; ν1, . . . , νi). If

D+ and D− are simply connected domains with the common boundary Γ

and Γ is a curve of the class C1
D+(A1, . . . , Ai; ν1, . . . , νi), then Γ is a curve

of the class C1
D−(A1, . . . , Ai;λ1, . . . , λi), where νk + λk = 2, k = 1, i .

40 . Definition 2. Let D be a simply connected domain bounded by

a simple rectifiable curve Γ, and the functions p and ω be such that

Lp(·)(Γ;ω) ⊂ L(Γ). We denote

K
p(·)
D (Γ;ω) =

{
Φ : Φ(z) =

1

2π

∫
Γ

f(t) dt

t− z
, z ∈ D, f ∈ Lp(·)(Γ;ω)

}
.

We denote by W p(·)(Γ) the set of weight functions ω for which the

operator

TΓ : f → TΓf, (TΓf)(t) =
ω(t)

πi

∫
Γ

1

ω(τ)

f(τ)

τ − t
dτ , t ∈ Γ,

is continuous in Lp(·)(Γ).
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If ω ∈ W p(·)(Γ), then every function Φ from the class K
p(·)
D (Γ;ω) has

angular boundary values Φ+(t) for almost all t and Φ+ ∈ Lp(·)(Γ;ω).
If Γ is a Carleson curve and p ∈ P(Γ), then the function

(5) ω(t) =

n∏
k=1

|t− tk|αk , − 1

p(tk)
< αk <

1

p′(tk)
,

belongs to W p(·)(Γ) [13], [10]. For the case of constant p we refer to [2].

Definition 3. If m ≥ 0 is an integer number, then we denote by

K
p(·)
D,m(Γ;ω) the set of functions Φ holomorphic in D for which Φ(m)(z) ∈

K
p(·)
D (Γ;ω). It is assumed that Φ(0)(z) = Φ(z) and thus K

p(·)
D,0(Γ;ω) =

K
p(·)
D (Γ;ω).

50 . The problem of representation of holomorphic functions in terms

of new assumptions reduces to the investigation of the Riemann–Hilbert

problem in the class K
p(·)
D− (Γ;ω). In [7] and [8], this problem is solved in

the class K
p(·)
D (Γ;ω) when D is a bounded domain with the boundary Γ.

The case of an unbounded domain can be easily investigated by reducing it

to the considered one.

In this subsection we recall the results from [7] and [8], and in Subsection

60 extend them to the case of an unbounded domain.

Let: I. Γ be a curve of the class C1
D+(A1, . . . , Ai; ν1, . . . , νi), 0 < νk ≤ 2,

k = 1, i , p ∈ P̃(Γ); a , b , c be real functions, a and b being piecewise-

continuous and c ∈ Lp(·)(Γ;ω), where ω is the weight function given by

equality (5) or II. Γ be a curve of the class C1,L
D+ (A1, . . . , Ai; ν1, . . . , νi),

0 < νk ≤ 2, k = 1, i , p ∈ P(Γ); a and b be piecewise-Hölder functions on

Γ and c ∈ Lp(·)(Γ;ω).
Let us consider the Riemann–Hilbert problem – Find a function Φ ∈

K
p(·)
D+ (Γ;ω) for which the equality

(6) Re
[
(a(t) + ib(t))Φ+(t)

]
= c(t)

is valid a.e. on Γ.

We denote by Bk , k = 1, λ , the discontinuity points of the function

G(t) = −[a(t) − ib(t)][a(t) + ib(t)]−1 and assume that inf |G(t)| > 0 and

G(B−
k )/G(B+

k ) = exp(2πiuk).

Let z = z(w) be the conformal mapping of the circle U = {w : |w| < 1}
with boundary γ = {τ : |τ | = 1} on D+ and w = w(z) be the inverse

mapping.
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We assume

T = {τk : τk = w(tk)}, A = {ak : ak = w(Ak)}, B = {bk : bk = w(Bk)}.

Let us numerate the points of the set T ∪ A ∪B as follows:

(7)

w1 = τ1 = a1 = b1, . . . , wμ = τμ = aμ = bμ,

wμ+1 = τμ+1 = aμ+1, . . . , wμ+r = τμ+r = aμ+r,

wμ+r+1 = τμ+r+1 = bμ+1, . . . , wμ+r+q = τμ+r+q = bμ+q,

wμ+r+q+1 = aμ+r+1 = bμ+q+1, . . . , wμ+r+q+p = aμ+r+p = bμ+q+p,

wμ+r+q+p+1 = τμ+r+q+1, . . . , wμ+r+q+p+M = τμ+r+q+M ,

wμ+r+q+p+M+1 = aμ+r+p+1, . . . , wμ+r+q+p+M+n = aμ+r+p+n,

wμ+r+q+p+M+n+1 = bμ+q+p+1, . . . , wμ+r+q+p+M+n+s = bμ+p+q+s.

We set �(τ) = p(z(τ)) and write

(8)

δk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αkνk +
νk

�(wk)
+ uk, k = 1, μ,

αkνk +
νk−1
�(wk)

, k = μ+ 1, μ+ r,

αk + uk−r, k = μ+ r + 1, μ+ r + q,
νk−q−1
�(wk−q)

+ uk−r, k = μ+ r + q + 1, μ+ r + q + p,

αk−p, k = μ+ r + q + p+ 1, μ+ r + q + p+M,
νk−q−M−1
�(wk−q−M ) , k = μ+r+q+p+M+1, μ+r+q+p+M+n,

uk−r−M−n, k = μ+r+q+p+M+n+1, μ+r+q+p+M+n+s.

For a real number x we set x = [x]+{x} , where [x] is an integer number

and 0 ≤ {x} < 1.

Assume that

(9) {δk} 
= 1

�′(wk)
, k = 1, j, j = μ+ r + q + p+M + n+ s,

and let

(10) γk =

{
[δk] if {δk} < 1

�′(wk)
,

[δk] + 1 if {δk} > 1
�′(wk)

,

and

Q(w) =

j∏
k=1

(w − wk)
γk .
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Furthermore, assuming that the point z = 0 belongs to D+ , we write (see

[15, p. 147])

rk(w) =

{
(w − bk)

uk , |w| < 1,(
1
w − bk

)
, |w| > 1,

r(w) =

λ∏
k=1

rk(w),

Rk(τ) = r+k (τ)[r
−
k (τ)]−1 = exp(2i arg(τ − bk)),

G1(τ) = G(z(τ))

λ∏
k=1

Rk(τ), κ1 = indG1(τ), G̃1(τ) = G1(τ)τ
−κ1 ,

X1(w) =

⎧⎨⎩C exp
{

1
2πi

∫
γ

ln ˜G1(τ)dτ
τ−w

}
, |w| < 1,

Cw−κ exp
{

1
2πi

∫
γ

ln ˜G1(τ)dτ
τ−w

}
, |w| > 1,

X(w) = X1(w)r(w), C = exp

(
− iα

2

)
, α =

1

2π

∫ 2π

0

q(τ) dτ,

q(τ) = arg
[−τ−κ1 argG1(τ)

]
.

