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ON VARIABLE EXPONENT HARDY CLASSES OF
ANALYTIC FUNCTIONS

V. KOKILASHVILI AND V. PAATASHVILI

Abstract. The paper studies the Hardy type classes Hp(t) and
hp(t) of analytic and harmonic functions respectively when a
variable exponent p(t) satisfies the log-continuity condition and
its least value equals to one. Generalizations of the Fichten-
holz, Smirnov and Tumarkin’s theorems known for the classical
Hardy classes are given. The Dirichlet problem is solved in the
framework of spaces Hp(t) in two different statements.

ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÛÄÓßÀÅËÉËÉÀ ÀÍÀËÉÆÖÒ ÃÀ äÀÒÌÏÍÉÖË

×ÖÍØÝÉÀÈÀ äÀÒÃÉÓ ÔÉÐÉÓ Hp(t) ÃÀ hp(t) ÊËÀÓÄÁÉ, ÒÏÃÄÓÀÝ
ÝÅËÀÃÉ ÌÀÜÅÄÍÄÁÄËÉ p(t) ÀÊÌÀÚÏ×ÉËÄÁÓ ËÏÂÀÒÉÈÌÖËÉ Öß-
ÚÅÄÔÏÁÉÓ ÐÉÒÏÁÀÓ ÃÀ ÌÉÓÉ ÖÌÝÉÒÄÓÉ ÌÍÉÛÅÍÄËÏÁÀ ÔÏËÉÀ
ÄÒÈÉÓ. ÂÀÍÆÏÂÀÃÄÁÖËÉÀ ×ÉáÔÄÍÂÏËÝÉÓ, ÓÌÉÒÍÏÅÉÓ ÃÀ
ÔÖÌÀÒÊÉÍÉÓ ÈÄÏÒÄÌÄÁÉ, ÒÏÌËÄÁÉÝ ÊÀÒÂÀÃÀÀ ÝÍÏÁÉËÉ äÀÒ-
ÃÉÓ ÊËÀÓÉÊÖÒÉ ÓÉÅÒÝÄÄÁÉÓ ÛÄÌÈáÅÄÅÀÛÉ. ÀÌÏáÓÍÉËÉÀ ÃÉ-
ÒÉáËÄÓ ÀÌÏÝÀÍÀ ÏÒÉ ÓáÅÀÃÀÓáÅÀ ÃÀÓÌÉÈ äÀÒÌÏÍÉÖË ×ÖÍ-
ØÝÉÀÈÀ äÀÒÃÉÓ ÝÅËÀÃÌÀÜÅÄÍÄÁËÉÀÍ ÊËÀÓÄÁÛÉ.

The interest in new functional spaces including those which involve Lebes-
gue integration with a variable exponent p(t) has appreciably increased in
the last two decades, and these spaces have become the subject of study by
many mathematicians. This was motivated by the fact that investigation
of applied problems in such classes allows one to consider local singularities
of the given and unknown functions in more detail (see, e.g., [1]–[7] et al.)

In studying boundary value problems of the theory of analytic functions
and certain problems for harmonic functions, the more fruitful turned out
to be the notion of variable exponent Hardy classes suggested in [8].

Here we introduce some definitions.
Let U = {w : |w| < 1} be a circle with the boundary γ = {t : |t| = 1}

and p(t) = p(eiσ) ≡ p(σ), 0 ≤ σ ≤ 2π be the given on γ positive measurable
function.
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We say that an analytic in U function Φ(w) belongs to the class Hp(·), if

sup
0<r<1

2π∫
0

∣∣Φ(reiσ)∣∣p(σ)dσ < ∞; (1)

analogously, a harmonic function u(w) belongs to the class hp(·), if

sup
0<r<1

2π∫
0

∣∣u(reiσ)∣∣p(σ)dσ < ∞. (2)

Assume

h̃p(·) =
{
u : ∃Φ ∈ Hp(·) u(w) = ReΦ(w), w ∈ U

}
.