We denote by κ0 the order of the rational function Q(z) at infinity and

assume that κ = κ(μ,G, ω,D+) = κ0 + κ1 .

Then, by assumptions I (or II) and (9) we have

Proposition 1 ([7], [8]). If κ < −1 , then for problem (6) to be solvable

in the class K
p(·)
D+ (Γ;ω) it is necessary and sufficient that the conditions∫
Γ

c(t)Q(w(t))wk(t)w′(t)
X+(w(t))(a(t) + ib(t))

dt = 0, k = 0, |κ| − 2,

be fulfilled, and their fulfillment implies that the problem has a unique

solution

Φ(z) = Ω̃(w(z)) =
1

2
(Ω(w(z)) + Ω∗(w(z))) ,

where

Ω(w) = X(w)[Q(w)]−1 1

2πi

∫
γ

2c(z(τ))Q(τ)[a(z(τ)) + ib(z(τ))]−1

X+(τ)(τ − w)
dτ, |w| 
= 1,

and

Ω∗(w) = Ω

(
1

w

)
, |w| 
= 1.

If κ ≥ −1 , then problem (6) is certainly solvable and all its solutions are

given by the equality

Φ(z) = Ω̃(w(z)) +X(w(z))[Q(w(z))]−1Pκ(w(z)),
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where P−1(w) ≡ 0 , while for κ ≥ 0

Pκ(w) = h0 + h1w + · · ·hκwκ

is an arbitrary polynomial whose coefficients hk satisfy the relation

(11) hk = Ahκ−k , k = 0,κ, A = (−1)κ0

j∏
k=1

wk.

Remark 1. If we search for a solution Φ(z) of problem (6) with the

condition Φ(0) = 0, then, as readily follows by the reasoning of [7], the

above proposition remains valid when κ in it is replaced by κ − 1. Thus

for κ < 0 the solvability conditions have the form∫
Γ

c(t)Q(w(t))wk(t)w′(t)
X+(w(t))[a(t) + ib(t)]

dt = 0, k = 0, |κ| − 1,

and their fulfillment implies that there exists a unique solution Φ(z) =

Ω̃(w(z)).

When κ ≥ 0, the problem is solvable and all solutions are given by the

equality

Φ(z) = Ω̃(w(z)) +X(w(z))[Q(w(z))]−1Pκ−1(w(z)).

Remark 2. The investigation of problem (6) reduces to that of the

Riemann problem

(12)
Ψ+(τ) = G(τ)Ψ−(τ) +

2c(z(τ))

X+(τ)
, G(τ) = − ã(τ)− ĩb(τ)

ã(τ) + ĩb(τ)
,

ã(τ) = a(z(τ)), b̃(τ) = b(z(τ)), τ ∈ γ,

in the class

K̃ p̃(·)(γ;ω)

=

{
Ψ : Ψ =

1

2πi

∫
γ

ψ(τ) dτ

τ − w
+const, w /∈ γ, ψ ∈ Lp̃(·)(γ;ω), p̃(·) = p(z(τ))

}

with the additional condition Ψ(w) = Ψ∗(w), where Ψ∗(w) = Ψ
(
1
w

)
,

|w| 
= 1.

The function Y (w) = X(w)Q(w) constructed in [7] (and in [8]) is a

canonical function for G(τ). The order κ of the function Y (w) at infinity
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is the index of the Riemann problem (12) (or, which is the same, the index

of the singular operator Kψ = ψ − 1
2 (G − 1)(−ψ + Sγψ) in Lp(·)(γ;ω)

(see [11])). Problem (6) is solvable if and only if problem (12), too, is

solvable. Note that when κ > 0, the homogeneous problem (12) has a

general solution depending on κ arbitrary complex constants, while the

homogeneous problem (6) has a general solution depending on κ arbitrary

real constants (distinguished by relation (11)).

60 . Let Γ be a curve of the class C1
D−(A1, . . . , Ai; ν1, . . . , νi), p ∈ P̃(Γ)

and the Riemann–Hilbert problem be considered in the class K
p(·)
D− (Γ;ω).

This time the boundary condition is written in the form

(13) Re
[
(a(t) + ib(t))Φ−(t)

]
= c(t).

We assume that the point z = 0 does not lie in D − . By transforming

ζ = 1
z the domain D− becomes a finite domain which we denote by D+

1 .

The function Φ(z) transforms to the function F (ζ) = Φ(1ζ ). Also F (0) = 0.

It is obvious that the boundary Γ1 of the domain D+
1 is a curve of the class

C1
D+

1

( 1
A1
, . . . , 1

Ai
;λ1, . . . , λi), λk = 2− νk , k = 1, i .

It is easy to verify that p1(η) = p( 1η ) belongs to P̃(Γ1). The weight

function ω(t) transforms to the function

ω1(η) =

n∏
k=1

∣∣∣∣1η − 1

ηk

∣∣∣∣αk

=

n∏
k=1

1

|ηηk|αk

n∏
k=1

|η−ηk|αk ∼
n∏

k=1

|η−ηk|αk , ηk =
1

tk
∈ Γ1 ,

and therefore conditions (5) are fulfilled for ω1(η).

The boundary condition (13) transforms to the condition

(14)

Re
[
F+(η)(a1(η) + ib1(η))

]
= c1(η),

a1(η) = a

(
1

η

)
, b1(η) = b

(
1

η

)
, c1(η) = c

(
1

η

)
.