In the most of the above-mentioned works it is assumed that p(t) satisfies
the following conditions:

(1) there exists the constant C(p) such that for any t1, t2 ∈ γ,∣∣p(t1)− p(t2)
∣∣ < C(p)

∣∣ ln(t1 − t2)
∣∣−1

; (3)

(2) min
t∈γ

p(t) = p > 1.
A set of such functions we denote by P(γ).
The class of functions p(t) for which (3) holds and
(2′) min

t∈γ
p(t) = p = 1, (4)

we denote by P1(γ).
The classes indicated in [8]–[11] have been investigated under the as-

sumption that p ∈ P(γ). However, from the point of view of applications,
it is desirable to maintain the case p = 1.

In the present paper we present some properties of functions from the
classes Hp(·), hp(·) and h̃p(·) for p ∈ P1(γ). The classes Hardy are considered
in the domain U− = {w : |w| > 1}, as well. It turns out that for p ∈ P(γ)
the equality

hp(·) ≈ h̃p(·)

holds. For p ∈ P1(γ), this is, generally speaking, false (the corresponding
example can be found in item 4.2).

In the final part of the present work we consider the Dirichlet problem
in two different statements:

I. Find a harmonic function u(w) of the class h̃p(·) such that almost
everywhere on γ we have

u+(t) = b(t). (5)
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II. The certain new class of functions V ⊂ Lp(·)(γ) which is invariant
with respect to the Cauchy singular operator

S : b → Sb, (Sb)(t) =
1

πi

∫
γ

b(τ)dτ

τ − t
,

i.e.,
S(V ) = V

has been introduced in [12].
We consider the problem: find the function u from the set

h̃p(γ;U) =

{
u : ∃Φ ∈ Hp(·),

Φ(w) =
1

2πi

∫
γ

Φ+(τ)dτ

τ − w
, Φ+ ∈ Lp(·)(γ), u = ReΦ

}
for which equality (5) holds.

We prove that for problem (5) to be solvable in the first statement, it is
necessary and sufficient that

b(t) ∈ Lp(·)(γ), (Sb)(t) ∈ Lp(·)(γ). (6)

The problem in the second statement is solvable for any b ∈ V .
In both cases we have a unique solution.

2. Preliminaries

2.1. The Class Lp(·)(γ). Let p(t) be a positive measurable function on γ.
For the measurable on γ function f(τ) = f(eiσ), 0 ≤ σ ≤ 2π we put

∥f∥p(·) = inf
{
λ > 0 :

2π∫
0

∣∣∣∣f(eiσ)λ

∣∣∣∣p(σ)dσ ≤ 1, p(σ) = p(eiσ)

}
.

Let
Lp(·)(γ) =

{
f : ∥f∥p(·) < ∞

}
.

2.2. The Hardy Classes Hp(·)(U−).
Definition. We say that the function Φ(w), analytic in the domain

U− = {w : |w| > 1}, belongs to the class Hp(·)(U−), if

sup
R>1

2π∫
0

∣∣Φ(Reiσ)
∣∣p(σ)Rdσ < ∞.

For p ≡ 1, we write H1(U−).
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2.3. Classes of Functions Representable by the Cauchy Type Inte-
gral. By Kp(·)(γ) we denote a set of functions Φ(w), analytic in the plane,
cut along γ, and representable in the form of the integral

Φ(w) =
1

2πi

∫
γ

φ(τ)

τ − w
dτ = (Kγφ)(w), w∈γ, φ ∈ Lp(t)(Γ). (7)

3. Some Properties of Hardy Class Functions

3.1. The existence of boundary values. Relying on the Fatou’s lemma,
it is not difficult to prove that functions of classes hp(·) and Hp(·) for almost
all points t ∈ γ possess an angular boundary value, and the boundary
functions belong to Lp(·)(γ).