It can be easily verified that F ∈ K
p1(·)
D+

1

(Γ1;ω
1). Thus we should solve

problem (14) in the class K
p1(·)
D+

1

(Γ1;ω
1) using the additional condition

F (0) = 0. If we require that 0 < λk ≤ 2 (which is equivalent to the

requirement 0 ≤ νk < 2, k = 1, i), then all the conditions required of

Γ1 , p
1 , ω1 in Subsection 50 will be fulfilled. If F (ζ) is a solution of this

problem, then Φ(z) = F (1z ) will be a solution of problem (13) of the class

K
p(·)
D− (Γ;ω). Thus we are to find a solution F (ζ) of problem (14) of the class

K
p1(·)
D+

1

(Γ1;ω
1), where Γ1 is a curve of the class C1

D+
1

( 1
A1
, . . . , 1

Ai
;λ1, . . . , λi),

λk = 2− νk , k = 1, i , with the condition F (0) = 0.
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Let ζ = ζ(w) be a conformal mapping of the circle U onto D+
1 with

the condition ζ(0) = 0, and w = ψ(ζ) be its inverse mapping. Besides, we

denote

G1(η) = − [
a1(η)− ib1(η)

] [
a1(η) + ib1(η)

]−1
, �(τ) = p1(ζ(τ)) = p

(
1

ζ(τ)

)
.

For the domain D+
1 we define the numbers ω1

k , δ
1
k and γ1k by analogy with

(7), (8) and (10). The numbers δ1k are obtained from formulas (8) in which

νk is replaced by λk (i.e., by 2− νk ), while when defining the numbers γ1k ,

�(τ) is understood as p( 1
ζ(τ)). Define the function X1(w) and Q1(w) in

accordance with the points w1
k . Assume κ

− = κ
1
0 + κ

1
1 .

Now, applying the result from Remark 1 of Subsection 50 , we obtain

Proposition 2. If Γ is a curve of the class C1
D−(A1, . . . , Ai; ν1, . . . , νi) ,

0 ≤ νk < 2 , k = 1, i, and problem (13) is considered in the class

K
p(·)
D− (Γ;ω) , then, assuming that κ− < 0 , for the problem to be solvable

it is necessary and sufficient that the conditions

(15)

∫
Γ1

c1(η)Q1(ψ(η))ψk(η)ψ′(η)
X1(ψ(η))(a1(η) + ib1(η))

dη = 0, k = 0, |κ−| − 1,

is fulfilled, and when they are fulfilled, the problem has a unique solution

(16) Φ(z) = Ω̃

(
ψ

(
1

z

))
=

1

2

(
Ω

(
ψ

(
1

z

))
+Ω∗

(
ψ

(
1

z

)))
,

where Ω∗(w) = Ω
(
1
w

)
, |w| 
= 1 and

Ω(w) = X1
1 (w)[Q

1(w)]−1 1

2πi

∫
γ

2c1(ζ(τ))Q1(τ)

X1(τ)[a1(ζ(τ)) + ib1(ζ(τ))]
dτ, |w| 
= 1.

When κ− ≥ 0 , the problem is unconditionally solvable and all solutions are

given by the equality

Φ(z) = Ω̃

(
ψ

(
1

z

))
+X1

(
ψ

(
1

z

))[
Q1

(
ψ

(
1

z

))]−1

P
κ

−−1

(
ψ

(
1

z

))
,

where for the polynomial P
κ

−−1(w) = h0 + h1w + · · · + h
κ

−−1w
κ

−−1 we

have

(17) hk = Ah
κ

−−k−1, k = 0,κ− − 1, A = (−1)κ0

j∏
k=1

w1
k.
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If we reject the condition Φ(∞) = 0, then, assuming that κ− < −1, for

problem (13) to be solvable in the class K̃
p(·)
D− (Γ;ω), where K̃

p(·)
D− (Γ;ω) =

{Φ : Φ = Φ0 + const, Φ0 ∈ K
p(·)
D− (Γ;ω)} , it is necessary and sufficient

that conditions (15) are fulfilled, where k = 0, |κ| − 2, and when they are

fulfilled, there exists a unique solution given by equality (16).

When κ− ≥ −1, the problem is unconditionally solvable and the solution

is given by the equality

Φ(z) = Ω̃

(
ψ

(
1

z

))
+X1

(
ψ

(
1

z

))[
Q1

(
ψ

(
1

z

))]−1

P
κ

−

(
ψ

(
1

z

))
,

where, we recall, ψ = ψ(ζ) is a conformal mapping of D+
1 onto the unit

circle U ; P−1(w) = 0, while when κ− ≥ 0, conditions (11) are fulfilled for

P
κ

−(w).

3. I. Vekua’s Integral Representation of Holomorphic

Functions from the Class K
p(·)
D+,m

(Γ;ω)

10 . In this subsection we will prove

Theorem 1. Let

(i) Γ be a curve of the class C1
D+(A1, . . . , Ai; ν1, . . . , νi) , 0 ≤ νk < 2 ,

k = 1, i and p ∈ P̃(Γ) or Γ ∈ C1,L
D+ (A1, . . . , Ai; ν1, . . . , νi) , 0 ≤ νk < 2 ,

k = 1, i and p ∈ P(Γ) ;

(ii) ω be a power function of form (5);

(iii) the point z = 0 lie in D+ ; z = z(w) be a conformal mapping of the

circle U onto the domain D− = CD+ ; z(0) = ∞ and w = w(z) be its

inverse mapping. Let ak = w(Ak) , k = 1, i, τk = w(tk) , k = 1, n, and the

points of the set {a1, . . . , ai} ∪ {τ1, . . . , τn} be numbered so that

(18)

w1 = a1 = τ1, . . . , wμ = aμ = τμ,

wμ+1 = aμ+1, . . . , wμ+p = aμ+p,

wμ+p+1 = τμ+1, . . . , wμ+p+M = τμ+M

and

(19) δk =

⎧⎪⎨⎪⎩
αkλk + νk−1

�(wk)
+ νk − 1, k = 1, μ, λk = 2− νk,

νk−1
�(wk)

+ νk − 1, k = μ+ 1, μ+ p,

αk−p, k = μ+ p+ 1, μ+ p+M,

where �(τ) = p(z(τ)) , |τ | = 1 ;
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(iv) Φ ∈ K
p(·)
D+,m(Γ;ω) .

If

{δk} 
= 1

�′(wk)
, k = 1, j, j = n+ i− μ = μ+ p+M, �′(τ) =

�(τ)

�(τ)− 1
,

then there exist a real function ϕ ∈ Lp(·)(Γ;ω) and a real constant d such

that

(20) Φ(z) =

∫
Γ

ϕ(t) ds

1− z
t

+ id

for m = 0 ,

(21) Φ(z) =

∫
Γ

ϕ(t)
(
1− z

t

)m−1

ln
(
1− z

t

)
ds+

∫
Γ

ϕ(t) ds + id

for m ≥ 1 .

The function ϕ and the constant d are defined in a unique manner.

Before proceeding to the proof, we would like to note the particular cases

of the theorem. Representations (20) and (21) are valid in the following

cases:

I. a) Γ is a smooth curve and p ∈ P̃(Γ) or Γ is a Lyapunov curve and

p ∈ P(Γ);

b) ω is a weight function of form (5).

II. a) Γ is a curve of the class C1(A1, . . . , Ai; ν1, . . . , νi) and p ∈ P̃(Γ) or

Γ is a curve of the class C1,L(A1, . . . , Ai; ν1, . . . , νi) and p ∈ P(Γ) (in both

cases 0 < νk < 2, k = 1, i);

b) ω(t) = 1;

c)
{

νk−1
p(Ak)

+ νk − 1
}

= 1

p′(Ak)
.

Proof of Theorem 1. Since (20), (21) imply that d = ImΦ(0), we

can assume that d = 0. Let us prove the validity of equalities (20)

and (21). Having these representations for d = 0, from the equality

Φ(z) = [Φ(z) − i ImΦ(0)] + i ImΦ(0) we will obtain the representations

in the general case with d = ImΦ(0).

Let m = 0 and representation (20) hold. If t = t(s) is the equation of

the curve Γ with respect to the arc abscissa, then ds = (t′)−1dt = t′dt (see
[15, p. 225]). Therefore (20) can be rewritten in the form

(22) Φ(z) =
1

2πi

∫
Γ

2πit t′ ϕ(t)
t− z

dt.
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Since Φ ∈ K
p(·)
D+ (Γ;ω) and ω ∈ W p(·)(Γ), we have Φ ∈ E1(D+) [11,

Theorem 3.3]. Therefore

Φ(z) =
1

2πi

∫
Γ

Φ+(t) dt

t− z
, Φ+ ∈ Lp(·)(Γ;ω).

Combined with (22), this implies that

1

2πi

∫
Γ

Φ+(t)− 2πit t′ϕ(t)
t− z

dt =

{
0, z ∈ D+,

N(z), z ∈ D−.

Since Γ is a piecewise-smooth curve, and Φ+ and ϕ belong to Lp(·)(Γ;ω),
we have N(z) ∈ E1(D−) ∩Kp(·)

D− (Γ;ω). Therefore from the latter equality

it follows that

(23) Φ+(t)− 2πit t′ϕ(t) = N−(t).

Let us divide both parts of equality (23) by t t and separate the real parts.

We obtain

(24) Re
N−(t)
t t′

= Re
Φ+(t)

t t′
, t ∈ Γ.

We have come to the Riemann–Hilbert problem with regard to the function

N which we must solve in the class K
p(·)
D− (Γ;ω).

For m ≥ 1, from representation (21) we obtain

(25) Φ(m)(z) = (−1)m(m− 1)!

∫
Γ

ϕ(t) t′ dt
tm−1(t− z)

.

By the assumption of the theorem, Φ(m) ∈ K
p(·)
D+ (Γ;ω). This function, as

mentioned above, belongs to E1(D+). By this fact and (25) we obtain

1

2πi

∫
Γ

Φ(m)(t)− 2πi(−1)m(m− 1)!t1−m t′ϕ(t)
t− z

dt =

{
0, z ∈ D+,

N(z), z ∈ D−,

where N ∈ K
p(·)
D− (Γ;ω). From (25) we obtain

(26) Φ(m)(t)− 2πi(−1)m(m− 1)!t1−mt′ϕ(t) = N−(t).

Therefore for m ≥ 1 we have

(27) Re
N−(t)
t1−m t′

= Re
Φ(m)(t)

t1−m t′
.
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For m = 0 equality (27) coincides with (24).

If we solve problem (27) in the class K
p(·)
D− (Γ;ω), then, using equalities

(23) and (26), we can define the function ϕ .

We will first show that representations (20) and (21) are unique. Both

cases are treated in the same manner. Let, for instance,

0 =

∫
Γ

ϕ(t)

1− z
t

ds+ id, z ∈ D+.

For z = 0 we have
∫
Γ

ϕ(t) ds + id = 0. Hence it follows that d = 0. Let

us prove that ϕ(t) = 0. Expanding the integral
∫
Γ

ϕ(t)
1− z

t
ds into a series with

respect to z in the neighborhood of zero, we obtain∫
Γ

ϕ(t)t−k ds = 0, k = 0, 1, . . . ,

i.e. ∫
Γ

ϕ(t)tk t′ ds = 0, k = 0,−1,−2 . . . .

By the Golubev–Privalov theorem, for the external domain [16, p. 202]

we obtain ϕ(t)t′ = m−(t), where m(z) ∈ E1(D−). Further, absolutely

in the same manner as in [1] we establish that lim
z→̂t, z∈D−

Imm0(z) = 0,

where m0(z) =
z∫

z0

m−(z) dz , z0 ∈ D− , and therefore m0(z) = const , i.e.,

m−(z) = m′
0(z) = 0. Hence we conclude that ϕ(t) = 0.

Let us apply the results from Subsections 50 and 60 of the preceding

section to problem (27).

In that case, Γ1 is a curve of the class C1
D+

1

(
1
A1
, . . . , 1

Ai
; 2− ν1, . . . , 2− νi

)
,

a(t) + ib(t) = 1
t1−mt′

, c(t) = Re Φ(m)(t)

t1−mt′
. Therefore

G(t) = −a(t)− ib(t)

a(t) + ib(t)
= − |a(t) + ib(t)|2

(a(t) + ib(t))2
= − (t1−mt′)2

|(t1−mt′)2| .

This function possesses discontinuity at the points Ak , k = 1, i . But

then the function G1(η) = G
(

1
η

)
is discontinuous at the points B1

k =
1
Ak

∈ Γ1 . It is not difficult to verify that κ1
1 = indG1(τ) = 2m and

G1(B1
k−)/G(B1

k+) = exp[−2i(1 − νk)π] = exp[2i(νk − 1)π] . Therefore

uk = u1k = νk − 1.

Furthermore, all discontinuity points of G(t) coincide with the angular

points of Γ1 . By assumption, on Γ there exist μ angular points coinciding
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with some points tk from the weight ω ; accordingly, on Γ1 there exist μ

angular points coinciding with some points τk = 1
tk

from the weight ω1 .

Furthermore, there are p = i − μ angular points not appearing among the

singular points of the weight ω . Finally, in the weight ω (in the weight

ω1 ) there are M multipliers of the form (t − tk)
αk ((τ − τk)

αk ) in which

the points tk (τk ) do not coincide with angular points. Let us assume that

ζ = ζ(w) is a conformal mapping of U onto D+
1 , ζ(0) = 0 and w = ψ(ζ)

is its inverse mapping. The function z = 1
ζ(w) = z(w) gives the conformal

mapping of U onto D− ; let w = w(z) (= ψ(1z )) be the inverse mapping.