3.2. The condition for belonging of analytic function to the class
Hp(·).

Theorem 1. Let p ∈ P1(γ). If the analytic in U function Φ(w) is
representable by one of the formulas

Φ(w) =
1

2πi

∫
γ

Φ+(τ)

τ − w
dτ, w ∈ U, (the Cauchy formula), (8)

or

Φ(w) = Φ(r eiϑ) =
1

2π

2π∫
0

Φ+(eiσ)
1− r2

1 + r2 − 2r cos(σ − ϑ)
dσ, (9)

(the Poisson formula),

where Φ+ ∈ Lp(·)(γ), then it is representable by another formula, as well.
A set of such functions coincides with the class Hp(·).

Proof. We make use of the following result from [6].
If f is 2π-periodic function from Lp(·)(T ), T = [0, 2π], p ∈ P0(γ), then

for the Poisson integral

uf (r, ϑ) =
1

2πi

2π∫
0

f(eiσ)
1− r2

1 + r2 − 2r cos(σ − ϑ)
dσ

the estimate ∥∥uf (r, ϑ)
∥∥
p(·) ≤ M∥f∥p(·) (10)

is valid, where M does not depend on f .
This implies that for almost all t ∈ γ there exists an angular limit u+(t)

which is equal to t(eiϑ), and
lim
r→1

∥∥uf (re
iϑ)− f(eiϑ)

∥∥
p(·) = 0,
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hence,
u+(re

iϑ) ∈ hp(·), p ∈ P0(γ). (11)
Let now (9) hold, where Φ = u + iv and Φ+ = (u+ + iv+) ∈ Lp(·)(γ),

then u(r, ϑ) = uReΦ+(r, ϑ), v(r, ϑ) = uIm Φ+(r, ϑ) and by virtue of equality
(11), we have u ∈ hp(·), v ∈ hp(·). Thus Φ ∈ Hp(·) ⊂ H1, and according
to the Fichtenholz theorem, Φ is representable by formula (8), where Φ+ ∈
Lp(·)(γ).

If (8) is valid, then Φ ∈ H1 and Φ+ ∈ Lp(·)(γ). Again, by virtue of
Fichtenholz theorem, formula (9), where Φ+ ∈ Lp(·)(γ), is valid according
to the assumption, and Φ ∈ Hp(·), by the above proven.

If Φ ∈ Hp(·), then it belongs to H1 and Φ+ ∈ Lp(·)(γ) (see item 3.1).
This implies that both equalities (8) and (9) are valid. �

3.3. On the functions of the class H1(U−). (a) If the analytic in U−

function Φ(w) belongs to H1(U−), then the function F (ζ) = Φ( 1ζ ), ζ ∈ U

belongs to H1, and F (0) = 0.
Conversely, if F (0) = 0 and F (ζ) ∈ H1, then Φ(ζ) = F ( 1ζ ), ζ ∈ U−

belongs to H1(U−).
(b) For the analytic in U− function Φ(w) to belong to H1(U−), it is

necessary and sufficient that it be representable by the Cauchy integral

Φ(w) = − 1

2πi

∫
γ

Φ−(τ)dτ

τ − w
, w ∈ U−. (12)

3.4. On the representability of a pair of functions given on U and
U− by the Cauchy type integral.

(a) If Φ1 ∈ H1, Φ2 ∈ H1(U−), then the function

F (w) =
1

2πi

∫
γ

Φ+
1 (τ)− Φ−

2 (τ)

τ − w
dτ, w∈γ

coincides both with Φ1(w) for w ∈ U and with Φ2(w) for w ∈ U−. If,
however, Φ1 ∈ Hp(·), Φ2 ∈ Hp(·)(U−), then F ∈ Kp(·)(γ).

(b) If Φ1 ∈ H1, Φ2 ∈ H1(U−) and almost for all t ∈ γ we have

Φ+
1 (t) = Φ−

2 (t),

then Φ1(w) = 0, w ∈ U , Φ2(w) = 0, w ∈ U−.