We have

ak = ζ

(
1

Ak

)
= w(Ak), τk = ζ

(
1

tk

)
= w(tk).

These points have been numbered according to (18). Then equalities (8)

take form (19). Using these numbers, we define numbers γk by means

of equalities (10). Then κ1
0 =

j∑
k=1

γk , j = ν + i − μ and the index κ− of

problem (13) is calculated by the equality κ− = κ(Γ;m; p;ω) = 2m+
j∑

k=1

γk .

If κ− < −1, then the conditions of solvability of problem (27) in the class

K
p(·)
D− (Γ;ω) (or, which is the same, of problem (14) in the class K

p1(·)
D+

1

(Γ1;ω
1)

with the condition F (0) = 0) take the form

Ik =

∫
Γ1

Re[Φ(m)( 1η )(a
1(η) + ib1(η))]

X1+(ψ(η))(a1(η) + ib1(η))
Q1(ψ(η))ψk(η)ψ′(η) dη = 0,(28)

k = 0, |κ−| − 1.

Hence we obtain

Ik =
1

2

∫
Γ1

Φ(m)( 1η )(a
1(η)+ib1(η))+Φ(m)( 1η )(a

1(η)−ib1(η))
X1+(ψ(η))(a1(η) + ib1(η))

Q1(ψ(η))ψk(η)ψ′(η) dη

= Ik,1 + Ik,2 ,

where

Ik,1 =
1

2

∫
Γ1

Φ(m)( 1η )Q
1(ψ(η))

X1+(ψ(η))
ψk(η)ψ′(η) dη,

Ik,2 =
1

2

∫
Γ1

Φ(m)( 1η )Q
1(ψ(η))

X1+(ψ(η))

(a1(η) − ib1(η))

a1(η) + ib1(η)
ψk(η)ψ′(η) dη.
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The function Ψm(ζ) = Φ(m)(1ζ )[X
1(ψ(ζ))]−1Q1(ψ(ζ))ψk(ζ)ψ1(ζ) is

holomorphic in D+
1 and belongs to Eδ(D+

1 ) for some δ > 0. Indeed,

Φ(m) ∈ E1(D+
1 ), ψ

1 ∈ E1(D+
1 ), |ψk(ζ)| ≤ 1. Furthermore X1(w) =

X1
1 (w)r(w) and Q1(w) is a rational function with zeros and poles on γ ,

r(w) is a power function, while X1
1 ∈ ⋂

β>0

Eβ(D+
1 ). Hence it follows that

Q1(ψ(ζ))[X1(ψ(ζ))]−1 and thereby Ψm(ζ), too, belongs to Eδ(D+
1 ), δ > 0.

Moreover, since Γ is a piecewise-smooth curve without zero angles (since

0 < 2− νk ≤ 2), the construction of the functions X1 and Q1 implies that

the function

Ψ+
m(η) = Φ(m)

(
1

η

)
Q1(ψ(η))[X1+(ψ(η))]−1ψk(η)ψ′(η)

belongs to L(Γ1) (see [7, Theorem 2] and [8]). Thus, according to Smirnov’s

theorem, Ψ ∈ E1(D+
1 ) and therefore Ik,1 = 0.

Let us write Ik,2 in the form

Ik,2 =
1

2

∫
γ

Φ(m)( 1
ζ(τ))Q

1(τ)

X1+(τ)

(a1(ζ(τ)) − ib1(ζ(τ)))

a1(ζ(τ)) + ib1(ζ(τ))
τk dτ.

But

a1(ζ(τ)) − ib1(ζ(τ))

a1(ζ(τ)) + ib1(ζ(τ))
=
X1+(τ)

X1−(τ)
,

and therefore

Ik,2 =
1

2

∫
γ

Φ(m)( 1
ζ(τ))Q

1(τ)

X1−(τ)
Q1(τ)τk dτ.

The function Φ(m)
(

1
ζ(w)

)
is holomorphic in the unit circle U and there-

fore

Φ(m)
(

1
ζ(τ)

)
is a boundary value, on γ , of a holomorphic function M−

in U− = C \ U (see [15, p. 143]). It is easy to verify that the functions

M−(w)[X1(w)]−1Q1(w)wk , k = 0, |κ| − 1, belong to E1(U−). By virtue

of this fact we have

Ik,2 =
1

2

∫
γ

M−(τ)Q1(τ)

X1−(τ)
τk dτ = 0, k = 0, |κ| − 1.

Thereby Ik = 0 and thus conditions (28) sufficient for problem (27) to be

solvable are fulfilled. The solution is given by equality (16).
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When κ− ≥ 0, problem (13) is solvable in K
p(·)
D− (Γ;ω) and the solution

is given by the equality

(29)

N(z) = Ω̃

(
ψ

(
1

z

))
+X1

(
ψ

(
1

z

))[
Q1

(
ψ

(
1

z

))]−1

P
κ

−−1

(
ψ

(
1

z

))
�

20 . Let us indicate how to define the function ϕ when the solution

of problem (27) is known. When the solution N is unique, ϕ is defined

immediately from equalities (23) and (26). We will consider the case where

κ− > 0. By differentiation with respect to z , from (21) we find

(−1)n
n!

2πi

∫
Γ

2πi(−1)m(m− 1)!t1−mt′

(t− z)n+1
ϕ(t) dt = Ω̃(m)(z)+

κ
−−1∑
k=0

hk[w
k(z)](n).

Setting here z = 0, n = 0, 1, . . . ,κ− − 1, we obtain a system with respect

to the unknowns h0, h1. . . . , hκ−−1, ϕ0, ϕ1, . . . , ϕκ
−−1 , where

ϕk =
(−1)k+1k!

2πi

∫
Γ

2πi(−1)m(m− 1)!t1−mt′

tk+1
ϕ(t) dt.

Thus we have 2κ− complex unknowns and κ− equations. To these

equations we add κ− equations more: hk = Ah
κ

−−k−1 , k = 0,κ− − 1

(see (17)). As a result we obtain a linear system of 2κ− equations with

respect to 2κ− unknowns. As has been proved above, there exists a unique

desired solution ϕ . Therefore the obtained system is uniquely solvable.

Substituting the numbers h0, . . . , hκ−−1 found from this solution into (29)

we find N(z) and then from (26) we define ϕ .