3.5. On the classes hp(·) and h̃p.

Theorem 2. If p ∈ P(γ), then

hp(·) = h̃p(·). (13)
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Proof. The fact that h̃p(·) ⊂ hp(·) is obvious. Let us prove that hp(·) ⊂ h̃p(·).
Let u ∈ hp(·), then u ∈ hp, p > 1; by the known Riesz theorem, the

function v, harmonically conjugate to u, likewise belongs to hp, hence

Φ(w) = [u(w) + iv(w)] ∈ Hp ⊂ H1.

By the Fichtenholz theorem,

Φ(w) =
1

2πi

∫
γ

u(τ) + iv(τ)

τ − w
dτ,

where (u + iv) ∈ Lp(·)(γ), p ∈ P(γ). But the Cauchy type integral
1

2πi

∫
γ

f(τ)dτ
τ−w , w ∈ U for f ∈ Lp(·)(γ) belongs to Hp(·) (see [11], p. 76).

Consequently, Φ ∈ Hp(·), and u = ReΦ, i.e., u ∈ h̃p(·). �

3.6. Generalization of one Smirnov’s theorem. The following
Smirnov’s theorem is well known [13].

Theorem. If Φ ∈ Hp, Φ+ ∈ Lp1(γ), p1 > p, then Φ ∈ Hp1 .
For the variable p, the theorem below is valid.

Theorem 3. If Φ ∈ Hp(·), p > 0 and Φ+ ∈ Lµ(·)(γ), µ ∈ P1(γ), then
Φ ∈ Hλ(·), where λ(t) = max(p(t), µ(t)).

In [11] (p. 76), this theorem has been proved under the assumptions
p > 0, µ ∈ P(γ).

Proof. Let Φ(z) ∈ Hp(·), p > 0 and Φ ∈ Lµ(·)(γ). This implies that Φ+ ∈
L1(γ); consequently, Φ(z) ∈ H1. Then Φ(z) = 1

2πi

∫
γ

Φ+(τ)dτ
τ−z . Here Φ+(t) ∈

Lµ(t)(γ), where µ(t) ∈ P1(γ). By Theorem 1, we conclude that Φ ∈ Hµ(t).
Thus Φ ∈ Hp(·) (by the assumption) and Φ ∈ Hµ(·) (by the above proven),
hence Φ ∈ Hµ(t). �

3.7. On the convergence of a function sequence from Hp(·), p∈P0(γ).

Theorem 4. Let {Φn(ζ)} be a sequence of boundary values of functions
Φn(z) ∈ Hp(·), p ∈ P1(γ) and∫

γ

∣∣Φn(ζ)
∣∣p(ζ)|dζ| = 2π∫

0

∣∣Φn(ζ
iϑ)

∣∣p(ϑ)dϑ < C, p(ϑ) = p(eiϑ),

where ζ is independent of n.
If {Φn(ζ)} converges in measure on γ, then the sequence {Φn(ζ)} con-

verges uniformly in U to some function Φ(z) of the class Hp(·), and {Φn(ζ)}
converges in measure on γ to the function Φ+(ζ).
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Proof. We have∫
γ

∣∣Φn(ζ)
∣∣|dζ| = ∫

{ζ:|Φn(ζ)|≤1}

∣∣Φn(ζ)
∣∣|dζ|+ ∫

{ζ:|Φn(ζ)|>1}

∣∣Φn(ζ)
∣∣|dζ| ≤

≤ 2π +

∫
γ

∣∣Φn(ζ)
∣∣p(ζ)|dζ| ≤ 2π + C.

Using Tumarkin’s theorem ([14], p. 263-9) (in which it is stated that
the provable theorem is valid for p = const), we conclude that {Φn(ζ)}
converges in U to some function Φ ∈ H1. Let us show that Φ+ ∈ Lp(·)(γ).