4. The Riemann–Hilbert–Poincaré Problem in the Class

K
p(·)
D+,m

(Γ;ω)

10 . I. Vekua applied the representations (1), (2) to the investigation of

the Riemann–Hilbert–Poincaré problem

(30) Re

[
m∑

k=0

(
ak(t0)Φ

(k)(t0) +

∫
Γ

Hk(t0, t)Φ
(k)(t) ds

)]
= f(t0),

where ak , Hk , f are the given functions of Hölder’s class, Γ is a Lyapunov

curve bounding the finite domain D+ , and the sought function Φ has a
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continuous derivative of order m in D+ and with boundary values from

H ([17], [18]). In [5] this problem is considered when ak(t) are continuous

and Φ(m)(z) is representable by a Cauchy type integral with a density from

Lp(Γ;ω), where p > 1 and ω is a power function. For ω = 1, the problem

is investigated for a wide subset of piecewise-smooth curves ([1]).

Here we assume that for p , Γ and ω the conditions of Theorem 1 are

fulfilled. We want to solve problem (30) in the class K
p(·)
D+.m(Γ;ω), therefore

it is assumed that f ∈ Lp(·)(Γ;ω). Since Φ(m) ∈ K
p(·)
D+ (Γ;ω) ⊂ E1(D+),

the functions Φ(0)(z) = Φ(z), Φ′(z), . . . ,Φ(m−1)(z) are continuous in D+

and absolutely continuous on Γ with respect to the arc abscissa (see, for

instance, [16, p. 208]). Thus it is natural to assume that in condition

(30) the coefficients ak(t), k = 0,m− 1, belong to Lp(·)(Γ;ω). As to

the coefficient am(t), we should assume that it is bounded. However this is

not enough. Following [17], [18], [15], we reduce the problem to a singular

integral equation in the class Lp(·)(Γ;ω), which is investigated in various

conditions depending on the assumptions made for p , Γ and ω ([4], [11]).

It is assumed for simplicity that am(t) is piecewise-continuous on Γ and

inf |am(t)| > 0.

So, let Γ be a curve of the class C1
D+(A1, . . . , Ai; ν1, . . . , νi), 0 ≤ νk < 2,

ω be the power function (5), the coefficients a0, a1, . . . , am−1 belong to

Lp(·)(Γ;ω), p ∈ P̃(Γ), am ∈ C(B̃1, . . . , B̃λ) (i.e. am is piecewise-continuous

on Γ with discontinuity points B̃k ), and the operators

Hkϕ =

∫
Γ

Hk(t0, t)ϕ(t) dt, t0 ∈ Γ,

be compact in Lp(·)(Γ;ω).
It is required to find a function Φ ∈ K

p(·)
D+,m(Γ;ω) for which equality

(30) holds a.e. on Γ. Note that the compactness of the operators Hk is

provided, for instance, by the fulfillment of the conditions

|Hk(t0, t)| < A

[s(t0, t)]λ
, k = 0,m,

where A , λ ∈ [0, 1), are constants and s(t0, t) is the length of the smallest

of two arcs connecting the points t0 and t on Γ (see [12]).

Following [15, p. 233] this problem will sometimes be called Problem V.

20 . Since under the above assumptions the conditions of Theorem 1 are

fulfilled, the sought solution Φ is representable by equality (20) for m = 0

and by equality (21) for m ≥ 1.

Assuming first that m ≥ 1, we calculate the derivatives of the function Φ

given by equality (21) and substitute them into (30). Thus we obtain (see
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[15, pp. 234–235]) that the function ϕ satisfies the condition

(31) Nϕ = A(t0)ϕ(t0) +

∫
Γ

N(t0, t)ϕ(t) ds = f(t0)− dσ(t0),

where

A(t0) = Re
[
(−1)m(m− 1)!πit1−m

0 t′0am(t0)
]
,

(32)

σ(t0) = Re

[
ia0(t0) + i

∫
Γ

h0(t0, t) ds

]
,

N(t0, t) =

m∑
l=0

Re [al(t0)Nl(t0, t1)Nl(t1, t) ds1]

+ Re
[
(−1)m(m− 1)!πihm(t0, t)t

1−mt′
]
,

N0(t0, t) =

(
1− t0

t

)m−1

ln

(
1− t0

t

)
+ 1, Nm(t0, t) =

(−1)m(m− 1)!

tm−1(t− t0)
,

Nl(t0, t) = (−1)l
(m− 1) · · · (m− l)

tl

(
1− t0

t

)m−l−1

×
(
ln

(
1− t0

t

)
+

1

m− 1
+ · · ·+ 1

m− l

)
, l = 1,m− 1.

It is evident that

Nϕ = N0ϕ+ Tϕ,

where

N0ϕ = A(t0)ϕ(t0) +
B(t0)

πi

∫
Γ

ϕ(t) dt

t− t0
,(33)

B(t0) =
1

2
(−1)m(m− 1)!πi

[
t1−m
0 t′0am(t0) + t1−m

0 t′0am(t0)
]
,(34)

Tϕ =

∫
Γ

m−1∑
l=0

Re

[
al(t0)Nl(t0, t) +

∫
Γ

Hl(t0, t1)Nl(t1, t) ds1

]
ϕ(t) ds

+

∫
Γ

Re
[
(−1)m(m− 1)!πiHm(t0, t)t

1−mt′
]
ϕ(t) ds.

Moreover, (32) implies that the function A(t0) can be written in the form

(35) A(t0) =
1

2
(−1)m(m− 1)!πi

[
t1−m
0 t′0am(t0)− t1−m

0 t′0am(t0)
]
.
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By virtue of our assumptions about Γ, the coefficients a0(t0), . . . , am−1(t0)

and operators Hk and using the above-mentioned result from [12] it is not

difficult to establish that the operator T is compact in Lp(·)(Γ;ω).

30 . When m = 0, the boundary condition (30) takes the form

Re

[
a0(t0)Φ(t0) +

∫
Γ

H0(t0, t)Φ(t) ds

]
= f(t0).

Applying representation (20) we come to equation (31), where A(t), σ(t),

N(t0, t) being calculated by the formulas given for them in preceding

subsection, where we should take m = 0, (−1)m(m − 1)! = 1 and

N0(t0, t) = t(t− t0)
−1 (see [7, pp. 235–236]).

40 . Let us calculate the index of the operator N or, which is the same,

of the operator N0 (given by equality (33)). This is equivalent to the

calculation of the index of the problem

(36) Ψ+(t) =
A(t)−B(t)

A(t) +B(t)
Ψ−(t), Ψ(∞) = const

in the class K̃p(·)(Γ;ω) (see Remark 2 from Subsection 50 of Section 2).

From (34) and (35) we obtain

G(t) =
A(t)−B(t)

A(t) +B(t)
= − t

1−mt′am(t)

t1−mt′am(t)
.