From the converging in measure on γ sequence {Φn(ζ)} we select the sub-
sequence {Φn(z)}, converging almost everywhere on γ. Then |Φnk

(eiϑ)|p(ϑ)
converges almost everywhere on γ to the function |Φ(eiϑ)|p(ϑ). By the Fa-
tou’s lemma, we obtain∫

γ

∣∣Φ+(ζ)
∣∣p(ζ)|dζ| = ∫

γ

lim
k→∞

∣∣Φnk
(ζ)

∣∣p(ζ)|dζ| ≤ ∫
γ

∣∣Φnk
(ζ)

∣∣p(ζ)|dζ| < C.

Thus Φ ∈ H1, Φ+ ∈ Lp(·)(γ). Hence

Φ(z) =
1

2πi

∫
γ

Φ+(t)dt

t− z
, Φ+ ∈ Lp(·)(γ).

By Theorem 1, Φ(z) ∈ Hp(·). �

Theorem 4 is a partial generalization of G. Tumarkin’s theorem (see [14],
p. 268–269).

4. The Dirichlet Problem in the Class h̃p(·)

4.1. For p ∈ P(γ), the Dirichlet problem is solved in the class hp(·) for
b ∈ Lp(·)(γ) (see, e.g., [11], p. 219). The solution is unique and representable
by the Poisson integral.

When p ∈ P1(γ), situation changes in the main. Here we have the
following

Theorem 5. Let p ∈ P1(γ); for the solvability of the Dirichlet problem
in the class h̃p(·), that is, for the existence of the function u(w) which is the
real part of some function from Hp(·) and

u+(t) = b(t) (14)

it is necessary and sufficient that the conditions

b(t) ∈ Lp(·)(γ), (Sb)(t) ∈ Lp(t)(γ). (15)
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be fulfilled. If these conditions are fulfilled, then the Dirichlet problem in
the class h̃p(·)(γ) is uniquely solvable and the solution u(w) is given by the
equality

u(w) = ℜ 1

2π

∫
γ

b(τ)
τ + w

τ − w

dτ

τ
, (16)

or what us the same,

u(w) =
1

2π

∫
γ

b(eiσ)
1− r2

1 + r2 − 2r cos(σ − ϑ)
dσ, w = reiϑ. (17)

Proof. The necessity. We use the following result.
If Φ(w) ∈ H1, then it is representable in the form

Φ(w) =
1

2π

∫
γ

ReΦ+(τ)
τ + w

τ − w

dτ

τ
+ i ImΦ(0). (18)

(This statement is well-known for the functions Φ, analytic in U and con-
tinuous in U . In the above formulation, this statement can be found in [15]
(see also [11], p. 11)).

Thus, let u(w) ∈ h̃p(·) and satisfy the condition (14), then there exists
the function Φ(w) ∈ Hp(·) ⊂ H1 such that u(w) = ReΦ(w).

By virtue of the statement from item 3.2, a solution u(w) may be only
the function given by equality (16). For this function to be a solution, it is
necessary that the function

Φb(w) =
1

2π

∫
γ

b(τ)
τ + w

τ − w

dτ

τ

belongs to H1, i.e., the equality

Φb(w) =
1

2πi

∫
γ

Φ+
b (τ)dτ

τ − w

be valid.
Since

Φb(w) =
1

2πi

∫
γ

2b(τ)dτ

τ − w
− 1

2πi

∫
γ

b(τ)

τ
dτ, (19)

by virtue of Sokhotskii-Plemelj formula we, find
Φ+

b (t) = b(t) + (Sb)(t) + const . (20)

By the statement from item 3.1, we should have [b(t)+(Sb)(t)] ∈ Lp(·)(γ).
Since b(t) ∈ Lp(·)(γ), we should have (Sb)(t) ∈ Lp(·)(γ). Hence conditions
(15) are fulfilled.
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The sufficiency. Let the conditions (15) be fulfilled. Let us prove that
Φb(w) ∈ Hp(·). It is seen from (19) that Φb(w), as the Cauchy type integral,
belongs to ∩

δ<1
Hδ (see [14]. p. 96). It follows from (15) that Φb(w) ∈ H1,

and hence,

Φb(w) =
1

2πi

∫
γ

Φ+
b (τ)dτ

τ − w
.