Denote by Bk , k = 1, λ , the discontinuity points of this function and let

bk = w(Bk). Among the points Bk there are all points Ak , k = 1, i .

Put

− tm−1t′

tm−1 t′
= e−ϑ(s),

am(t)

am(t)
= eiθ(s)

and write equality (36) in the form

Ψ+(t) = exp {i(ϑ(s) + θ(s))}Ψ−(t).

The function G(t) = G(t(s)) = exp{i(ϑ(s)+ θ(s))} is piecewise-continuous.

Let

G(Bk−)/G(Bk+) = exp(2πiuk).

For problem (36) the index κ (see Remark 2 from 50 of Section 2), which

depends on Γ, p , ω and the numbers uk , is defined in the class K̃p(·)(Γ;ω).
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50 . The operator

(N ′g)(t) = A(t)g(t) +

∫
Γ

N(t0, t)g(s0) ds0

considered in the space Lp′(·)(Γ;ω−1) is the conjugate operator to N (see

(31)).

Let for a pair of operators N and N ′ the Noether theorems hold (see,

for instance, [4], [11]). We can assume that the conditions of Theorem 11

from [11] are fulfilled. From this theorem it follows particulary the following

statement.

Let ω = exp
{

i
2 SΓϕ

}
, where ϕ is a real piecewise-constant function,

Gϕ(t) = G(t) exp(iϕ(t))

(
G(t) =

t1−mt′am(t)

t1−mt′am(t)

)
,

and Bk,ϕ , k = 1, λ , are all discontinuity points of this function and G(Bk,ϕ−)×
[G(Bk,ϕ+)]−1 = exp(2πiλk), λk = λk,1 + iλk,2 , k = 1, nϕ .

If {λk,1} 
= 1
p′(Bk,ϕ) , k = 1, nϕ , then the operator N is Noetherian in

Lp(·)(Γ;ω) and indN = indGϕ(t) = κ .

Theorem 2. Let the conditions of Subsection 10 be fulfilled. Then for

Problem V to be solvable in the class K
p(·)
D+,m(Γ;ω) it is necessary and

sufficient that for some real d the function f̃(t0) = f(t0) − dσ(t0) should

satisfy the conditions∫
Γ

f̃(t0)gk(s0) ds0 = 0, k = 1, n′,

where g1, . . . , gn′ are linearly independent solutions from the class

Lp′(·)(Γ;ω−1) of the equation N ′g = 0 , where N ′ is the adjoint operator to

the operator N .

In order that Problem V has a solution, for any right-hand part of f it

is necessary and sufficient that n′ = 0 or n′ = 1 and in the latter case the

solution g of the equation N ′g = 0 must satisfy the condition

(g, σ) =

∫
Γ

g(t0)σ(t0) ds0 
= 0.

In both cases the homogeneous problem has κ + 1 linearly independent

solutions (where κ ≥ −1).

If these conditions are misobserved, then: if (gk, σ) = 0 for any k = 1, n′ ,
then the homogeneous problem has κ + n′ linearly independent solutions,
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and if among the numbers (gk, σ) there is at least one nonzero number, then

it has κ + n′ + 1 solutions.

If σ(t) = 0 , then problem (30) is solvable for any right-hand part of

f(t0) if and only if n′ = 0 ; in that case the homogeneous problem has κ+1

linearly independent solutions.

We omit the proof of this theorem because it is analogous to that of the

respective I. Vekua’s theorem ([18], see also [15, pp. 238–240]).

60 . If we assume

(37) Ψ(z) =

∫
γ

g(t)Ω∗(t, z) ds, z ∈ D−,

where

Ω∗(t0, z) =
m∑

k=0

{
ak(t0)Nk(t0, z) +

∫
Γ

Hk(t0, t)Nk(t, z) ds

}
,

then the equation N ′g = 0 can be written in the form

(38) ReΨ−(t0) = 0.

It can be easily verified that Ψ(z) belongs to K̃
p′(·)
D− (Γ;ω−1). Thus the

function Ψ defined by equality (37) is a solution of the class K̃
p′(·)
D− (Γ;ω−1)

of problem (38). In order to apply Proposition 1 given above to the case in

which p(t) is replaced by p′(t) and ω(t) by [ω(t)]−1 , we have to calculate

the index κ = κ0 +κ1 of problem (38). Since for the considered Riemann–

Hilbert problem a(t) + ib(t) = 1, we have κ1 = 0. As to κ0 , it is equal to

the order at the point z = ∞ of the rational function

Q(w) =

j∏
k=1

(w − wk)
γk .

Here the numbers γk are defined from relations (10) in which the function

�(t) is replaced by the function �′(t) and the numbers αk by the numbers

(−αk). The number κ0 is calculated by the equality

κ0 = N{Ak : p′(Ak)<νk}+N
{
tk = Ak :

p′(Ak)

1− αkp′(Ak)
<νk<

2p′(Ak)

1− αkp′(Ak)

}
,

where N (E) stands for the number of elements of the set E [7, Subsect.

7].

Problem (38) has κ0+1 linearly independent solutions. We denote them

by Ψ0(z),Ψ1(z), . . . ,Ψκ0(z).
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Let

(39) Ω̃(t0, z) = Ω∗(t0, z)−Ψ0(z)− · · · −Ψκ0(z)

and

(40) Ω(t0, z) = Ω̃(t0, z)− i Im Ω̃(t0,∞).

Then from the definitions of the functions Ω∗ , Ψ0, . . . ,Ψκ0 it follows that

for an arbitrary solution g of the equation N ′g = 0 there holds the equality

(41)

∫
Γ

g(t)Ω(t, z) ds = 0 ∀z ∈ D−.

By analogy with [15, p. 242] we call the function Ω(t0, z) a kernel.

Now, following I. Vekua ([18], see also [15, pp. 242–243]), condition (41)

can be replaced by an equivalent condition∫
Γ

g(t)ωj(t) ds = 0,

where ωj(t) (j = 0, 1, . . . ) can be understood as any of the following

systems of functions:

(B1) ωj(t) = Ω(t, zj), zj ∈ D−,

where z0, z1, . . . is an arbitrary sequence having a limit point in D− ;

(B2) ωj(t) =

[
djΩ(t, z)

dzj

]
z=z0

,

where z0 is an arbitrary fixed point in D− ;

(B3) ωj(t) = Xj(t), j = 0, 1, 2, . . . ,

where X0(t) = Re
[
a0(t0) +

∫
Γ

H0(t0, t)ds
]
, Xk(t0) = Lψ , ψ = tk ,

k = 1, 2, . . . ,

Lψ =

m∑
j=0

{
aj(t0)ψ

(j)(t0) +

∫
Γ

Hj(t0, t)ψ
(j)(t) ds

}
.