According to (20) and (15), we find that Φb(w) is representable by the
Cauchy integral with density Φ+

b ∈ Lp(·)(γ). By virtue of Theorem 1, we
conclude that Φb ∈ Hp(·). Consequently, u = ReΦb is the solution of
problem (14) of the class h̃p(t). �

Remark. The fact that Φb(w) belongs to the class Hp(·) can be also
proved as follows.

As is mentioned above, Φb ∈ ∩
δ<1

Hδ; assume Φb ∈ H1/2. Next, owing to

(15), the function Φ+
b ∈ Lp(t)(γ).

Using Theorem 3, we find that Φb ∈ Hλ(t), where λ(t) = max( 12 ; p(t)) =
p(t).

4.2. On the functions b(t) for which problem (14) is unsolvable. If
p ∈ P(γ), then for any function b ∈ Lp(·)(γ) we have Sb ∈ Lp(·)(γ) (see [15]
and also [11], p. 44). But when p ∈ P1(γ), then this is, generally speaking,
impossible at least for such p(t) which admit value 1 on some arc γ0 ⊂ γ.
Indeed, were Sb for any b from Lp(·)(γ) belong to Lp(·)(γ), the Cauchy
operator S : b → Sb would be continuous in Lp(·)(γ) (see [16], and also [11],
p. 101). But this is impossible, since there exist the functions b̃ ∈ L1(γ0)

for which Sb̃∈L1(γ0); taking as b(t) the function b1 from Lp(·)(γ) which
equals b̃ on γ0, we have b1 ∈L1(γ0), and hence, Sb1 ∈Lp(·)(γ).

Obviously, in the case under consideration there exist linearly indepen-
dent functions b1, b2, . . . , bn, . . . for which problem (14) is unsolvable in the
class h̃p(·).

4.3. Certain subsets of functions from Lp(·)(γ), min
t∈γ

p(t) = 1, for
which conditions (15) are fulfilled. In [12], in connection with the in-
vestigation of problems dealing with the approximation of functions from
Lp(·)(γ), it was considered the sets Vr, r ∈ N0 = {0, 1, 2, . . . } of those
function f from Lp(·)(γ) for which

δ0∫
0

Ω(t, δ)

δ

(
ln 1

δ

)r

dδ < ∞, where δ0 > 0,
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and

Ω(f, δ) = sup
h≤δ

∥∥∥∥
s+h∫

s−h

f(eiσ)dσ − f(s)

∥∥∥∥
p(·)

.

It has been proved that the Cauchy operator S : b → Sb transfers Vr+1 into
Vr, and S(V0) ⊂ Lp(·)(γ).

Consequently, the following theorem is valid.

Theorem 6. If b ∈ V0, then problem (14) is solvable in the class h̃p(·).

4.4. On classes of functions V and h̃p(·)(γ;V ). The Dirichlet prob-
lem in the class h̃p(·)(γ;V ). The above-mentioned work [12] considers also
the set

V = ∩
z∈N0

Vr.

which is invariant with respect to the operator S, i.e.,
S(V ) = Vl.

Let us consider the Dirichlet problem in the following statement: find
the function u(w) from the set

h̃p(·)(γ;V ) =

{
u : ∃Φ ∈ Hp(·)Φ(w) =

1

2πi

∫
γ

Φ+(τ)dτ

τ − w
,

Φ+ ∈ V, u(w) = ReΦ(w)
}
,

which satisfies the boundary condition
u+(t) = b(t).

In this case the theorem below is valid.

Theorem 7. If b ∈ V , then the Dirichlet problem is solvable in the class
h̃p(·)(γ;U).
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