If k′ is a maximal number of linearly independent real functions gj(t)

orthogonal to the kernel Ω(t, z) or to all elements of the sequence {ωj(t)} ,
then k′ is called the defect of the kernel or of the sequence {ωj(t)} . In
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the considered case, k′ coincides with n′ which is the number of linearly

independent solutions in Lp′(·)(Γ;ω−1) of the equation N ′g = 0. Hence the

obtained results can be formulated as follows:

For Problem V to have a solution for any right-hand part of f(t) it is

necessary and sufficient that the defect of the sequence {ωj(t)} (or of the

kernel Ω(t, z)) be equal to 0 or 1. Note that in the latter case the function

g(t) , which is orthogonal to all elements of the sequence {ωj(t)} , must not

be orthogonal to the function σ(t) .

5. Some Particular Cases

10 . Poincaré Problem. We will consider this problem formulated as

follows. Find, in the domain D+ , a harmonic function u from the set

e
p(·)
D+,1(Γ;ω) =

{
u : u = ReΦ, Φ ∈ K

p(·)
D+,1(Γ;ω)

}
,

for which a.e. on Γ we have

(42) α(s)
∂u

∂n
+ β(s)

∂u

∂s
+ γ(s)u = f(s).

Here α(s), β(s), γ(s), f(s) are the real functions given on Γ, s is an

arc abscissa, ∂u
∂n is normal derivative. It is assumed that p ∈ P̃(Γ),

Γ ∈ C1(A1, . . . , Ai; ν1, . . . , νi), 0 < νk < 2, k = 1, i ; α and β belong

to Hölder’s class, while γ and f belong to Lp(·)(Γ;ω).
Let

a(t) = −α(s) sinϑ(s) + β(s) cosϑ(s), b(t) = α(s) cosϑ(s) + β(s) sin ϑ(s),

where ϑ(s) is the angle formed between the tangent to Γ at the point t(s)

and the axis of abscissa. Then condition (42) takes the form

a(t)
∂u

∂x
+ b(t)

∂u

∂y
+ γ(s(t))u = f(t), t ∈ Γ,

which can be rewritten as

Re [(a(t0) + ib(t0))Φ
′(t0) + γ(t0)Φ(t0)] = f(t0), t0 ∈ Γ.
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Using representation (21), for m = 1 we obtain the equality

Nϕ = Re
[
−πit′0(a(t0) + ib(t0))

]
ϕ(t0)

+

∫
Γ

Re

[
γ(t0) ln e

(
1− t0

t

)
− a(t0) + ib(t0)

t− t0

]
ϕ(t) ds = f(t0).

Let us assume that (a2 + b2) > 0 (or, which is the same, α2 + β2 > 0).

This time we have

G(t) = − t
′

t′
α(− sinϑ− i cosϑ) + β(cosϑ− i sinϑ)

α(− sinϑ+ i cosϑ) + β(cosϑ+ i sinϑ)

= − t
′

t′
−αit′ + βt′

αit′ + βt′
= − t

′

t′
t′(β − αi)

t′(β + αi)
=
α+ βi

α− βi
.

Assume that

(43) n =
1

2π
[arg(α(t) + iβ(t))]Γ ,

where [f ]Γ denotes an increment of the function f(t) when the point t

performs one-time movement along the curve Γ. In that case the index of

the operator N (see (31)) is calculated by the equality κ = κ0 +κ1 , where

κ1 = 2n and

κ0 = N
{
Ak : Ak /∈

⋃
{tj}, νk > p(Ak)

}
(44)

+N
{
tk = Ak :

p(Ak)

1 + αkp(Ak)
< νk <

2p(Ak)

1 + αkp(Ak)

}
(recall that Ak are the angular points of Γ and αk are power exponents

from weight (5)). The kernel Ω(t0, z) is given by equalities (39)–(40), where

Ω∗(tj , z) =
a(t0) + ib(t0)

t0 − z
+ γ(t0) ln e

(
1− t0

z

)
.

Besides, in our case σ(t0) = 0 and therefore by virtue of the above results

we come to an analogue of I. Vekua’s theorem ([18], see also [15, p. 245]).

Theorem 3. For the Poincaré problem to have a solution in the class

e
p(·)
D+,1(Γ;ω) for any right-hand part of f(t) it is necessary and sufficient

that the equation

N ′g = Re
{
−πit′0 [a(t0) + ib(t0)]

}
g(t0)

+

∫
Γ

Re

{
γ(t0) ln e

(
1− t0

t

)
+
a(t) + ib(t)

t− t0

}
g(t) ds = 0
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would not have nonzero solutions in the class Lp′(·)(Γ;ω−1) .

When this condition is fulfilled, the problem has κ+1 linearly independent

solutions, where κ = 2n+ κ0 (n is calculated by equality (43) and κ0 by

equality (44)) .

20 . Neumann Problem in the Class e
p(·)
D+,1(Γ;ω). The Neumann

problem

(45)
∂u

∂n
= f

for the Laplace equation is a particular case of the Poincaré problem. It

reduces to the problem

Re [it′0Φ
′(t0)] = f(t0)

considered in the class e
p(·)
D+,1(Γ;ω).

The boundary value problem (38) reduces to the problem

Ψ+(t) = Ψ−(t), Ψ(∞) = const,

whose conjugate problem is

F+(t) = F−(t), F ∈ K̃p′(·)(Γ;ω−1).

Assuming that p′(Ak) 
= νk holds for all k , the latter problem has

κ(p′;ω−1) solutions, where

κ(p′;ω−1) = N
{
Ak : Ak /∈

⋃
{tj}, p′(Ak) < νk

}
+N

{
tk = Ak :

p′(Ak)

1− αkp′(Ak)
< νk <

2p′(Ak)

1− αkp′(Ak)

}
(see [7]). Thus κ(p′;ω−1) + 1 conditions must be fulfilled in order that

problem (45) be solvable.

When ω = 1, this number of conditions is equal to κ(p′; 1), where

κ(p′; 1) = N {Ak : p′(Ak) < νk} .

In that case for the Neumann problem we have κ(p′; 1) + 1 solvability

conditions. Assuming that (9) holds and the solvability conditions are

fulfilled, a general solution of problem (45) contains κ(p; 1) real constants,

where

κ(p; 1) = N {Ak : p(Ak) < νk} .
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